Phytoremediation of Heavy-Metal-Contaminated Soils: Capacity of Amaranth Plants to Extract Cadmium from Nutrient-Poor, Acidic Substrates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Growing Conditions
2.2. Sample Analysis
2.3. Calculations and Data Analysis
3. Results
Bioaccumulation Factor (BAF)
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fuller, R.; Landrigan, P.J.; Balakrishnan, K.; Bathan, G.; Bose-O’Reilly, S.; Brauer, M.; Caravanos, J.; Chiles, T.; Cohen, A.; Corra, L.; et al. Pollution and health: A progress update. Lancet Planet. Health 2022, 6, e535–e547. [Google Scholar] [CrossRef] [PubMed]
- FAO. FAO and ITPS, Status of the World’s Soil Resources: Main Report; United Nations and Intergovernmental Technical Panel on Soils: Rome, Italy, 2015. [Google Scholar]
- FAO. Proceedings of the Global Symposium on Soil Pollution 2018; Food and Agriculture Organization of the United Nations: Rome, Italy, 2018. [Google Scholar]
- Rodríguez-Eugenio, N.; McLaughlin, M.; Pennock, D. Soil Pollution: A Hidden Reality; FAO: Rome, Italy, 2018. [Google Scholar]
- Haller, H.; Jonsson, A. Growing food in polluted soils: A review of risks and opportunities associated with combined phytoremediation and food production (CPFP). Chemosphere 2020, 254, 126826. [Google Scholar] [CrossRef] [PubMed]
- Haller, H.; Flores Carmenate, G. Growing Food in Contaminated Soil—Risks and Opportunities, in Biotechnology, Agriculture and Food Conference; Courtyard by Mariott: Stockholm, Sweden, 2018. [Google Scholar]
- Rockström, J.; Steffen, W.; Noone, K.; Persson, Å.; Chapin, F.S., III; Lambin, E.; Lenton, T.M.; Scheffer, M.; Folke, C.; Schellnhuber, H.J.; et al. Planetary boundaries: Exploring the safe operating space for humanity. Ecol. Soc. 2009, 14, 32. [Google Scholar] [CrossRef]
- Sverdrup, H.U.; Ragnarsdottir, K.V.; Koca, D. An assessment of metal supply sustainability as an input to policy: Security of supply extraction rates, stocks-in-use, recycling, and risk of scarcity. J. Clean. Prod. 2017, 140, 359–372. [Google Scholar] [CrossRef]
- van der Voet, E.; Salminen, R.; Eckelman, M.; Norgate, T.; Mudd, G.; Hisschier, R.; Spijker, J.; Vijver, M.; Selinus, O.; Posthuma, L.; et al. Environmental Challenges of Anthropogenic Metals Flows and Cycles; United Nations Environment Programme: Nairobi, Kenya, 2013. [Google Scholar]
- Mouvet, C.; Dictor, M.-C.; Bristeau, S.; Breeze, D.; Mercier, A. Remediation by chemical reduction in laboratory mesocosms of three chlordecone-contaminated tropical soils. Environ. Sci. Pollut. Res. 2016, 24, 25500–25512. [Google Scholar] [CrossRef]
- Singh, T.; Singh, D.K. Phytoremediation of organochlorine pesticides: Concept, method, and recent developments. Int. J. Phytoremediation 2017, 19, 834–843. [Google Scholar] [CrossRef]
- Gomes, H.I. Phytoremediation for bioenergy: Challenges and opportunities. Environ. Technol. Rev. 2012, 1, 59–66. [Google Scholar] [CrossRef]
- Dickinson, N.M.; Baker, A.J.; Doronila, A.; Laidlaw, S.; Reeves, R.D. Phytoremediation of inorganics: Realism and synergies. Int. J. Phytoremediation 2009, 11, 97–114. [Google Scholar] [CrossRef]
- Abhilash, P.C.; Tripathi, V.; Edrisi, S.A.; Dubey, R.K.; Bakshi, M.; Dubey, P.K.; Singh, H.B.; Ebbs, S.D. Sustainability of crop production from polluted lands. Energy Ecol. Environ. 2016, 1, 54–65. [Google Scholar] [CrossRef]
- Haller, H.; Jonsson, A.; Fröling, M. Application of ecological engineering within the framework for strategic sustainable development for design of appropriate soil bioremediation technologies in marginalized regions. J. Clean. Prod. 2018, 172, 2415–2424. [Google Scholar] [CrossRef]
- Pandey, V.C.; Bajpai, O. Phytoremediation: From Theory toward Practice, in Phytomanagement of Polluted Sites; Elsevier: Amsterdam, The Netherlands, 2019; pp. 1–49. [Google Scholar]
- Haller, H. Soil Remediation and Sustainable Development—Creating Appropriate Solutions for Marginalized Regions; Mid Sweden University: Sundsvall, Sweden, 2017. [Google Scholar]
- Haller, H.; Jonsson, A.; Romero, M.L.; Pascua, M.J. Bioaccumulation and translocation of field-weathered toxaphene and other persistent organic pollutants in three cultivars of amaranth (A. cruentus ‘R127 México’, A. cruentus ‘Don León’ y A. caudatus ‘CAC 48 Perú’)—A field study from former cotton fields in Chinandega, Nicaragua. Ecol. Eng. 2018, 121, 65–71. [Google Scholar] [CrossRef]
- Rahman, M.M.; Azirun, S.M.; Boyce, A.N. Enhanced Accumulation of Copper and Lead in Amaranth (Amaranthus paniculatus), Indian Mustard (Brassica juncea) and Sunflower (Helianthus annuus). PLoS ONE 2013, 8, e62941. [Google Scholar] [CrossRef] [PubMed]
- Yuan, M.; He, H.; Xiao, L.; Zhong, T.; Liu, H.; Li, S.; Deng, P.; Ye, Z.; Jing, Y. Enhancement of Cd phytoextraction by two Amaranthus species with endophytic Rahnella sp. JN27. Chemosphere 2014, 103, 99–104. [Google Scholar] [CrossRef] [PubMed]
- Fan, H.-L.; Wei, Z. Screening of amaranth cultivars (Amaranthus mangostanus L.) for cadmium hyperaccumulation. Agric. Sci. China 2009, 8, 342–351. [Google Scholar] [CrossRef]
- Elias, D.M.; Ooi, G.T.; Razi, M.F.A.; Robinson, S.; Whitaker, J.; McNamara, N.P. Effects of Leucaena biochar addition on crop productivity in degraded tropical soils. Biomass-Bioenergy 2020, 142, 105710. [Google Scholar] [CrossRef]
- Weerasekara, A.C.; Waisundara, V.Y. Amaranth as a pseudocereal in modern times: Nutrients, taxonomy, morphology and cultivation. In Nutritional Value of Amaranth; IntechOpen: London, UK, 2020. [Google Scholar] [CrossRef]
- Rastogi, A.; Shukla, S. Amaranth: A New Millennium Crop of Nutraceutical Values. Crit. Rev. Food Sci. Nutr. 2013, 53, 109–125. [Google Scholar] [CrossRef]
- Feng, L.; Yan, H.; Dai, C.; Xu, W.; Gu, F.; Zhang, F.; Li, T.; Xian, J.; He, X.; Yu, Y.; et al. The systematic exploration of cadmium-accumulation characteristics of maize kernel in acidic soil with different pollution levels in China. Sci. Total Environ. 2020, 729, 138972. [Google Scholar] [CrossRef]
- Haider, F.U.; Liqun, C.; Coulter, J.A.; Cheema, S.A.; Wu, J.; Zhang, R.; Wenjun, M.; Farooq, M. Cadmium toxicity in plants: Impacts and remediation strategies. Ecotoxicol. Environ. Saf. 2021, 211, 111887. [Google Scholar] [CrossRef]
- Kubier, A.; Wilkin, R.T.; Pichler, T. Cadmium in soils and groundwater: A review. Appl. Geochem. 2019, 108, 104388. [Google Scholar] [CrossRef]
- Huang, R.; Dong, M.; Mao, P.; Zhuang, P.; Paz-Ferreiro, J.; Li, Y.; Li, Y.; Hu, X.; Netherway, P.; Li, Z. Evaluation of phytoremediation potential of five Cd (hyper)accumulators in two Cd contaminated soils. Sci. Total Environ. 2020, 721, 137581. [Google Scholar] [CrossRef]
- Zulfiqar, U.; Jiang, W.; Xiukang, W.; Hussain, S.; Ahmad, M.; Maqsood, M.F.; Ali, N.; Ishfaq, M.; Kaleem, M.; Haider, F.U.; et al. Cadmium phytotoxicity, tolerance, and advanced remediation approaches in agricultural soils: A comprehensive review. Front. Plant Sci. 2022, 13, 401. [Google Scholar] [CrossRef] [PubMed]
- Shifaw, E. Review of Heavy Metals Pollution in China in Agricultural and Urban Soils. J. Health Pollut. 2018, 8, 180607. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Wang, C. Natural and Human Factors Affect the Distribution of Soil Heavy Metal Pollution: A Review. Water Air Soil Pollut. 2020, 231, 350. [Google Scholar] [CrossRef]
- Vareda, J.P.; Valente, A.J.M.; Durães, L. Assessment of heavy metal pollution from anthropogenic activities and remediation strategies: A review. J. Environ. Manag. 2019, 246, 101–118. [Google Scholar] [CrossRef]
- Rahimzadeh, M.R.; Rahimzadeh, M.R.; Kazemi, S.; Moghadamnia, A.A. Cadmium toxicity and treatment: An update. Casp. J. Intern. Med. 2017, 8, 135. [Google Scholar]
- Genchi, G.; Sinicropi, M.S.; Lauria, G.; Carocci, A.; Catalano, A. The effects of cadmium toxicity. Int. J. Environ. Res. Public Health 2020, 17, 3782. [Google Scholar] [CrossRef] [PubMed]
- Arnot, J.; Gobas, F.A. A review of bioconcentration factor (BCF) and bioaccumulation factor (BAF) assessments for organic chemicals in aquatic organisms. Environ. Rev. 2006, 14, 257–297. [Google Scholar] [CrossRef]
- Rascio, N.; Navari-Izzo, F. Heavy metal hyperaccumulating plants: How and why do they do it? And what makes them so interesting? Plant Sci. 2011, 180, 169–181. [Google Scholar] [CrossRef]
- Li, N.; Li, Z.; Fu, Q.; Zhuang, P.; Guo, B.; Li, H. Agricultural Technologies for Enhancing the Phytoremediation of Cadmium-Contaminated Soil by Amaranthus hypochondriacus L. Water Air Soil Pollut. 2013, 224, 1673. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, S.; Xu, X.; Li, T.; Gong, G.; Jia, Y.; Li, Y.; Deng, L. Tolerance and accumulation characteristics of cadmium in Amaranthus hybridus L. J. Hazard. Mater. 2010, 180, 303–308. [Google Scholar] [CrossRef]
- Abe, T.; Fukami, M.; Ogasawara, M. Cadmium accumulation in the shoots and roots of 93 weed species. Soil Sci. Plant Nutr. 2008, 54, 566–573. [Google Scholar] [CrossRef]
- Mench, M.; Lepp, N.; Bert, V.; Schwitzguébel, J.-P.; Gawroński, S.; Schröder, P.; Vangronsveld, J. Successes and limitations of phytotechnologies at field scale: Outcomes, assessment and outlook from COST Action 859. J. Soils Sediments 2010, 10, 1039–1070. [Google Scholar] [CrossRef]
- Tang, Y.-T.; Deng, T.-H.; Wu, Q.-H.; Wang, S.-Z.; Qiu, R.-L.; Wei, Z.-B.; Guo, X.-F.; Lei, M.; Chen, T.-B.; Echevarria, G.; et al. Designing Cropping Systems for Metal-Contaminated Sites: A Review. Pedosphere 2012, 22, 470–488. [Google Scholar] [CrossRef]
- Sas-Nowosielska, A.; Kucharski, R.; Małkowski, E.; Pogrzeba, M.; Kuperberg, J.; Kryński, K. Phytoextraction crop disposal—An unsolved problem. Environ. Pollut. 2004, 128, 373–379. [Google Scholar] [CrossRef]
- Mahar, A.; Wang, P.; Ali, A.; Awasthi, M.K.; Lahori, A.H.; Wang, Q.; Li, R.; Zhang, Z. Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: A review. Ecotoxicol. Environ. Saf. 2016, 126, 111–121. [Google Scholar] [CrossRef]
- Song, U.; Park, H. Importance of biomass management acts and policies after phytoremediation. J. Ecol. Environ. 2017, 41, 13. [Google Scholar] [CrossRef]
pH (H2O) | 5.6 |
---|---|
Organic Matter | 4.1% |
Sand | 70% |
Silt | 22% |
Clay | 4% |
Electrical Conductivity | 23 mS/m |
N (NO3 + NO2) | 0.12 mg kg−1 dw |
P-AL | 0.14 mg kg−1 dw |
K-AL | 0.73 mg kg−1 dw |
Mg-AL | 0.86 mg kg−1 dw |
Ca-AL | 7.7 mg kg−1 dw |
Cd (total) | 0.01 mg kg−1 dw |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haller, H.; Pronoza, L.; Dyer, M.; Ahlgren, M.; Bergqvist, L.; Flores-Carmenate, G.; Jonsson, A. Phytoremediation of Heavy-Metal-Contaminated Soils: Capacity of Amaranth Plants to Extract Cadmium from Nutrient-Poor, Acidic Substrates. Challenges 2023, 14, 28. https://doi.org/10.3390/challe14020028
Haller H, Pronoza L, Dyer M, Ahlgren M, Bergqvist L, Flores-Carmenate G, Jonsson A. Phytoremediation of Heavy-Metal-Contaminated Soils: Capacity of Amaranth Plants to Extract Cadmium from Nutrient-Poor, Acidic Substrates. Challenges. 2023; 14(2):28. https://doi.org/10.3390/challe14020028
Chicago/Turabian StyleHaller, Henrik, Lesya Pronoza, Mark Dyer, Maya Ahlgren, Louise Bergqvist, Ginnette Flores-Carmenate, and Anders Jonsson. 2023. "Phytoremediation of Heavy-Metal-Contaminated Soils: Capacity of Amaranth Plants to Extract Cadmium from Nutrient-Poor, Acidic Substrates" Challenges 14, no. 2: 28. https://doi.org/10.3390/challe14020028