Environmental Regulations on the Spatial Spillover of the Sustainable Development Capability of Chinese Clustered Ports
Abstract
:1. Introduction
2. Literature Review
2.1. Port’s Sustainable Development Capability (SDC)
2.2. Effects of Environmental Regulations (ERs) on Port’s SDC
2.3. Cluster of Ports
2.4. Spatial Spillover of the Port’s SDC
2.5. Methods for Studying the Port’s SDC
2.6. Research Gap
3. Methodology and Variables
3.1. Methodology
3.1.1. The SDC Evaluation Model
3.1.2. Spatial Correlation Test of the Port’s SDC
3.1.3. Space Panel Econometric Models
- (1)
- A ordinary least squares (OLS) regression is used to evaluate the port’s panel data.
- (2)
- A spatial effect and a time effect are introduced to the OLS regression model, representing spatial changes over time, which makes a spatial econometric model.
- (3)
- A spatial weight matrix is introduced to the spatial econometric model so that an integrated spatial model is presented, where is , or , denoting the adjacency matrix, the geospatial distance matrix, and the economic distance matrix.
3.2. Data and Variables
3.2.1. Data Sources
3.2.2. Explanatory Variables
3.2.3. Control Variables
4. Results
4.1. SDC of Twenty Chinese Ports
4.2. Spatial Autocorrelation Test
4.2.1. Global Spatial Autocorrelation Analysis
4.2.2. Local Spatial Autocorrelation Analysis
4.3. Results by Various Econometric Models
4.3.1. Conventional Panel Econometric Models
4.3.2. Spatial Panel Econometric Model
4.3.3. Spatial Spillover Effect
4.3.4. Discussion of Spatial Spillover Effects
5. Conclusions and Suggestions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Peng, P.; Yang, Y.; Lu, F.; Cheng, S.; Mou, N.; Yang, R. Modelling the competitiveness of the ports along the Maritime Silk Road with big data. Transp. Res. Part A Policy Pract. 2018, 118, 852–867. [Google Scholar] [CrossRef]
- Zhao, Q.; Xu, H.; Wall, R.S.; Stavropoulos, S. Building a bridge between port and city: Improving the urban competitiveness of port cities. J. Transp. Geogr. 2017, 59, 120–133. [Google Scholar] [CrossRef]
- Yin, H.; He, Q.; Guo, T.; Zhu, J.; Yu, B. Measurement Method and Empirical Research on the Sustainable Development Capability of a Regional Industrial System Based on Ecological Niche Theory in China. Sustainability 2014, 6, 8485–8509. [Google Scholar] [CrossRef] [Green Version]
- Porter, M.E.; Van Der Linde, C. Toward a New Conception of the Environment-Competitiveness Relationship. J. Econ. Perspect. 1995, 9, 97–118. [Google Scholar] [CrossRef]
- Chakraborty, P.; Chatterjee, C. Does environmental regulation indirectly induce upstream innovation? New evidence from India. Res. Policy 2017, 46, 939–955. [Google Scholar] [CrossRef]
- Ramanathan, R. Understanding Complexity: The Curvilinear Relationship Between Environmental Performance and Firm Performance. J. Bus. Ethics 2018, 149, 383–393. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Feng, J. Basic factors influencing the sustainable development capability of Chinese property and casualty insurance enterprises. Manag. Sci. Eng. 2013, 7, 109–116. [Google Scholar] [CrossRef]
- Ahmad, S.; Tahar, R.M. Selection of renewable energy sources for sustainable development of electricity generation system using analytic hierarchy process: A case of Malaysia. Renew. Energy 2014, 63, 458–466. [Google Scholar] [CrossRef]
- Li, M.; Wang, J.; Chen, Y. Evaluation and Influencing Factors of Sustainable Development Capability of Agriculture in Countries along the Belt and Road Route. Sustainability 2019, 11, 2004. [Google Scholar] [CrossRef] [Green Version]
- Park, J.-Y.; Yeo, G.-T. An Evaluation of Greenness of major Korean ports: A Fuzzy Set Approach. Asian J. Shipp. Logist. 2012, 28, 67–82. [Google Scholar] [CrossRef] [Green Version]
- Wan, C.; Zhang, D.; Yan, X.; Yang, Z. A novel model for the quantitative evaluation of green port development—A case study of major ports in China. Transp. Res. Part D Transp. Environ. 2018, 61, 431–443. [Google Scholar] [CrossRef]
- Teerawattana, R.; Yang, Y.-C. Environmental Performance Indicators for Green Port Policy Evaluation: Case Study of Laem Chabang Port. Asian J. Shipp. Logist. 2019, 35, 63–69. [Google Scholar] [CrossRef]
- Balbaa, A.; El-Amary, N.H. Green Energy Seaport Suggestion for Sustainable Development in Damietta Port, Egypt. Ecosyst. Sustain Dev. XI 2017, 1, 67–77. [Google Scholar] [CrossRef] [Green Version]
- Tseng, P.-H.; Pilcher, N. Evaluating the key factors of green port policies in Taiwan through quantitative and qualitative approaches. Transp. Policy 2019, 82, 127–137. [Google Scholar] [CrossRef] [Green Version]
- Yun, P.; Xiangda, L.; Wenyuan, W.; Ke, L.; Chuan, L. A simulation-based research on carbon emission mitigation strategies for green container terminals. Ocean Eng. 2018, 163, 288–298. [Google Scholar] [CrossRef]
- Li, J.; Liu, X.; Jiang, B. An Exploratory Study on Low-Carbon Ports Development Strategy in China. Asian J. Shipp. Logist. 2011, 27, 91–111. [Google Scholar] [CrossRef]
- Chang, C.-C.; Wang, C.-M. Evaluating the effects of green port policy: Case study of Kaohsiung harbor in Taiwan. Transp. Res. Part D Transp. Environ. 2012, 17, 185–189. [Google Scholar] [CrossRef]
- Tichavska, M.; Tovar, B.; Gritsenko, D.; Johansson, L.; Jalkanen, J.P. Air emissions from ships in port: Does regulation make a difference? Transp. Policy 2019, 75, 128–140. [Google Scholar] [CrossRef]
- Lister, J.; Poulsen, R.T.; Ponte, S. Orchestrating transnational environmental governance in maritime shipping. Glob. Environ. Chang. 2015, 34, 185–195. [Google Scholar] [CrossRef] [Green Version]
- Aregall, M.G.; Bergqvist, R.; Monios, J. A global review of the hinterland dimension of green port strategies. Transp. Res. Part D Transp. Environ. 2018, 59, 23–34. [Google Scholar] [CrossRef]
- Jaccoud, C.; Magrini, A. Regulation of solid waste management at Brazilian ports: Analysis and proposals for Brazil in light of the European experience. Mar. Pollut. Bull. 2014, 79, 245–253. [Google Scholar] [CrossRef]
- Hossain, T.; Adams, M.; Walker, T.R. Sustainability initiatives in Canadian ports. Mar. Policy 2019, 106, 103519. [Google Scholar] [CrossRef]
- Chen, J.; Fei, Y.; Wan, Z.; Yang, Z.; Li, H.; Choi, K.-S.; Xie, X. Allometric relationship and development potential comparison of ports in a regional cluster: A case study of ports in the Pearl River Delta in China. Transp. Policy 2020, 85, 80–90. [Google Scholar] [CrossRef]
- Chen, D.; Yang, Z. Systematic optimization of port clusters along the Maritime Silk Road in the context of industry transfer and production capacity constraints. Transp. Res. Part E Logist. Transp. Rev. 2018, 109, 174–189. [Google Scholar] [CrossRef]
- Dooms, M.; Van Der Lugt, L.; De Schepper, S.; De Jong, O. Socioeconomic Performance Assessment of Port Clusters; Elsevier BV: Amsterdam, The Netherlands, 2019; pp. 231–253. [Google Scholar]
- Benito, G.R.; Berger, E.; De La Forest, M.; Shum, J. A cluster analysis of the maritime sector in Norway. Int. J. Transp. Manag. 2003, 1, 203–215. [Google Scholar] [CrossRef]
- De Langen, P.W.; Visser, E.-J. Collective action regimes in seaport clusters: The case of the Lower Mississippi port cluster. J. Transp. Geogr. 2005, 13, 173–186. [Google Scholar] [CrossRef]
- Zhang, Y. Case Analysis of the Boost Effect of Port Trade on Regional Transoceanic Economy Based on Industrial Cluster Effect. J. Coast. Res. 2019, 94, 768–772. [Google Scholar] [CrossRef]
- Dooms, M. Sustainable port clusters and development: Building competitiveness through clustering or spatially dispersed supply chains. Marit. Econ. Logist. 2020, 22, 146–148. [Google Scholar] [CrossRef]
- Zhao, D.; Zhen-Fu, L.; Yu-Tao, Z.; Xiao, C.; Shan-Shan, L. Measurement and spatial spillover effects of port comprehensive strength: Empirical evidence from China. Transp. Policy 2020, 99, 288–298. [Google Scholar] [CrossRef]
- Liu, L.; Yin, F. Spatial Spillover Effects of Ports on Economic Growth of Hinterland Cities. J. Transp. Syst. Eng. Inf. Technol. 2020, 20, 144–149. [Google Scholar] [CrossRef]
- Wang, L.; Peng, C.; Shi, W.; Zhu, M. Carbon dioxide emissions from port container distribution: Spatial characteristics and driving factors. Transp. Res. Part D Transp. Environ. 2020, 82, 102318. [Google Scholar] [CrossRef]
- Liang, J.; Li, C. Spatial competition intensity analysis of China’s ports based on the two-zone system spatial Durbin model. Shipp. Manag. 2020, 42, 21–25. [Google Scholar] [CrossRef]
- Elhorst, J.P. Applied Spatial Econometrics: Raising the Bar. Spat. Econ. Anal. 2010, 5, 9–28. [Google Scholar] [CrossRef]
- Bottasso, A.; Conti, M.; Ferrari, C.; Tei, A. Ports and regional development: A spatial analysis on a panel of European regions. Transp. Res. Part A Policy Pract. 2014, 65, 44–55. [Google Scholar] [CrossRef]
- Tongzon, J. Efficiency measurement of selected Australian and other international ports using data envelopment analysis. Transp. Res. Part A Policy Pract. 2001, 35, 107–122. [Google Scholar] [CrossRef]
- Itoh, H. Effeciency Changes at Major Container Ports in Japan: A Window Application of Data Envelopment Analysis. Rev. Urban Reg. Dev. Stud. 2002, 14, 133–152. [Google Scholar] [CrossRef]
- Cullinane, K.P.B.; Wang, T.-F. The efficiency of European container ports: A cross-sectional data envelopment analysis. Int. J. Logist. Res. Appl. 2006, 9, 19–31. [Google Scholar] [CrossRef]
- Chiang, C.; Hwang, M.; Liu, Y. Determining a common set of weights in a DEA problem using a separation vector. Math. Comput. Model. 2011, 54, 2464–2470. [Google Scholar] [CrossRef]
- Nguyen, H.-O.; Chang, Y.-T.; Chin, A.T.H.; Tongzon, J. Measuring port efficiency using bootstrapped DEA: The case of Vietnamese ports. Marit. Policy Manag. 2015, 43, 644–659. [Google Scholar] [CrossRef]
- Chang, Y.-T.; Park, H.; Lee, S.; Kim, E. Have Emission Control Areas (ECAs) harmed port efficiency in Europe? Transp. Res. Part D Transp. Environ. 2018, 58, 39–53. [Google Scholar] [CrossRef]
- Song, Y.-Y.; Yang, G.-L.; Yang, J.-B.; Khoveyni, M.; Xu, D.-L. Using Two-layer Minimax Optimization and DEA to Determine Attribute Weights. J. Manag. Sci. Eng. 2018, 3, 76–100. [Google Scholar] [CrossRef]
- Tone, K. A slacks-based measure of efficiency in data envelopment analysis. Eur. J. Oper. Res. 2001, 130, 498–509. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Wu, X.; Guo, J.; Wei, G.; Dooling, T.A. Efficiency evaluation and PM emission reallocation of China ports based on improved DEA models. Transp. Res. Part D Transp. Environ. 2020, 82, 102317. [Google Scholar] [CrossRef]
- Sun, J.; Yuan, Y.; Yang, R.; Ji, X.; Wu, J. Performance evaluation of Chinese port enterprises under significant environmental concerns: An extended DEA-based analysis. Transp. Policy 2017, 60, 75–86. [Google Scholar] [CrossRef]
- Castellano, R.; Ferretti, M.; Musella, G.; Risitano, M. Evaluating the economic and environmental efficiency of ports: Evidence from Italy. J. Clean. Prod. 2020, 271, 122560. [Google Scholar] [CrossRef]
- Tepanosyan, G.; Sahakyan, L.; Zhang, C.; Saghatelyan, A. The application of Local Moran’s I to identify spatial clusters and hot spots of Pb, Mo and Ti in urban soils of Yerevan. Appl. Geochem. 2019, 104, 116–123. [Google Scholar] [CrossRef]
- Kumari, M.; Sarma, K.; Sharma, R. Using Moran’s I and GIS to study the spatial pattern of land surface temperature in relation to land use/cover around a thermal power plant in Singrauli district, Madhya Pradesh, India. Remote. Sens. Appl. Soc. Environ. 2019, 15, 100239. [Google Scholar] [CrossRef]
- Chen, Y.; Yin, G.; Liu, K. Regional differences in the industrial water use efficiency of China: The spatial spillover effect and relevant factors. Resour. Conserv. Recycl. 2021, 167, 105239. [Google Scholar] [CrossRef]
- Shen, C.; Li, C.; Si, Y. Spatio-temporal autocorrelation measures for nonstationary series: A new temporally detrended spatio-temporal Moran’s index. Phys. Lett. A 2016, 380, 106–116. [Google Scholar] [CrossRef]
- Tillé, Y.; Dickson, M.M.; Espa, G.; Giuliani, D. Measuring the spatial balance of a sample: A new measure based on Moran’sIindex. Spat. Stat. 2018, 23, 182–192. [Google Scholar] [CrossRef] [Green Version]
- Elhorst, J.P. Dynamic spatial panels: Models, methods, and inferences. J. Geogr. Syst. 2011, 14, 5–28. [Google Scholar] [CrossRef]
- Lesage, J.P.; Fischer, M.M. Cross-sectional dependence model specifications in a static trade panel data setting. J. Geogr. Syst. 2020, 22, 5–46. [Google Scholar] [CrossRef] [Green Version]
- Majumdar, S.K.; Marcus, A.A. Rules Versus Discretion: The Productivity Consequences of Flexible Regulation. Acad. Manag. J. 2001, 44, 170–179. [Google Scholar] [CrossRef] [Green Version]
- Tosun, J.; Knill, C. Economy and Sustainability—How Economic Integration Stimulates Stringent Environmental Regulations. Sustainability 2009, 1, 1305–1322. [Google Scholar] [CrossRef] [Green Version]
- Ball, C.; Burt, G.; De Vries, F.; MacEachern, E. How environmental protection agencies can promote eco-innovation: The prospect of voluntary reciprocal legitimacy. Technol. Forecast. Soc. Chang. 2018, 129, 242–253. [Google Scholar] [CrossRef]
- Kim, T.S. The Revealed Competitiveness of Major Ports in the East Asian Region: An Additive Market Share Analysis. Asian J. Shipp. Logist. 2015, 31, 429–435. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Du, Y. Spatial effect of environmental regulation on green innovation efficiency: Evidence from prefectural-level cities in China. J. Clean. Prod. 2021, 286, 125032. [Google Scholar] [CrossRef]
- Zou, D.; Cong, H. Evaluation and influencing factors of China’s industrial water resource utilization efficiency from the perspective of spatial effect. Alex. Eng. J. 2021, 60, 173–182. [Google Scholar] [CrossRef]
- Liao, C.-H.; Tseng, P.-H.; Cullinane, K.; Lu, C.-S. The impact of an emerging port on the carbon dioxide emissions of inland container transport: An empirical study of Taipei port. Energy Policy 2010, 38, 5251–5257. [Google Scholar] [CrossRef]
- Song, W.; Wang, C.; Chen, W.; Zhang, X.; Li, H.; Li, J. Unlocking the spatial heterogeneous relationship between Per Capita GDP and nearby air quality using bivariate local indicator of spatial association. Resour. Conserv. Recycl. 2020, 160, 104880. [Google Scholar] [CrossRef]
- Arnold, M. James Le Sage, Robert K. Pace: Introduction to spatial econometrics. Stat. Pap. 2011, 52, 493–494. [Google Scholar] [CrossRef]
Region | Port Name |
---|---|
Bohai Rim Region | Dalian Port, Yingkou Port, Tianjin Port, Tangshan Port, Qinhuangdao Port, Qingdao Port, Yantai Port, Rizhao Port |
Yangtze River Delta Region | Shanghai Port, Ningbo Port, Lianyungang Port |
Southeast Coastal Area | Xiamen Port, Fuzhou Port |
Pearl River Delta Region | Guangzhou Port, Shenzhen Port, Zhuhai Port, Shantou Port |
Southwest Coastal Area | Zhanjiang Port, Beibu Gulf Port, Haikou Port |
Indicator | Variable | Unit | Mean | Max | Min | S.D. |
---|---|---|---|---|---|---|
The shared Inputs | Dock length | m | 31,109.2 | 126,921 | 4563 | 26,825.71 |
Quantity of berths | count | 229.755 | 1238 | 32 | 273.741 | |
Ratio of 1000-ton berths to all berths | % | 43.97 | 94.3 | 2 | 25.24 | |
Desired outputs | Cargo volume | ton | 3.043 | 10.84 | 0.23 | 2.077 |
Container traffic volume | TEU | 800.54 | 4201 | 20.56 | 933.91 | |
Undesired outputs | Other cargo volume | ton | 1.54 | 7.95 | 0.02 | 1.73 |
ton | 22.59 | 78.64 | 1.48 | 13.87 | ||
Explained variables | SDC | / | 0.617 | 0.953 | 0.065 | 0.198 |
Explanatory variables | EPC | yuan | 52.88 | 278.9 | 6.9 | 49.4 |
EPE | yuan | 22.73 | 233.39 | 0.79 | 27.51 | |
PMS | % | 33.34 | 66.3 | 8.6 | 11.83 | |
Control variables | GOI | yuan | 61.24 | 380.43 | 2.16 | 67.06 |
POP | individual | 735.2 | 2426 | 149.1 | 513.2 | |
FTD | % | 40.57 | 48.8 | 32.7 | 5.88 | |
KAC | % | 20.71 | 49.6 | 3 | 10.3 | |
ton | 22.59 | 78.64 | 1.48 | 13.87 |
Port No. | Port Name | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | Mean |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Dalian Port | 0.710 | 0.730 | 0.720 | 0.743 | 0.754 | 0.733 | 0.750 | 0.754 | 0.761 | 0.767 | 0.742 |
2 | Tianjin Port | 0.854 | 0.844 | 0.856 | 0.885 | 0.879 | 0.884 | 0.881 | 0.888 | 0.876 | 0.895 | 0.874 |
3 | Shanghai Port | 0.923 | 0.933 | 0.924 | 0.942 | 0.945 | 0.926 | 0.947 | 0.953 | 0.941 | 0.963 | 0.940 |
4 | Ningbo Port | 0.895 | 0.901 | 0.898 | 0.894 | 0.892 | 0.864 | 0.852 | 0.902 | 0.852 | 0.865 | 0.882 |
5 | Guangzhou Port | 0.837 | 0.845 | 0.846 | 0.842 | 0.836 | 0.812 | 0.806 | 0.852 | 0.806 | 0.813 | 0.830 |
6 | Shenzhen Port | 0.755 | 0.763 | 0.616 | 0.639 | 0.672 | 0.688 | 0.702 | 0.719 | 0.717 | 0.727 | 0.700 |
7 | Qingdao Port | 0.803 | 0.802 | 0.827 | 0.794 | 0.800 | 0.806 | 0.799 | 0.811 | 0.783 | 0.793 | 0.802 |
8 | Xiamen Port | 0.681 | 0.680 | 0.680 | 0.661 | 0.633 | 0.688 | 0.663 | 0.678 | 0.672 | 0.673 | 0.671 |
9 | Tangshan Port | 0.634 | 0.637 | 0.640 | 0.627 | 0.615 | 0.655 | 0.627 | 0.632 | 0.633 | 0.630 | 0.633 |
10 | Qinhuangdao Port | 0.589 | 0.592 | 0.593 | 0.586 | 0.584 | 0.573 | 0.591 | 0.584 | 0.594 | 0.587 | 0.587 |
11 | Yingkou Port | 0.650 | 0.648 | 0.655 | 0.640 | 0.637 | 0.633 | 0.652 | 0.656 | 0.627 | 0.644 | 0.644 |
12 | Lianyungang Port | 0.570 | 0.568 | 0.613 | 0.616 | 0.614 | 0.609 | 0.617 | 0.614 | 0.593 | 0.592 | 0.601 |
13 | Rizhao Port | 0.516 | 0.529 | 0.535 | 0.524 | 0.529 | 0.532 | 0.536 | 0.531 | 0.527 | 0.509 | 0.527 |
14 | Zhanjiang Port | 0.476 | 0.498 | 0.505 | 0.509 | 0.503 | 0.492 | 0.507 | 0.502 | 0.497 | 0.479 | 0.497 |
15 | Beibu Gulf Port | 0.416 | 0.433 | 0.434 | 0.446 | 0.431 | 0.429 | 0.426 | 0.418 | 0.421 | 0.418 | 0.427 |
16 | Fuzhou Port | 0.532 | 0.556 | 0.565 | 0.553 | 0.550 | 0.543 | 0.521 | 0.486 | 0.490 | 0.496 | 0.529 |
17 | Yantai Port | 0.546 | 0.568 | 0.579 | 0.564 | 0.561 | 0.552 | 0.53 | 0.5 | 0.522 | 0.512 | 0.543 |
18 | Zhuhai Port | 0.385 | 0.428 | 0.420 | 0.436 | 0.442 | 0.431 | 0.433 | 0.423 | 0.438 | 0.435 | 0.427 |
19 | Shantou Port | 0.352 | 0.394 | 0.381 | 0.379 | 0.389 | 0.366 | 0.374 | 0.369 | 0.374 | 0.368 | 0.375 |
20 | Haikou Port | 0.065 | 0.068 | 0.066 | 0.087 | 0.113 | 0.127 | 0.139 | 0.144 | 0.158 | 0.144 | 0.111 |
Grade | Range | Port No. | Count of Ports |
---|---|---|---|
1 | 0.9 ≤ SDC ≤ 1 | 3 | 1 |
2 | 0.8 ≤ SDC < 0.9 | 2, 4, 5, 7 | 4 |
3 | 0.7 ≤ SDC < 0.8 | 1, 6 | 2 |
4 | 0.6 ≤ SDC < 0.7 | 8, 9, 11, 12 | 4 |
5 | 0.5 ≤ SDC < 0.6 | 10, 13, 16, 17 | 4 |
6 | 0 ≤ SDC < 0.5 | 14, 15, 18, 19, 20 | 5 |
Year | 2009 | 2010 | 2011 | 2012 | 2013 |
---|---|---|---|---|---|
(1.659) | (1.699) | (1.848) | (1.753) | (1.814) | |
(1.387) | (1.422) | (1.851) | (1.691) | (1.704) | |
(3.174) | (3.096) | (2.897) | (2.870) | (2.797) | |
Year | 2014 | 2015 | 2016 | 2017 | 2018 |
(1.754) | (1.662) | (1.376) | (1.510) | (1.499) | |
(1.659) | (1.576) | (1.310) | (1.455) | (1.448) | |
(3.067) | (2.948) | (2.924) | (3.092) | (3.054) |
Year | Correlation Mode | Port No. | Port Quantity |
---|---|---|---|
2009 | H-H | 1, 2, 3, 4, 5, 6, 7, 8, 9 | 9 |
L-H | 10, 13 | 2 | |
L-L | 12, 14, 15, 16, 17, 18, 19, 20 | 8 | |
H-L | 11 | 1 | |
2012 | H-H | 1, 2, 3, 4, 5, 6, 7, 8, 9 | 9 |
L-H | 10, 13,18 | 3 | |
L-L | 12, 14, 15, 16, 17, 19, 20 | 7 | |
H-L | 11 | 1 | |
2015 | H-H | 1, 2, 3, 4, 5, 6, 7, 8, 9 | 9 |
L-H | 10,18 | 2 | |
L-L | 12, 13,14, 15, 16, 17, 19, 20 | 8 | |
H-L | 11 | 1 | |
2018 | H-H | 1, 2, 3, 4, 5, 6, 7, 8, 9 | 9 |
L-H | 10 | 1 | |
L-L | 12, 13, 14, 15, 16, 17, 18, 19, 20 | 9 | |
H-L | 11 | 1 |
Variable | OLS Model | Fixed-Effect Model | Random-Effect Model | VIFs |
---|---|---|---|---|
EPC | (−0.51) | (−0.74) | (−0.72) | 1.97 |
EPE | (1.26) | (10.69) | (10.21) | 1.21 |
PMS | (−2.32) | (0.88) | (0.8) | 1.07 |
GOI | (0.84) | (0.81) | (0.78) | 2.33 |
POP | (−0.22) | (0.71) | (0.68) | 2.71 |
FTD | (0.05) | (1.16) | (1.1) | 2.76 |
KAC | (0.06) | (2.15) | (2.06) | 1.62 |
(0.41) | (1.57) | (1.5) | 1.19 | |
0.201 | 0.143 | |||
0.035 | 0.441 | 0.441 | ||
200 | 200 | 200 | ||
Hausman-test |
Variable | SAR | SEM | SDM | |||
---|---|---|---|---|---|---|
No Fixed | Spatial Fixed | Time Fixed | Spatial-Temporal Fixed | |||
EPC | (−0.84) | (−1.01) | (0.44) | (0.48) | (−0.11) | (0.04) |
EPE | (11.51) | (11.68) | (12.13) | (12.77) | (1.39) | (12.57) |
PMS | (0.94) | (0.72) | (−0.08) | (−0.05) | (−2.51) | (0.55) |
GOI | (0.93) | (1.15) | (1.17) | (1.2) | (0.85) | (1.37) |
POP | (0.76) | (0.77) | (2.12) | (2.23) | (0.22) | (2.36) |
FTD | (1.27) | (0.89) | (2.72) | (2.01) | (−0.49) | (3.07) |
KAC | (2.33) | (2.71) | (1.94) | (2.01) | (0.24) | (2.06) |
(1.7) | (1.72) | (0.27) | (0.28) | (0.07) | (0.32) | |
(−0.29) | (−0.31) | (−0.01) | (−0.89) | |||
(−1.91) | (−1.87) | (−0.2) | (−1) | |||
(0.96) | (1.02) | (−0.1) | (1.71) | |||
(−1.31) | (−1.36) | (0.14) | (−0.94) | |||
(−0.38) | (−0.37) | (−0.22) | (0.12) | |||
3.64) | . (3.85) | (0.02) | (1.4) | |||
(2.9) | (3.06) | (0.68) | (1.99) | |||
(0.83) | (0.88) | (−0.23) | (0.69) | |||
563.55 | 564.69 | 493.98 | 579.73 | 52.2 | 584.63 |
Variable | SAR | SEM | SDM | |||
---|---|---|---|---|---|---|
No Fixed | Spatial Fixed | Time Fixed | Spatial-Temporal Fixed | |||
EPC | (−0.74) | (−0.94) | (0.36) | (0.37) | (−0.31) | (−0.59) |
EPE | (11.33) | (11.5) | (11.79) | (12.4) | (1.15) | (11.49) |
PMS | (0.94) | (0.91) | (0.15) | (0.18) | (−2.73) | (0.61) |
GOI | (0.8) | (0.95) | (1.26) | (1.02) | (0.91) | (1.84) |
POP | (0.85) | (0.72) | (2.56) | (1.26) | (−0.06) | (1.64) |
FTD | (1.3) | (0.86) | (2.84) | (2.96) | (−0.25) | (2.06) |
KAC | (−2.28) | (−2.47) | (−1.33) | (−1.38) | (0.14) | (−2.41) |
(1.73) | (1.67) | (0.09) | (0.11) | 1.066 (0.68) | (1.75) | |
(0.68) | (0.74) | (−0.48) | (−1.78) | |||
(−1.52) | (−1.49) | (−0.36) | (−0.94) | |||
(1) | (1.04) | (−0.87) | (1.81) | |||
(−2.14) | (−2.26) | (0.09) | (−0.91) | |||
(0.34) | (0.38) | (0.15) | (0.41) | |||
(3.89) | (4.13) | (0.42) | (1.84) | |||
(2.23) | (2.38) | (0.61) | (0.44) | |||
(1.01) | (1.09) | (0.92) | (2.66) | |||
563.73 | 563.77 | 493.92 | 580.24 | 47.97 | 586.46 | |
0.446 | 0.441 | 0.528 | 0.528 | 0.0064 | 0.145 | |
200 | 200 | 200 | 200 | 200 | 200 |
Variable | SAR | SEM | SDM | |||
---|---|---|---|---|---|---|
No Fixed | Spatial Fixed | Time Fixed | Spatial-Temporal Fixed | |||
EPC | (−0.79) | (−1.05) | (−0.2) | (−0.16) | (−0.29) | (0.07) |
EPE | (11.51) | (11.66) | (11.46) | (12.06) | (1.19) | (11.9) |
PMS | (0.95) | (0.92) | (0.85) | (0.94) | (−2.54) | (1.08) |
GOI | (0.66) | (0.66) | (1.26) | (1.3) | (−3.32) | (1.95) |
POP | (0.87) | 0.392 (1.08) | (1.24) | (1.26) | 0.418 (0.83) | (2.41) |
FTD | (1.2) | (1.01) | (1.36) | (1.4) | 0.387 (0.07) | (2.64) |
KAC | (−2.26) | (−2.34) | (1.89) | (2.03) | (0.67) | (0.89) |
(1.82) | (1.72) | (0.65) | (0.7) | (0.14) | (0.49) | |
(1.14) | (1.26) | −0.106 (−0.02) | (1.4) | |||
(1.55) | (1.19) | (0.69) | (1.42) | |||
. (0.22) | (19) | (0.07) | (0.91) | |||
(0.81) | (0.85) | (0.14) | (1.3) | |||
(−1.86) | (−1.99) | (0.06) | (0.51) | |||
(1.33) | (1.43) | (−0.32) | (−1.25) | |||
(−0.02) | (−0.03) | (−0.09) | −0.01 (−0.07) | |||
(0.31) | (0.37) | (−0.52) | (−0.49) | |||
564.65 | 565.38 | 488.1 | 572.13 | 70.7 | 582.2 | |
0.441 | 0.441 | 0.474 | 0.477 | 0.0012 | 0.0462 | |
200 | 200 | 200 | 200 | 200 | 200 |
SDM | Variable | Effect of Type | ||
---|---|---|---|---|
Direct Effect | Indirect Effect | Total Effect | ||
Spatial Fixed | IEPC | (0.48) | (−0.29) | (−0.01) |
EPE | (12.05) | (−1.34) | (3.69) | |
PMS | (0.01) | (1) | (0.87) | |
GOI | (1.08) | (−1.11) | (−0.36) | |
POP | (2.22) | (−0.21) | (0.86) | |
FTD | (2.75) | (4.16) | (2.29) | |
KAC | (2.84) | (1.85) | (1.5) | |
(0.4) | (0.88) | (1.07) |
SDM | Variable | Effect of Type | ||
---|---|---|---|---|
Direct Effect | Indirect Effect | Total Effect | ||
Spatial-temporal fixed | EPC | (−0.48) | (−1.66) | (−1.74) |
EPE | (11.44) | (−1.45) | (1.06) | |
PMS | (0.49) | (1.75) | (1.78) | |
GOI | (1.88) | (−0.9) | (−0.23) | |
POP | (1.59) | (0.3) | (0.86) | |
FTD | (2.25) | (1.84) | (1.15) | |
KAC | (2.6) | (0.58) | (1.3) | |
(1.69) | (2.45) | (2.5) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, X.; Liu, W.; Hu, R.; Hu, W. Environmental Regulations on the Spatial Spillover of the Sustainable Development Capability of Chinese Clustered Ports. J. Mar. Sci. Eng. 2021, 9, 301. https://doi.org/10.3390/jmse9030301
He X, Liu W, Hu R, Hu W. Environmental Regulations on the Spatial Spillover of the Sustainable Development Capability of Chinese Clustered Ports. Journal of Marine Science and Engineering. 2021; 9(3):301. https://doi.org/10.3390/jmse9030301
Chicago/Turabian StyleHe, Xinhua, Wenjun Liu, Ruiqi Hu, and Wenfa Hu. 2021. "Environmental Regulations on the Spatial Spillover of the Sustainable Development Capability of Chinese Clustered Ports" Journal of Marine Science and Engineering 9, no. 3: 301. https://doi.org/10.3390/jmse9030301
APA StyleHe, X., Liu, W., Hu, R., & Hu, W. (2021). Environmental Regulations on the Spatial Spillover of the Sustainable Development Capability of Chinese Clustered Ports. Journal of Marine Science and Engineering, 9(3), 301. https://doi.org/10.3390/jmse9030301