Planetary Health and Traditional Medicine: A Potential Synergistic Approach to Tackle Antimicrobial Resistance
Abstract
:1. Introduction
2. Factors Promoting the Spread of AMR
3. ESKAPE Pathogens
4. Antibiotics and Gut Microbiota
5. Traditional Medicine, Medicinal Plants and AMR
6. Planetary Health and Antimicrobial Resistance
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ashok, J.T.; Cecilia, L.S. Antimicrobials and antimicrobial resistance in the environment and its remediation: A global One Health perspective. Int. J. Environ. Res. Public Health 2019, 16, 4614. [Google Scholar] [CrossRef] [Green Version]
- Kimera, Z.I.; Mshana, S.E.; Rweyemamu, M.M.; Mboera, L.E.G.; Matee, M.I.N. Antimicrobial use and resistance in food-producing animals and the environment: An African perspective. Antimicrob. Resist. Infect. Control 2020, 9, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woolhouse, M.E.J.; Ward, M.J. Sources of antimicrobial resistance. Science 2013, 341, 1460–1461. [Google Scholar] [CrossRef] [PubMed]
- Tiseo, K.; Huber, L.; Gilbert, M.; Robinson, T.P.; Boeckel, T.P. Global trends in antimicrobial use in food animals from 2017 to 2030. Antibiotics 2020, 9, 918. [Google Scholar] [CrossRef]
- Hoyle, D.V.; Davison, H.C.; Knight, H.I.; Yates, C.M.; Dobay, O.; Gunn, G.J.; Amyes, S.G.B.; Woolhouse, M.E.J. Molecular characterisation of bovine faecal Escherichia coli shows persistent of defined amoicillin resistant strains and the presence of class 1 integrons on an organic beef farm. Vet. Microbiol. 2006, 115, 250. [Google Scholar] [CrossRef]
- Andrews, K.T.; Fisher, G.; Skinner-Adams, T.S. Drug repurposing and human parasitic protozoan diseases. Int. J. Parasitol. Drugs Drug Resist. 2014, 4, 95–111. [Google Scholar] [CrossRef] [Green Version]
- Capela, R.; Moreira, R.; Lopes, F. An overview of drug resistance in protozoal diseases. Int. J. Mol. Sci. 2019, 20, 5748. [Google Scholar] [CrossRef] [Green Version]
- de Koning, H.P. Drug resistance in protozoan parasites. Emerg. Top. Life Sci. 2017, 1, 627–632. [Google Scholar] [CrossRef] [Green Version]
- Pray, L. Antibiotic resistance, mutation rates and MRSA. Nat. Educ. 2008, 1, 30. [Google Scholar]
- D’Costa, V.M.; King, C.E.; Kalan, L.; Morar, M.; Sung, W.W.; Schwarz, C.; Froese, D.; Zazula, G.; Calmels, F.; Debruyne, R.; et al. Antibiotic resistance is ancient. Nature 2011, 477, 457–461. [Google Scholar] [CrossRef]
- Bhullar, K.; Waglechner, N.; Pawlowski, A.; Koteva, K.; Banks, E.D.; Johnston, M.D.; Barton, H.A.; Wright, G.D. Antibiotic resistance is prevalent in an isolated cave microbiome. PLoS ONE 2012, 7, e34953. [Google Scholar] [CrossRef] [PubMed]
- Castanon, J.I. History of the use of antibiotic as growth promoters in european poultry feeds. Poult. Sci. 2007, 86, 2466–2471. [Google Scholar] [CrossRef] [PubMed]
- Marston, H.D.; Dixon, D.M.; Knisely, J.M.; Palmore, T.N.; Fauci, A.S. Antimicrobial Resistance. JAMA 2016, 316, 1193–1204. [Google Scholar] [CrossRef] [Green Version]
- Van Boeckel, T.P.; Brower, C.; Gilbert, M.; Grenfell, B.T.; Levin, S.A.; Robinson, T.P.; Teillant, A.; Laxminarayan, R. Global trends in antimicrobial use in food animals. Proc. Natl. Acad. Sci. USA 2015, 112, 5649–5654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- US Food and Drug Administration. Summary Report on Antimicrobials Sold or Distributed for Use in Food-Producing Animals. Available online: http://www.fda.gov/downloads/ForIndustry/UserFees/AnimalDrugUserFeeActADUFA/UCM476258.pdf (accessed on 12 January 2016).
- Barton, M.D. Antibiotic use in animal feed and its impact on human health. Nutr. Res. Rev. 2000, 13, 279–299. [Google Scholar] [CrossRef] [Green Version]
- Marshall, B.M.; Levy, S.B. Food animals and antimicrobials: Impacts on human health. Clin. Microbiol. Rev. 2011, 24, 718–733. [Google Scholar] [CrossRef] [Green Version]
- Sivaraman, G.K.; Muneeb, K.H.; Sudha, S.; Shome, B.; Cole, J.; Holmes, M. Prevalence of virulent and biofilm forming st88-iv-t2526 methicillin-resistant staphylococcus aureus clones circulating in local retail fish markets in Assam, India. Food Control 2021, 127, 108098. [Google Scholar] [CrossRef]
- Zhu, Y.G.; Zhao, Y.; Zhu, D.; Gillings, M.; Penuelas, J.; Ok, Y.S.; Capon, A.; Banwart, S. Soil biota, antimicrobial resistance, and planetary health. Environ. Int. 2019, 131, 105059. [Google Scholar] [CrossRef]
- Zhu, Y.G.; Johnson, T.A.; Su, J.Q.; Qiao, M.; Guo, G.X.; Stedtfeld, R.D.; Hashsham, S.A.; Tiedje, J.M. Diverse and abundant antibiotic resistant genes in Chinese swine farms. Proc. Natl. Acad. Sci. USA 2013, 110, 3435–3440. [Google Scholar] [CrossRef] [Green Version]
- Muneeb, K.H.; Sudha, S.; Sivaraman, G.K.; Shome, B.; Cole, J.; Holmes, M. Virulence and intermediate resistance to high-end antibiotic (teicoplanin) among coagulase-negative staphylococci sourced from retail market fish. Arch. Microbiol. 2021, 203, 5695–5702. [Google Scholar] [CrossRef]
- Paola, G.; Valeria, A.; Caracciolo, A.B. Ecological effects of antibiotics on natural ecosystems: A review. Microchem. J. 2018, 136, 25–39. [Google Scholar] [CrossRef]
- Holmes, A.H.; Moore, L.S.; Sundsfjord, A.; Steinbakk, M.; Regmi, S.; Karkey, A.; Guerin, P.J.; Piddock, L.J. Understanding the mechanisms and drivers of antimicrobial resistance. Lancet 2016, 387, 176–187. [Google Scholar] [CrossRef]
- Huijbers, P.M.; Blaak, H.; de Jong, M.C.; Graat, E.A.; Vandenbroucke-Grauls, C.M.; de Roda Husman, A.M. Role of the environment in the transmission of antimicrobial resistance to Humans: A Review. Environ. Sci. Technol. 2015, 49, 11993–12004. [Google Scholar] [CrossRef] [PubMed]
- Jack, P.N.; Sean, G.P.; Brendan, G.F. Clinical relevance of the ESKAPE pathogens. Expert Rev. Anti Infect. Ther. 2013, 11, 297–308. [Google Scholar]
- Smith, A. Bacterial resistance to antibiotics. In Hugo and Russell’s Pharmaceutical Microbiology; Denyer, S.P., Hodges, N.A., Gorman, S.P., Eds.; Blackwell Science Ltd.: Oxford, UK, 2007; pp. 220–232. [Google Scholar]
- Mulani, M.S.; Kamble, E.E.; Kumkar, S.N.; Tawre, M.S.; Pardesi, K.R. Emerging strategies to combat ESKAPE pathogens in the era of antimicrobial resistance: A review. Front. Microbiol. 2019, 10, 539. [Google Scholar] [CrossRef]
- Lange, K.; Buerger, M.; Stallmach, A.; Bruns, T. Effects of antibiotics on gut microbiota. Dig. Dis. 2016, 34, 260–268. [Google Scholar] [CrossRef]
- Ma, Y.X.; Wang, C.Y.; Li, Y.Y.; Li, J.; Wan, Q.Q.; Chen, J.H.; Tay, F.R.; Niu, L.N. Considerations and caveats in combating ESKAPE pathogens against nosocomial infections. Adv. Sci. 2020, 7, 1901872. [Google Scholar] [CrossRef] [Green Version]
- Asaduzzaman, M. Antimicrobial Resistance: An urgent need for a planetary and ecosystem approach. Lancet Planet. Health 2018, 2, e99–e100. [Google Scholar] [CrossRef]
- World Health Organization. 2019 Antibacterial Agents in Clinical Development: An Analysis of the Antibacterial Clinical Development Pipeline; WHO: Geneva, Switzerland, 2019.
- AMR Industry Alliance. Available online: https://www.amrindustryalliance.org (accessed on 17 March 2022).
- World Health Organization. 2017 Antibacterial Agents in Clinical Development: An Analysis of the Antibacterial Clinical Development Pipeline; WHO: Geneva, Switzerland, 2017.
- Bäckhed, F.; Roswall, J.; Peng, Y.; Feng, Q.; Jia, H.; Kovatcheva-Datchary, P.; Li, Y.; Xia, Y.; Xie, H.; Zhong, H.; et al. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 2015, 17, 690–703. [Google Scholar] [CrossRef] [Green Version]
- Jandhyala, M.S.; Talukdar, R.; Subramanya, C.; Vuyyuru, H.; Sasikala, M. Role of the normal gut microbiota. World J. Gastroenterol. 2015, 21, 8787–8803. [Google Scholar] [CrossRef]
- Dethlefsen, L.; Huse, S.; Sogin, M.L.; Relman, D.A. The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol. 2008, 6, e280. [Google Scholar] [CrossRef] [PubMed]
- Jernberg, C.; Löfmark, S.; Edlund, C.; Jansson, J.K. Long-term ecological impacts of antibiotic administration on the human intestinal microbiota. ISME J. 2007, 1, 56. [Google Scholar] [CrossRef] [Green Version]
- Stecher, B.; Maier, L.; Hardt, W.D. ‘Blooming’ in the gut: How dysbiosis might contribute to pathogen evolution. Nat. Rev. Microbiol. 2013, 11, 277–284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heinsen, F.A.; Knecht, H.; Neulinger, S.C.; Schmitz, R.A.; Knecht, C.; Kühbacher, T.; Rosenstiel, P.C.; Schreiber, S.; Friedrichs, A.K.; Ott, S.J. Dynamic changes of the luminal and mucosaassociated gut microbiota during and after antibiotic therapy with paromomycin. Gut Microbes 2015, 6, 243–254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Looft, T.; Johnson, T.A.; Allen, H.K.; Bayles, D.O.; Alt, D.P.; Stedtfeld, R.D.; Chai, B.; Cole, J.R.; Hashsham, S.A.; Tiedje, J.M.; et al. In-feed antibiotic effects on the swine intestinal microbiome. Proc. Natl. Acad. Sci. USA 2012, 109, 1691–1696. [Google Scholar] [CrossRef] [Green Version]
- Fouhse, J.M.; Zijlstra, R.T.; Willing, B.P. The role of gut microbiota in the health and disease of pigs. Anim. Front. 2016, 6, 30–36. [Google Scholar] [CrossRef] [Green Version]
- Jakobsson, H.E.; Jernberg, C.; Andersson, A.F.; Sjölund-Karlsson, M.; Jansson, J.K.; Engstrand, L. Short-term antibiotic treatment has differing long-term impacts on the human throat and gut microbiome. PLoS ONE 2010, 5, e9836. [Google Scholar] [CrossRef] [Green Version]
- Federal Office of Consumer Protection and Food Safety; Paul-Ehrlich-Gesellschaft fur Chemotherapie e.V.; Infectiology Freiburg. GERMAP 2012—Report on the Consumption of Antimicrobials and the Spread of Antimicrobial Resistance in Human and Veterinary Medicine in Germany; Antiinfectives Intelligence: Rheinbach, Germany, 2014.
- Mu, C.; Zhu, W. Antibiotic effects on gut microbiota, metabolism, and beyond. Appl. Microbiol. Biotechnol. 2019, 103, 9277–9285. [Google Scholar] [CrossRef]
- Ayaz, M.; Ullah, F.; Sadiq, A.; Ullah, F.; Ovais, M.; Ahmed, J.; Devkota, H.P. Synergistic interactions of phytochemicals with antimicrobial agents: Potential strategy to counteract drug resistance. Chem. Biol. Interact. 2019, 308, 294–303. [Google Scholar] [CrossRef]
- Ugboko, H.U.; Nwinyi, O.C.; Oranusi, S.U.; Fatoki, T.H.; Omonhinmin, C.A. Antimicrobial importance of medicinal plants in Nigeria. Sci. World J. 2020, 2020, 7059323. [Google Scholar] [CrossRef]
- Aminov, R.I. A Brief history of the antibiotic-era: Lessons learned and challenges for future. Front. Microbiol. 2010, 1, 134. [Google Scholar] [CrossRef] [Green Version]
- Annand, U.; Herrera, N.J.; Altemimi, A.; Lakhssassi, N. A comprehensive review on medicinal plants as antimicrobial therapeutics: Potential avenues of biocompatible drug discovery. Metabolites 2019, 9, 258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jianjun, T.; Zhou, Z. Traditional Chinese Medicine as prevention and treatment strategies of HIV Infection. J. Drug 2016, 1, 28–36. [Google Scholar] [CrossRef]
- World Health Organization. WHO Traditional Medicine Strategy: 2014–2023; WHO: Geneva, Switzerland, 2013.
- Sharifi-Rad, J.; Rayess, Y.E.; Rizk, A.A.; Sadaka, C.; Zgheib, R.; Zam, W.; Sestito, S.; Rapposelli, S.; Neffe-Skocińska, K.; Zielińska, D.; et al. Turmeric and Its Major Compound Curcumin on Health: Bioactive Effects and Safety Profiles for Food, Pharmaceutical, Biotechnological and Medicinal Applications. Front. Pharmacol. 2020, 15, 01021. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Zhu, L. Progress in research on paclitaxel and tumor immunotherapy. Cell. Mol. Biol. Lett. 2019, 24, 40. [Google Scholar] [CrossRef] [Green Version]
- Yuan, H.; Ma, Q.; Ye, L.; Piao, G. The traditional medicine and modern medicine from natural products. Molecules 2016, 21, 559. [Google Scholar] [CrossRef] [Green Version]
- Gupta, P.; Bhatter, P.; D’souza, D.; Tolani, M.; Daswani, P.; Tetali, P.; Birdi, T. Evaluating the anti Mycobacterium tuberculosis activity of Alpinia galangal (L.) Wild. Axenically under reducing oxygen conditions and in intracellular assays. BMC Complement. Altern. Med. 2014, 14, 84. Available online: https://www.biomedcentral.com/1472-6882/14/84 (accessed on 12 January 2022). [CrossRef]
- Bhatia, P.; Sharma, A.; George, J.A.; Anvitha, D.; Kumar, P.; Dwivedi, P.V.; Chandra, S.N. Antibacterial activity of medicinal plants against ESKAPE: An update. Heliyon 2021, 7, e06310. [Google Scholar] [CrossRef]
- Nosten, F.; White, N.J. Artemisinin-Based Combination Treatment of Falciparum Malaria. In Defining and Defeating the Intolerable Burden of Malaria III: Progress and Perspecives: Supplement to Volume 77(6) of American Journal of Tropical Medicine and Hygiene; Breman, J.G., Alilio, M.S., White, N.J., Eds.; Northbrook, American Society of Tropical Medicine and Hygiene: Springfield, IL, USA, 2007. [Google Scholar]
- World Health Organization. Artemisinin Resistance and Artemisinin-Based Combination Therapy Efficacy. 2018. Available online: https://www.WHO-CDS-GMP-2018.18-eng-pdf (accessed on 9 March 2022).
- World Health Organization. Available online: https://www.who.int/health-topics/universal-health-coverage#tab=tab_ (accessed on 17 March 2022).
- Howes, M.J.R.; Quave, C.L.; Collemare, J.; Tatsis, E.C.; Twilley, D.; Lulekal, E.; Farlow, A.; Li, L.; Cazar, M.-E.; Leaman, D.J.; et al. Molecules from Nature: Reconciling biodiversity conservation and global healthcare imperatives for sustainable use of medicinal plants and fungi. New Phytol. Found. 2020, 2, 463–481. [Google Scholar] [CrossRef]
- MPNS Version 9. Medicinal Plant Names Services. The Royal Botanic Gardens, Kew. Available online: http://www.kew.org/mpns (accessed on 17 March 2022).
- WHO Regional Office of Africa. Guidelines for Clinical Study of Traditional Medicines in the WHO African Region; WHO Regional Office of Africa: Brazzavile, Congo, 2004. [Google Scholar]
- World Health Organization. Guidelines For Good Clinical Practice (GCP) for Trials on Pharmaceutical Products; WHO Technical Report Series; WHO: Geneva, Switzerland, 1995.
- WHO Regional Office for Africa. Regional Committee for Africa, Enhancing the Role of Traditional Medicine in Health Systems: A Strategy for the African Region (Documemt AFR/RC63/6); WHO Regional Office for Africa: Brazzavile, Congo, 2013. [Google Scholar]
- World Health Organization. WHO Guidelines on Good Agricultural and Collection Practices for Medicinal Plants; WHO: Geneva, Switzerland, 2003.
- Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770–803. [Google Scholar] [CrossRef]
- WCVP. World Checklist of Vascular Plants, Version 2.0. Facilitated by the Royal Botanic Gardens, Kew; WCVP: Boston, MA, USA, 2022. [Google Scholar]
- The IUCN Red List of Threatened Species. Available online: www.iucnredlist.org (accessed on 17 March 2022).
- Rivers, M.C.; Brummit, N.A.; Nic Lughadha, E.; Meagher, T.R. Do species conservation assessments captures genetic diversity? Glob. Ecol. Conserv. 2014, 2, 81–87. [Google Scholar] [CrossRef] [Green Version]
- Cheek, M.; Nic Lughadha, E.; Kirk, P.; Lindon, H.; Carretero, J.; Looney, B.; Douglas, B.; Haelewaters, D.; Gaya, E.; Llewellyn, T.; et al. New scientific discoveries: Plants and Fungi. Plants People Planet 2020, 2, 371–388. [Google Scholar] [CrossRef]
- Cheek, M.; Magassouba, S.; Howes, M.J.R.; Dore, T.; Doumbouys, S.; Molmou, D.; Grall, A.; Couch, C.; Larridon, I. Kindia (Pavetteae, Rubiaceae), a new cliff-dwelling genus with chemically profiled colleter exudate from Mt Gangan, Republic of Guinea. PeerJ 2018, 20, e4666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dwivedy, A.K.; Singh, V.K.; Kumar, M.; Upadhayay, N.; Das, S.; Chaudhari, K.A.; Dubey, K.N. Bioprospection of traditionally used medicinal plants: An overview. In Angiosperm Systematics: Recent Trends and Emerging Issues; M/s Bishen Singh Mahendra Pal Singh: Dehra Dun, India, 2018; Chapter 14; pp. 247–266. ISBN 978-81-211-0981-9. [Google Scholar]
- Kasilo, O.M.J.; Wambebe, C.; Nikiema, J.-B.; Nabyonga-Orem, J. Towards Universal Health Coverage: Advancing the development and use of traditional medicines in Africa. BMJ Glob. Health 2019, 4, e001517. [Google Scholar] [CrossRef]
- Prescott, S.L.; Logan, A.C. Planetary Health: From the wellspring of holistic medicine to personal and public health imperative. Explore 2019, 15, 98–106. [Google Scholar] [CrossRef]
- Whitmee, S.; Haines, A.; Beyrer, C.; Boltz, F.; Capon, A.G.; de Souza Dias, B.F.; Ezeh, A.; Frumkin, H.; Gong, P.; Head, P.; et al. Safeguarding human health in the Anthropocene epoch: Report of The Rockefeller Foundation-Lancet Commission on planetary health. Lancet 2015, 386, 1973–2028. [Google Scholar] [CrossRef]
- Afzaal, M.; Mukhtar, S.; Nazar, M.; Malik, A.; Tabinda, A.B.; Yasir, A.; Bangash, A.A.; Ahmed, S.; Rasool, A.; Khalid, M. Bio-monitoring of antibiotics and AMR/ARGs. In Antibiotics and Antibiotics Resistance Genes; Springer: Cham, Switzerland, 2020; pp. 163–175. [Google Scholar]
- Larsson, D.G.; Flach, C.F. Antibiotic resistance in the environment. Nat. Rev. Microbiol. 2021, 4, 1–3. [Google Scholar] [CrossRef]
- MacFadden, D.R.; McGough, S.F.; Fisman, D.; Santillana, M.; Brownstein, J.S. Antibiotic resistance increases with local temperature. Nat. Clim. Chang. 2018, 8, 510–514. [Google Scholar] [CrossRef]
- Cole, J.; Desphande, J. Poultry farming, climate change, and drivers of antimicrobial resistance in India. Lancet Planet. Health 2019, 3, e494–e495. [Google Scholar] [CrossRef]
- Horton, R.; Lo, S. Planetary Health: A new science for exceptional action. Lancet 2015, 386, 1921–1922. [Google Scholar] [CrossRef] [Green Version]
- Roose-Amsaleg, C.; Laverman, A.M. Do antibiotics have environmental side-effects? impact of synthetic antibiotics on biogeochemical processes. Environ. Sci. Pollut. Res. 2016, 23, 4000–4012. [Google Scholar] [CrossRef] [PubMed]
- Bloomfield, S.F.; Rook, G.A.; Scott, E.A.; Shanahan, F.; Stanwell-Smith, R.; Turner, P. Time to abandon the hygiene hypothesis: New perspectives on allergic disease, the human microbiome, infectious disease prevention and the role of targeted hygiene. Perspect. Public Health 2016, 136, 213–224. [Google Scholar] [CrossRef] [PubMed]
- Flandroy, L.; Poutahidis, T.; Berg, G.; Clarke, G.; Dao, M.C.; Decaestecker, E.; Furman, E.; Haahtela, T.; Massart, S.; Plovier, H.; et al. The impact of human activities and lifestyles on the interlinked microbiota and health of humans and of ecosystems. Sci. Total Environ. 2018, 627, 1018–1038. [Google Scholar] [CrossRef] [PubMed]
- Ledingham, K.; Hinchliffe, S.; Jackson, M.; Thomas, F.; Tomson, G. Antibiotic Resistance: Using a Cultural Contexts of Health Approach to Address a Global Health Challenge; WHO Regional Office for Europe UN City: Copenhagen, Denmark, 2019. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oladunjoye, I.O.; Tajudeen, Y.A.; Oladipo, H.J.; El-Sherbini, M.S. Planetary Health and Traditional Medicine: A Potential Synergistic Approach to Tackle Antimicrobial Resistance. Challenges 2022, 13, 24. https://doi.org/10.3390/challe13010024
Oladunjoye IO, Tajudeen YA, Oladipo HJ, El-Sherbini MS. Planetary Health and Traditional Medicine: A Potential Synergistic Approach to Tackle Antimicrobial Resistance. Challenges. 2022; 13(1):24. https://doi.org/10.3390/challe13010024
Chicago/Turabian StyleOladunjoye, Iyiola Olatunji, Yusuf Amuda Tajudeen, Habeebullah Jayeola Oladipo, and Mona Said El-Sherbini. 2022. "Planetary Health and Traditional Medicine: A Potential Synergistic Approach to Tackle Antimicrobial Resistance" Challenges 13, no. 1: 24. https://doi.org/10.3390/challe13010024
APA StyleOladunjoye, I. O., Tajudeen, Y. A., Oladipo, H. J., & El-Sherbini, M. S. (2022). Planetary Health and Traditional Medicine: A Potential Synergistic Approach to Tackle Antimicrobial Resistance. Challenges, 13(1), 24. https://doi.org/10.3390/challe13010024