Rapid Softness Prediction and Microbial Spoilage Visualization of Whole Tomatoes by Using Hyper/Multispectral Imaging
Abstract
:1. Introduction
2. Objective of the Project
- (a)
- Establish both HSI and MSI systems for whole-tomato softness and microbial spoilage assessments
- (b)
- Acquire the reflectance and fluorescence spectral images of both unpeeled and peeled fruit from three tomato cultivars
- (c)
- Develop statistical models to predict the softness of measured tomatoes and to ascertain the effects of tomato peel and variety on the optical vision prediction of fruit softness
- (d)
- Select feature wavelengths to determine optimal threshold values for microbial spoilage detection
- (e)
- Visualize the distribution of microbial spoilage on unpeeled and peeled whole tomatoes.
3. Plans and Procedures
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Barrett, D.M.; Garcia, E.; Wayne, J.E. Textural Modification of Processing Tomatoes. Crit. Rev. Food Sci. Nutr. 1998, 38, 173–258. [Google Scholar] [CrossRef]
- Frez-Muñoz, L.; Steenbekkers, B.; Fogliano, V. The Choice of Canned Whole Peeled Tomatoes is Driven by Different Key Quality Attributes Perceived by Consumers Having Different Familiarity with the Product. J. Food Sci. 2016, 81, S2988–S2996. [Google Scholar] [CrossRef]
- Tucker, G.A.; Robertson, N.G.; Grierson, D. Purification and changes in activities of tomato pectinesterase isoenzymes. J. Sci. Food Agric. 1982, 33, 396–400. [Google Scholar] [CrossRef]
- Anthon, G.E.; Blot, L.; Barrett, D.M. Improved Firmness in Calcified Diced Tomatoes by Temperature Activation of Pectin Methylesterase. J. Food Sci. 2005, 70, C342–C347. [Google Scholar] [CrossRef]
- Su, W.-H.; Bakalis, S.; Sun, D.-W. Fingerprinting study of tuber ultimate compressive strength at different microwave drying times using mid-infrared imaging spectroscopy. Dry. Technol. 2019, 37, 1113–1130. [Google Scholar] [CrossRef]
- Su, W.-H.; Bakalis, S.; Sun, D.-W. Fourier transform mid-infrared-attenuated total reflectance (FTMIR-ATR) microspectroscopy for determining textural property of microwave baked tuber. J. Food Eng. 2018, 218, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Doan, H.K.; Perez, K.; Davis, R.M.; Slaughter, D.C. Survey of Molds in California Processing Tomatoes. J. Food Sci. 2016, 81, M2785–M2792. [Google Scholar] [CrossRef]
- Thornton, C.R.; Slaughter, D.C.; Davis, R.M. Detection of the sour-rot pathogen Geotrichum candidum in tomato fruit and juice by using a highly specific monoclonal antibody-based ELISA. Int. J. Food Microbiol. 2010, 143, 166–172. [Google Scholar] [CrossRef] [Green Version]
- Su, W.-H.; Arvanitoyannis, I.S.; Sun, D.-W. Trends in Food Authentication. In Modern Techniques for Food Authentication; Elsevier: Amsterdam, The Netherlands, 2018; pp. 731–758. [Google Scholar]
- Su, W.-H. Advanced Machine Learning in Point Spectroscopy, RGB- and Hyperspectral-Imaging for Automatic Discriminations of Crops and Weeds: A Review. Smart Cities 2020, 3, 767–792. [Google Scholar] [CrossRef]
- Su, W.-H. Crop plant signaling for automated crop/weed identification: A systematic review and new concept. Artif. Intell. Agric. 2020, 4, 262–271. [Google Scholar]
- Su, W.-H.; Zhang, J.; Yang, C.; Page, R.; Szinyei, T.; Hirsch, C.D.; Steffenson, B.J. Automatic Evaluation of Wheat Resistance to Fusarium Head Blight Using Dual Mask-RCNN Deep Learning Frameworks in Computer Vision. Remote Sens. 2021, 13, 26. [Google Scholar] [CrossRef]
- Barrett, D. Future Innovations in Tomato Processing. In Proceedings of the XIII International Symposium on Processing Tomato, Sirmione, Italy, 8–11 June 2014; Volume 1081, pp. 49–55. [Google Scholar]
- Slaughter, D.; Barrett, D.; Boersig, M. Nondestructive Determination of Soluble Solids in Tomatoes using Near Infrared Spectroscopy. J. Food Sci. 1996, 61, 695–697. [Google Scholar] [CrossRef] [Green Version]
- Wilkerson, E.D.; Anthon, G.E.; Barrett, D.M.; Sayajon, G.F.G.; Santos, A.M.; Rodriguez-Saona, L.E. Rapid Assessment of Quality Parameters in Processing Tomatoes Using Hand-Held and Benchtop Infrared Spectrometers and Multivariate Analysis. J. Agric. Food Chem. 2013, 61, 2088–2095. [Google Scholar] [CrossRef] [Green Version]
- Su, W.-H.; He, H.-J.; Sun, D.-W. Non-Destructive and rapid evaluation of staple foods quality by using spectroscopic techniques: A review. Crit. Rev. Food Sci. Nutr. 2017, 57, 1039–1051. [Google Scholar] [CrossRef]
- Su, W.-H.; Sun, D.-W. Mid-infrared (MIR) Spectroscopy for Quality Analysis of Liquid Foods. Food Eng. Rev. 2019, 11, 142–158. [Google Scholar] [CrossRef]
- Su, W.-H.; Bakalis, S.; Sun, D.-W. Potato hierarchical clustering and doneness degree determination by near-infrared (NIR) and attenuated total reflectance mid-infrared (ATR-MIR) spectroscopy. J. Food Meas. Charact. 2019, 13, 1218–1231. [Google Scholar] [CrossRef]
- Su, W.-H.; Sun, D.-W. Fourier Transform Infrared and Raman and Hyperspectral Imaging Techniques for Quality Determinations of Powdery Foods: A Review. Compr. Rev. Food Sci. Food Saf. 2018, 17, 104–122. [Google Scholar] [CrossRef]
- Su, W.-H.; Sun, D.-W. Multivariate analysis of hyper/multi-spectra for determining volatile compounds and visualizing cooking degree during low-temperature baking of tubers. Comput. Electron. Agric. 2016, 127, 561–571. [Google Scholar] [CrossRef]
- Su, W.-H.; Bakalis, S.; Sun, D.-W. Chemometric determination of time series moisture in both potato and sweet potato tubers during hot air and microwave drying using near/mid-infrared (NIR/MIR) hyperspectral techniques. Dry. Technol. 2019, 38, 806–823. [Google Scholar] [CrossRef]
- Su, W.-H.; Sun, D.-W. Advanced Analysis of Roots and Tubers by Hyperspectral Techniques. In Advances in Food and Nutrition Research; Elsevier: Amsterdam, The Netherlands, 2019; Volume 87, pp. 255–303. [Google Scholar]
- Su, W.-H.; Bakalis, S.; Sun, D.-W. Chemometrics in tandem with near infrared (NIR) hyperspectral imaging and Fourier transform mid infrared (FT-MIR) microspectroscopy for variety identification and cooking loss determination of sweet potato. Biosyst. Eng. 2019, 180, 70–86. [Google Scholar] [CrossRef]
- Cheng, J.-H.; Sun, D.-W. Rapid and non-invasive detection of fish microbial spoilage by visible and near infrared hyperspectral imaging and multivariate analysis. LWT 2015, 62, 1060–1068. [Google Scholar] [CrossRef]
- Cho, B.-K.; Kim, M.S.; Baek, I.-S.; Kim, D.-Y.; Lee, W.-H.; Kim, J.; Bae, H.; Kim, Y.-S. Detection of cuticle defects on cherry tomatoes using hyperspectral fluorescence imagery. Postharvest Biol. Technol. 2013, 76, 40–49. [Google Scholar] [CrossRef]
- Egging, V.; Nguyen, J.; Kurouski, D. Detection and Identification of Fungal Infections in Intact Wheat and Sorghum Grain Using a Hand-Held Raman Spectrometer. Anal. Chem. 2018, 90, 8616–8621. [Google Scholar] [CrossRef] [PubMed]
- Lemos, M.A.; Sárniková, K.; Bot, F.; Anese, M.; Hungerford, G. Use of Time-Resolved Fluorescence to Monitor Bioactive Compounds in Plant Based Foodstuffs. Biosensors 2015, 5, 367–397. [Google Scholar] [CrossRef] [Green Version]
- Sherlock, B.E.; Harvestine, J.N.; Mitra, D.; Haudenschild, A.; Hu, J.; Athanasiou, K.A.; Leach, J.K.; Marcu, L. Nondestructive assessment of collagen hydrogel cross-linking using time-resolved autofluorescence imaging. J. Biomed. Opt. 2018, 23, 036004. [Google Scholar] [CrossRef]
- Noh, H.K.; Lu, R. Hyperspectral laser-induced fluorescence imaging for assessing apple fruit quality. Postharvest Biol. Technol. 2007, 43, 193–201. [Google Scholar] [CrossRef]
- Su, W.H.; Sun, D.W. Multispectral Imaging for Plant Food Quality Analysis and Visualization. Compr. Rev. Food Sci. Food Saf. 2018, 17, 220–239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, Y.; Lu, R. Prediction of apple fruit firmness and soluble solids content using characteristics of multispectral scattering images. J. Food Eng. 2007, 82, 142–152. [Google Scholar] [CrossRef]
- Lee, S.-Y.; Luna-Guzman, I.; Chang, S.; Barrett, D.; Guinard, J.-X. Relating descriptive analysis and instrumental texture data of processed diced tomatoes. Food Qual. Prefer. 1999, 10, 447–455. [Google Scholar] [CrossRef]
- Bourne, M.; Moyer, J. Extrusion principle in texture measurement of fresh peas. Food Technol. 1968, 22, 81. [Google Scholar]
- Lu, R.; Guyer, D.E.; Beaudry, R.M. Determination of firmness and sugar content of apples using near-infrared diffuse reflecctance 1. J. Texture Stud. 2000, 31, 615–630. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, W.-H. Rapid Softness Prediction and Microbial Spoilage Visualization of Whole Tomatoes by Using Hyper/Multispectral Imaging. Challenges 2021, 12, 21. https://doi.org/10.3390/challe12020021
Su W-H. Rapid Softness Prediction and Microbial Spoilage Visualization of Whole Tomatoes by Using Hyper/Multispectral Imaging. Challenges. 2021; 12(2):21. https://doi.org/10.3390/challe12020021
Chicago/Turabian StyleSu, Wen-Hao. 2021. "Rapid Softness Prediction and Microbial Spoilage Visualization of Whole Tomatoes by Using Hyper/Multispectral Imaging" Challenges 12, no. 2: 21. https://doi.org/10.3390/challe12020021
APA StyleSu, W. -H. (2021). Rapid Softness Prediction and Microbial Spoilage Visualization of Whole Tomatoes by Using Hyper/Multispectral Imaging. Challenges, 12(2), 21. https://doi.org/10.3390/challe12020021