Trends in Vessel Atmospheric Emissions in the Central Mediterranean over the Last 10 Years and during the COVID-19 Outbreak
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ship Emission Modelling
2.2. Air Quality Measurements
2.3. Geographical Domain and AIS Data Set
3. Results and Discussion
3.1. Results of Sampling Using LVSs
3.2. Analysis of Aerosol System Data for the Past Few Years
3.3. Trends in Trace Gases in the Last 10 Years and Correlation of Trace Gases with Wind Direction
3.4. Trends in GHGs in the Last 9 Years
3.5. Analysis of AIS Data Using STEAM Model for 2015
3.6. Classification of Emissions by Chemical Species
4. COVID-19 Analysis and Discussion
4.1. Marine Vessel Traffic and the Covid-19 Pandemic
4.2. Air Quality over the Malta Channel
4.3. Ship Traffic within the Malta Channel
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nolle, M.; Ellul, R.; Heinrich, G.; Güsten, H. A long-term study of background ozone concentrations in the central Mediterra-nean—Diurnal and seasonal variations on the island of Gozo. Atmos. Environ. 2002, 36, 1391–1402. [Google Scholar] [CrossRef]
- Azzopardi, F.; Ellul, R.; Prestefilippo, M.; Scollo, S.; Coltelli, M. The effect of Etna volcanic Ash clouds on the Maltese islands. J. Volcanol. Geotherm. Res. 2013, 260, 13–26. [Google Scholar] [CrossRef]
- Jalkanen, J.; Johansson, L.; Kukkonen, J. A comprehensive inventory of ship traffic exhaust emissions in the European sea areas in 2011. Atmos. Chem. Phys. 2016, 16, 71–84. [Google Scholar] [CrossRef] [Green Version]
- European Parliament. DIRECTIVE (EU) 2016/802 Reduction in the Sulphur Content of Certain Liquid Fuels; The European Commission: Brussels, Belgium, 2016. [Google Scholar]
- Cofala, J.; Amann, M.; Borken-Kleefeld, J.; Gomez-Sanabria, A.; Heyes, C.; Kiesewetter, G.; Sander, R.; Schoepp, W.; Holland, M.; Fagerli, H.; et al. The Potential for Cost-Effective Air Emission Reductions from International Shipping through Designation of Further Emission Control Areas in EU Waters with Focus on the Mediterranean Sea, Laxenburg, Austria, 2018. Available online: https://iiasa.ac.at/web/home/research/researchPrograms/air/Shipping_emissions_reductions_main.pdf (accessed on 4 July 2021).
- Corbett, J.; Carr, E.; Winebrake, J.; Jalkanen, J.-P.; Johansson, L.; Palamarchuk, Y.; Sofiev, M. REM-PEC/WG.45/INF.9—Technical and Feasibility Study to Examine the Possibility of Designating the Mediterranean Sea, or Pars Thereof, as SOx ECA(s) under MARPOL Annex VI, 2019. Available online: https://www.rempec.org/en/knowledge-centre/online-catalogue/2019/rempec-wg-45-inf-9-technical-and-feasibility-study-to-examine-the-possibility-of-designating-the-mediterranean-sea-or-parts-thereof-as-sox-eca-s-under-marpol-annex-vi-english-only (accessed on 7 July 2021).
- Rouïl, L.; Ratsivalaka, C.; André, J.-M.; Allemand, N. ECAMED: A Technical Feasibility Study for the Implementation of an Emission Control Area (ECA) in the Mediterranean Sea. 2019. Available online: https://www.ecologie.gouv.fr/sites/default/files/R_DRC-19-168862-00408A_ECAMED_final_Report_V5.pdf (accessed on 7 July 2021).
- IMO: Effective Date of Implementation of the Fuel Oil Standard in Regulation 14.1.3 of MARPOL Annex VI, IMO MEPC70, UK.; 2016. Available online: https://wwwcdn.imo.org/localresources/en/OurWork/Environment/Documents/280(70).pdf (accessed on 7 July 2021).
- Sofiev, M.; Winebrake, J.J.; Johansson, L.; Carr, E.W.; Prank, M.; Soares, J.; Vira, J.; Kouznetsov, R.; Jalkanen, J.-P.; Corbett, J.J. Cleaner fuels for ships provide public health benefits with climate tradeoffs. Nat. Commun. 2018, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corbett, J.J.; Fischbeck, P.S.; Pandis, S.N. Global nitrogen and sulfur inventories for oceangoing ships. J. Geophys. Res. Atmos. 1999, 104, 3457–3470. [Google Scholar] [CrossRef]
- Viana, M.; Hammingh, P.; Colette, A.; Querol, X.; Degraeuwe, B.; de Vlieger, I.; Van Aardenne, J. Impact of maritime transport emissions on coastal air quality in Europe. Atmos. Environ. 2014, 90, 96–105. [Google Scholar] [CrossRef]
- Corbett, J.J.; Winebrake, J.J.; Green, E.H.; Kasibhatla, P.; Eyring, V.; Lauer, A. Mortality from ship emissions: A Global As-sessment. Environ. Sci. Technol. 2007, 41, 8512–8518. [Google Scholar] [CrossRef]
- Schembari, C.; Cavalli, F.; Cuccia, E.; Hjorth, J.; Calzolai, G.; Pérez, N.; Raes, F. Impact of a European directive on ship emis-sions on air quality in Mediterranean harbours. Atmos. Environ. 2012, 61, 661–669. [Google Scholar] [CrossRef]
- Ledoux, F.; Roche, C.; Cazier, F.; Beaugard, C.; Courcot, D. Influence of Ship Emissions on NOx, SO2, O3 and PM Concentrations in a North-Sea Harbor in France. 2018. Available online: https://www.sciencedirect.com/science/article/pii/S1001074217317709 (accessed on 7 July 2021).
- Merico, E.; Dinoi, A.; Contini, D. Development of an Integrated Modelling-Measurement System for Near-Real-Time Estimates of Harbour Activity Impact to Atmospheric Pollution in Coastal Cities. 2019. Available online: https://www.sciencedirect.com/science/article/pii/S1361920919305358 (accessed on 7 July 2021).
- Merico, E.; Donateo, A.; Gambaro, A.; Cesari, D.; Gregoris, E.; Barbaro, E.; Contini, D. Influence of In-Port Ships Emissions to Gaseous Atmospheric Pollutants and to Particulate Matter of Different Sizes in a Mediterranean Harbour in Italy. 2016. Available online: https://www.sciencedirect.com/science/article/pii/S135223101630365X (accessed on 7 July 2021).
- Progiou, A.G.; Bakeas, E.; Evangelidou, E.; Kontogiorgi, C.; Lagkadinou, E.; Sebos, I. Air pollutant emissions from Piraeus port: External costs and air quality levels. Transp. Res. Part D Transp. Environ. 2021, 91, 102586. [Google Scholar] [CrossRef]
- CLRTAP 2019. Available online: https://www.ceip.at/ms/ceip_home1/ceip_home/status_reporting/2019_submissions (accessed on 11 May 2020).
- EEA, 2019a. European Environmental Agency, 2019, Annual European Union Greenhouse Gas Inventory 1990-2017 and Inventory Report 2019- Submission under United Nations Framework Convention on Climate Change and Kyoto Protocol EU28 GR. Available online: https://www.eea.europa.eu/publications/european-union-greenhouse-gas-inventory-2019 (accessed on 7 July 2021).
- Theys, N.; de Smedt, I.; Yu, H.; Danckaert, T.; van Gent, J.; Hörmann, C.; Wagner, T.; Hedelt, P.; Bauer, H.; Romahn, F.; et al. Sulfur dioxide retrievals from TROPOMI onboard Sentinel-5 Precursor: Algorithm theoretical basis. Atmos. Meas. Tech. 2017, 10, 119–153. [Google Scholar] [CrossRef] [Green Version]
- Jonson, J.E.; Gauss, M.; Schulz, M.; Jalkanen, J.; Fagerli, H. Effects of global ship emissions on European air pollution levels. Atmos. Chem. Phys. 2020, 20, 11399–11422. [Google Scholar] [CrossRef]
- Jalkanen, J.-P.P.; Brink, A.; Kalli, J.; Pettersson, H.; Kukkonen, J.; Stipa, T. A modelling system for the exhaust emissions of ma-rine traffic and its application in the Baltic Sea area. Atmos. Chem. Phys. 2009, 9, 9209–9223. [Google Scholar] [CrossRef] [Green Version]
- Jalkanen, J.-P.; Johansson, L.; Kukkonen, J.; Brink, A.; Kalli, J.; Stipa, T.; Kerminen, V.M. Extension of an assessment model of ship traffic exhaust emissions for particulate matter and carbon monoxide. Atmos. Chem. Phys. 2012, 12. [Google Scholar] [CrossRef] [Green Version]
- Johansson, L.; Jalkanen, J.; Kalli, J.; Kukkonen, J. The evolution of shipping emissions and the costs of regulation changes in the northern EU area. Atmos. Chem. Phys. 2013, 13, 11375–11389. [Google Scholar] [CrossRef] [Green Version]
- Johansson, L.; Jalkanen, J.; Kukkonen, J. Global assessment of shipping emissions in 2015 on a high spatial and temporal res-olution. Atmos. Environ. 2017, 167, 403–415. [Google Scholar] [CrossRef]
- Hänel, G. Radiation budget of the boundary layer: Part II, Simultaneous measurement of mean solar volume absorption and extinction coefficients of particles. Beitr. Phys. Atmosph. 1987, 60, 241–247. [Google Scholar]
- Hyvärinen, A.P.; Vakkari, V.; Laakso, L.; Hooda, R.K.; Sharma, V.P.; Panwar, T.S.; Beukes, J.P.; Van Zyl, P.G.; Josipovic, M.; Garland, R.M.; et al. Correction for a measurement artifact of the Multi-Angle Absorption Photometer (MAAP) at high black carbon mass concentration levels. Atmos. Meas. Tech. 2013, 6, 81–90. [Google Scholar] [CrossRef] [Green Version]
- Müller, T.; Henzing, J.S.; de Leeuw, G.; Wiedensohler, A.; Alastuey, A.; Angelov, H.; Bizjak, M.; Collaud Coen, M.; Engström, J.E.; Gruening, C.; et al. Characterization and intercomparison of aerosol absorption photometers: Result of two intercom-parison workshops. Atmos. Meas. Tech. 2011, 4, 245–268. [Google Scholar] [CrossRef] [Green Version]
- Petzold, A.; Schloesser, H.; Sheridan, P.J.; Arnott, W.P.; Ogren, J.A.; Virkkula, A. Evaluation of Multiangle Absorption Pho-tometry for Measuring Aerosol Light Absorption. Aerosol Sci. Technol. 2005, 39, 40–51. [Google Scholar] [CrossRef] [Green Version]
- Scientific, T. Model 5012 Instruction Manual Multi Angle Absorption Photometer (MAAP); Thermo Fisher Scientific: Madison, WI, USA, 2007. [Google Scholar]
- Dutt, U.; Jiang, N.; Ross, G.; Gunaratnam, G. Application of the Aethalometer for Black Carbon Source Analysis. Air Qual. Clim. Chang. 2018, 52, 6. [Google Scholar]
- Scientific, M. Aethalometer® Model AE33 User Manual—Version 1.54; Aerosol doo: Ljubljana, Slovenia, 2016. [Google Scholar]
- Burkart, J.; Steiner, G.; Reischl, G.; Moshammer, H.; Neuberger, M.; Hitzenberger, R. Characterizing the performance of two optical particle counters (Grimm OPC 1. 108 and OPC 1. 109) under urban conditions. J. Aerosol Sci. 2010, 41, 953–962. [Google Scholar] [CrossRef] [Green Version]
- Heim, M.; Mullins, B.J.; Umhauer, H.; Kasper, G. Performance evaluation of three optical particle counters with an efficient “multimodal” calibration method. J. Aerosol Sci. 2008, 39, 1019–1031. [Google Scholar] [CrossRef]
- Mordas, G.; Manninen, H.E.; Petäjä, T.; Aalto, P.P.; Hämeri, K.; Kulmala, M. On operation of the ultra-fine water-based CPC TSI 3786 and comparison with other TSI models (TSI 3776, TSI 3772, TSI 3025, TSI 3010, TSI 3007). Aerosol Sci. Technol. 2008, 42, 152–158. [Google Scholar] [CrossRef]
- TSI Inc. Model 3772/3771 Condensation Particle Counter: Operation and Service Manual, 2007. Available online: http://dustmonitors.ru/f/manual_cpc-3772-3771-part_1.pdf (accessed on 7 July 2021).
- Wiedensohler, A.; Birmili, W.; Nowak, A.; Sonntag, A.; Weinhold, K.; Merkel, M.; Wehner, B.; Tuch, T.; Pfeifer, S.; Fiebig, M.; et al. Particle mobility size spectrometers: Harmonization of technical standards and data structure to facilitate high quality long-term observations of atmospheric particle number size distributions. Atmos. Meas. Tech. Discuss 2010, 3, 5521–5587. [Google Scholar]
- TROPOS. User manual TROPOS-SMPS—Version H1S4.6.8; Leibniz Institute for Tropospheric Research: Leipzig, Germany, 2012. [Google Scholar]
- Viana, M.; Amato, F.; Alastuey, A.; Querol, X.; Moreno, T.; Garcia Dos Santos, S.; Fernández-Patier, R. Chemical Tracers of Particulate Emissions from Commercial Shipping. Environ. Sci. Technol. 2009, 43, 7472–7477. [Google Scholar] [CrossRef] [PubMed]
- Lelieveld, J.; Dentener, F.J. What controls tropospheric ozone? J. Geophys. Res. Atmos. 2000, 105, 3531–3551. [Google Scholar] [CrossRef]
- Ausmeel, S.; Eriksson, A.; Ahlberg, E.; Kristensson, A. Methods for identifying aged ship plumes and estimating contribution to aerosol exposure downwind of shipping lanes. Atmos. Meas. Tech. 2019, 12, 4479–4493. [Google Scholar] [CrossRef] [Green Version]
- World Health Organisation. Statement on the Second Meeting of the International Health Regulations. Emergency Committee Regarding the Outbreak of Novel Coronavirus (2019-nCoV),” World Health Organization 2005. Available online: https://www.who.int/news-room/detail/30-01-2020-statement-on-the-second-meeting-of-the-international-health-regulations-(2005)-emergency-committee-regarding-the-outbreak-of-novel-coronavirus-(2019-ncov) (accessed on 21 June 2020).
- Center for Systems Science and Engineering, COVID-19 Dashboard by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU), 2020. Available online: https://gisanddata.maps.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6 (accessed on 21 June 2020).
- University of Malta. COVID-19 Updates, Advice & Information. University of Malta, 2020. Available online: https://www.um.edu.mt/newspoint/covid19 (accessed on 21 June 2020).
- Thomson Reuters Malta Announces Gradual Lifting of COVID-19 Restrictions. Thomson Reuters Foundation News, 01-May-2020. Available online: https://news.trust.org/item/20200501101624-n1ip4 (accessed on 21 June 2020).
- European Space Agency (ESA), Sentinel-5P Mission—Instrumental Payload, 2020. Available online: https://sentinel.esa.int/web/sentinel/missions/sentinel-5p/instrumental-payload (accessed on 21 June 2020).
- Vidot, J.; Landgraf, J.; Hasekamp, O.P.; Butz, A.; Galli, A.; Tol, P.; Aben, I. Carbon monoxide from shortwave infrared re-flectance measurements: A new retrieval approach for clear sky and partially cloudy atmospheres. Remote Sens. Environ. 2012, 120, 255–266. [Google Scholar] [CrossRef]
- Boersma, K.F.; Eskes, H.J.; Veefkind, J.P.; Brinksma, E.J.; vander A, R.J.; Sneep, M.; van den Oord, G.H.J.; Levelt, P.F.; Stammes, P.; Gleason, J.F.; et al. Near-real time retrieval of tropospheric NO2 from OMI. Atmos. Chem. Phys. 2007, 7, 2103–2118. [Google Scholar] [CrossRef] [Green Version]
- Boersma, K.F.; Eskes, H.J.; Dirksen, R.J.; van der A, R.J.; Veefkind, J.P.; Stammes, P.; Huijnen, V.; Kleipool, Q.L.; Sneep, M.; Claas, J.; et al. An improved tropospheric NO2column retrieval algorithm forthe Ozone Monitoring Instrument. Atmos. Meas. Tech. 2011, 4, 1905–1928. [Google Scholar] [CrossRef] [Green Version]
- Boersma, K.F.; Eskes, H.J.; Brinksma, E.J. Error Analysis for Tropospheric NO2 Retrieval from Space. J. Geophys. Res. 2004, 109, D04311. [Google Scholar] [CrossRef]
- Atmospheric Toolbox. HARP—Data Harmonization Toolset for Scientific Earth Observation Data, 2020. Available online: https://atmospherictoolbox.org/harp/ (accessed on 21 June 2020).
- Deidun, A.; Gauci, A.; Azzopardi, J.; Camilleri, C.; Cutajar, D.; Chalabreysse, M.; Trinquard, F. Development of a Novel Tool for the Monitoring of Shipping Traffic Within the Strait of Sicily (Central Mediterranean): The BIODIVALUE AIS Vessel Tracker. J. Coast. Res. 2018, 85, 1356–1360. [Google Scholar] [CrossRef]
Species | Emissions [kg] | Share of Total |
---|---|---|
NOx [kg] | 5.09 × 107 | 2.34% |
SOx [kg] | 3.03 × 107 | 1.40% |
PM2.5 [kg] | 3.99 × 106 | 0.18% |
CO [kg] | 3.27 × 106 | 0.15% |
CO2 [kg] | 2.08 × 109 | 95.75% |
OC [kg] | 7.74 × 105 | 0.04% |
EC [kg] | 3.10 × 105 | 0.01% |
Ash [kg] | 2.27 × 105 | 0.01% |
SO4 [kg] | 2.68 × 106 | 0.12% |
Total | 2.17 × 109 | 100.00% |
Category | Ship Type Code Range |
---|---|
Fishing | 30 |
Wing-In-Ground | 2–29, 51 |
Sailing, pleasure, and high speed | 36–37 40–49 |
Passenger | 60–69 |
Cargo and tankers | 70–79 80–89 |
Special | 31–35 50, 52–59 |
Reserved and other | 10–19 38–39 90–91 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saliba, M.; Azzopardi, F.; Muscat, R.; Grima, M.; Smyth, A.; Jalkanen, J.-P.; Johansson, L.; Deidun, A.; Gauci, A.; Galdies, C.; et al. Trends in Vessel Atmospheric Emissions in the Central Mediterranean over the Last 10 Years and during the COVID-19 Outbreak. J. Mar. Sci. Eng. 2021, 9, 762. https://doi.org/10.3390/jmse9070762
Saliba M, Azzopardi F, Muscat R, Grima M, Smyth A, Jalkanen J-P, Johansson L, Deidun A, Gauci A, Galdies C, et al. Trends in Vessel Atmospheric Emissions in the Central Mediterranean over the Last 10 Years and during the COVID-19 Outbreak. Journal of Marine Science and Engineering. 2021; 9(7):762. https://doi.org/10.3390/jmse9070762
Chicago/Turabian StyleSaliba, Martin, Francelle Azzopardi, Rebecca Muscat, Marvic Grima, Alexander Smyth, Jukka-Pekka Jalkanen, Lasse Johansson, Alan Deidun, Adam Gauci, Charles Galdies, and et al. 2021. "Trends in Vessel Atmospheric Emissions in the Central Mediterranean over the Last 10 Years and during the COVID-19 Outbreak" Journal of Marine Science and Engineering 9, no. 7: 762. https://doi.org/10.3390/jmse9070762
APA StyleSaliba, M., Azzopardi, F., Muscat, R., Grima, M., Smyth, A., Jalkanen, J.-P., Johansson, L., Deidun, A., Gauci, A., Galdies, C., Caruana, T., & Ellul, R. (2021). Trends in Vessel Atmospheric Emissions in the Central Mediterranean over the Last 10 Years and during the COVID-19 Outbreak. Journal of Marine Science and Engineering, 9(7), 762. https://doi.org/10.3390/jmse9070762