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Abstract: For years, China has adopted environmental regulations in developing ports to improve
their sustainability. Based on the data of Chinese ports from 2009 to 2018, this paper presents a
data envelopment analysis model with subdividing input-output indicator weights and develops
it further in two stages with the weight preference and the slacks-based measure, respectively.
After assessing the sustainable development capability (SDC) of Chinese ports and their spatial
correlation, it revealed that Chinese ports are clustered in several regions and their SDC has spilled
over into their neighbors. Further study revealed the SDC is affected by environmental regulations
in different ways: as a key measure among regulations to improve the SDC, voluntary regulation
has a spatial spillover effect, but neither the mandatory regulation nor public media regulation can
significantly improve the SDC. This suggests that the port authority should enact environmental
regulations based on the port spatial difference and the port should expand its operation scale and
market size and recruit more top talent, which is good for improving its productivity and reducing
its carbon emissions.

Keywords: environmental regulation; sustainable development capability; ports; operation; data
envelopment analysis; spatial spillover; China; cluster

1. Introduction

Ports are important infrastructures to support international trade. The cargo volume
through Chinese ports was 14.35 billion tons in 2018, ranking first in the world. It is sup-
posed that the Chinese cargo volume will steadily increase in the future. The development
of ports is becoming a comprehensive indicator to measure the country’s competitive
level [1,2]. However, construction of a port demands a lot of resources, and it has caused
many environmental problems in China, which have alerted the Chinese government to be
concerned with environmental protection measures in the sustainable development path.

Along with the nationwide supply-side reform, China suggests developing the marine-
related economy as an economical strategy. Sustainable development capability (SDC) is
a key indicator to assess regional development [3]. Sustainable development is related
to environmental protection including resource recycling, clean energy, and low-carbon
emission, which is adjusted by environmental regulations (ERs). However, ERs have a
wide influence on regional economic development, and the Porter Hypothesis is widely
utilized to review the environment–competitiveness relationship [4]. Nevertheless, their
relationship is so complicated that it is still not clear. Though the Porter Hypothesis has
been further investigated by many researchers [5,6], a consensus has not been reached
on the effect of ERs. Scholars have studied the SDC in various entities (i.e., insurance
enterprises [7], electricity industries [8], and agriculture in countries [9]). When ports are
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located in different cities, their SDC will show some spatial features as well as their ERs,
but few papers have investigated these.

This paper aims to investigate the relationship between the SDC of Chinese ports
and ERs from a spatial perspective, and is organized as follows. Section 2 reviews the
literature, which builds the foundation for this research. Section 3 illustrates the data
and methodology. Section 4 presents the results and discussion, and Section 5 draws
conclusions and makes recommendations.

2. Literature Review
2.1. Port’s Sustainable Development Capability (SDC)

Under the pressure of global environmental challenges, countries have started to
develop sustainable ports. At present, if a port can achieve sustainable economic devel-
opment while slowing down environmental degradation, it can be called a green port
with a SDC. The difficulty in developing a sustainable port is how to achieve a clean and
efficient goal for all port activities. Scholars have presented various methods to evaluate
the port’s sustainable performance. Park and Yeo [10] adopted factor analysis and fuzzy
set to assess the greenness of Korean ports. Wan et al. [11] combined the analytic hierarchy
process method and the evidence reasoning method to evaluate the development of green
ports. Teerawattana and Yang [12] presented several indicators for assessing port environ-
mental performance by the entropy method. After evaluating biomass and photovoltaic
renewable energy, Balbaa and El-Amary [13] constructed a sustainable port model for the
Damietta seaport.

Meanwhile, some scholars have proposed some strategies to improve the port’s SDC.
Tseng and Pilcher [14] conducted a quantitative analysis by the fuzzy analytic hierarchy
process and suggested the critical factors in developing green ports were environmental
regulation, economic regulation, workforce, and technological progress. Peng et al. [15]
suggested strategies to develop green ports by developing a port carbon emission simula-
tion model. Li et al. [16] combined the qualitative and quantitative methods to investigate
the low-carbon development strategies of ports in China.

2.2. Effects of Environmental Regulations (ERs) on Port’s SDC

ERs are supposed to accelerate the development of sustainable ports. Scholars have
probed whether the ERs are proper for the development of sustainable ports. Chang
and Wang [17] claimed that ERs helped to reduce the port’s emissions and improve its
environment. Tichavska et al. [18] suggested that the low emission depended on how
ERs were implemented in ports. International agencies have also focused on marine
environmental problems. For example, the International Maritime Organization assembles
pollution prevention conventions to control maritime transport emissions [19], and the
European Commission enacts many port development regulations (i.e., reducing carbon
emissions by 40% and utilizing maritime fuel with less than 0.1% sulfur [20]). The growth
of the Brazilian port industry in recent decades has profited from solid waste management
regulations learned from the European experience [21]. Canadian federal agencies require
that all ports must comply with the ERs (i.e., the Canadian Shipping Act, the Canadian
Environmental Protection Act, and the Canadian Water Act [22]. Since there are so many
kinds of ERs, how various ERs affect the port’s SDC has not been fully explained.

2.3. Cluster of Ports

The port cluster is an economic pattern consisting of economic activities around a
port, which produces a capability to boost its business competitive advantages by the
clustered companies and organizations. A port cluster comprises the port authority, public
organizations, and private companies related to the port operation and cargo services (i.e.,
cargo handling, transportation, logistics, manufacturing, and trade).

Some scholars are dedicated to exploring the factors of port clustering. Chen et al. [23]
pointed out that the development potential of a port cluster depended on port cargo
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throughput as well as import and export volume. Chen and Yang [24] identified industrial
transfer and capacity constraints along the Maritime Silk Road as key indicators for as-
sessing the extent of the port cluster. Dooms et al. [25] considered performance indicators
of the socio-economic impact of port clusters as a key assessment system to support and
enhance port clustering.

Researchers have suggested various approaches to investigate the features of a port
cluster. Benito et al. [26] presented the Diamond theory to investigate the industrial clusters
in the Norwegian foreign trade economy district and concluded that the industrial clusters
were conducive to enhance its competitiveness and innovativeness. After investigating
the Lower Mississippi port, De Langen and Visser [27] claimed that local governance and
collective action would strengthen competitiveness in clustering. Zhang [28] explored the
relationship between port logistics and regional economic development and revealed that
the port cluster had a positive impact on its economy. Dooms [29] also confirmed that port
clusters could improve sustainable competitiveness.

However, the literature on the study of the spatial clustering characteristics of a port’s
SDC from a quantitative perspective is limited, which needs further study.

2.4. Spatial Spillover of the Port’s SDC

Currently, the rapid growth of spatial datasets along with the development of geo-
graphic information systems (GISs) and remote sensing technologies has made it impossi-
ble for traditional econometrics to properly explain spatial data and their effects. Spatial
spillover effects, one of the most important theoretical innovations in spatial econometrics,
overcome the above impediments. On the spatial spillover of a port’s SDC, scholars are
keen to explore the spatial spillover effects between sustainable port development and
the hinterland economy. Zhao et al. [30] investigated the spatial spillover effects of the
integrated development capacity of Chinese ports on the urban economy using an entropy
TOPSIS (Technique for Order Preference by Similarity to an Ideal Solution) model and a
spatial econometric model. Liu and Yin [31] also verified the significant spatial spillover of
the port’s SDC on the economic growth of hinterland cities through a spatial panel model.
Wang et al. [32] found a significant spatial spillover effect of regional tertiary output as well
as regional freight traffic on the port’s SDC. Liang and Li [33] inspected the spatial spillover
effect of cross-regional port consolidation on the port’s SDC utilizing a two-zone system
spatial Durbin model [34]. Bottasso et al. [35] proposed that the sustainable development
of ports tended to increase local gross domestic product (GDP) and has a large positive
spillover effect on the GDP of nearby areas. Regrettably, the spatial spillover effect between
ERs and the port’s SDC is still unproven.

2.5. Methods for Studying the Port’s SDC

Methods for studying the port’s SDC include entropy, factor analysis, fuzzy set,
hierarchical analysis, and data envelopment analysis (DEA), etc. Among these methods, the
DEA, based on linear programming and statistic data, is an objective method to determine
the factor weights in evaluating various management performance and is a dominating
model to investigate port efficiency. Tongzon [36], Itoh [37], and Cullinane et al. [38]
developed DEA models to evaluate and compare the efficiency of major ports in various
countries, respectively. DEA models can be easily improved by various weight methods.
Chiang et al. [39] utilized a weight set obtained by a separation method to calculate the
efficiency of decision-making units (DMUs) so that a multiple-objective fractional linear
programming problem was transformed into single-objective linear programming. Nguyen
et al. [40] presented a bootstrapped DEA to evaluate port efficiency, and Chang et al. [41]
suggested a non-radial DEA model with the slacks-based measure (SBM) to estimate port
efficiency. Song et al. [42] developed a hybrid weight approach by integrating the minimax
optimization method and DEA to deal with the vague decision-maker problem. However,
the operational risks faced by port enterprises continue to increase, so it is worthy of further
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discussion to comprehensively evaluate the port’s sustainable development capabilities by
stages or circumstances.

2.6. Research Gap

In the era of embracing a low-carbon and energy-conservation economy, although
there are studies related to the cluster phenomenon, sustainable development of ports,
the spatial spillover of port’s SDC, and even improved DEA models, they are still many
limitations if applied in analyzing the Chinese clustered ports. Primarily, the previous
literature has not uncovered the mystery of whether there is a spatial heterogeneous or
cluster phenomenon in the SDC of Chinese ports. Second, there is still a lack of investigating
the synergy effects of ERs on the port’s SDC. How to realize the coordinated development
between port sustainable development and ecological benefits is worth pondering. At the
same time, comparing the synergy effects of various ERs on propelling the port’s SDC is
still unsolved. Finally, previous studies have neglected the dynamic nature of the port
operation on building the DEA model.

After reviewing the previous literature, this paper builds a weight preference (WP)-
SBM-DEA model with subdividing stages to evaluate the SDC of Chinese ports, and then
inspects the spatial characteristics of the SDC in various Chinese ports so that the synergy
effects of ERs on improving the port’s SDC in a spatial perspective are investigated and the
factors affecting the port’s sustainability are revealed. The ERs consisting of voluntary reg-
ulations, mandatory regulations, and public media regulations are discussed respectively.

3. Methodology and Variables
3.1. Methodology
3.1.1. The SDC Evaluation Model

A traditional DEA model can measure the comparative efficiency of a complex system
with multiple inputs and outputs, but it does not take into account the slackness of input
and output and the undesired output of port production and operation activities, so it is
not suitable to discern the spatial differences in their DMUs. Tone [43] developed the SBM-
DEA by introducing relaxation variables in the objective functions with the slacks-based
measure in the DEA, but the author ignored the difference in indicator weights and internal
structure of input-output. After reviewing previous studies on sustainable development of
ports [44–46], we developed a DEA model to evaluate ports that consisted of two stages, as
shown in Figure 1.
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Figure 1. A two-stage data envelopment analysis (DEA) model for evaluating the port’s sustainable
development capability (SDC).

The input indicators in the model are the port size, the quantity of dock equipment,
the berth length, and number of employees. Besides the input indicators, the port’s capital,
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workforce, and lands were chosen as the critical indicators in evaluating a port. The output
indicator in the model is the annual cargo volume or annual container throughput.

The first stage is the port operation stage. To evaluate the sustainable efficiency of the
port operation, the desired output is the cargo throughput and the undesired output is the
carbon emissions. The second stage is the cargo operation stage. The desired output in
the first phase is the intermediate input of the second phase, the container traffic volume
is regarded as the desired output, and other cargo volume is regarded as the undesired
output in evaluating the efficiency of the port’s containerization. Besides the terminal
length, the number of berths and the ratio of the 10,000-ton berths to all berths are regarded
as shared inputs in the first and second phases.

To account for the slackness of various inputs and outputs in port operation, a two-
stage WP-SBM-DEA model is presented by utilizing weight preference in the SBM-DEA.

It is assumed that the distribution factor τ denotes the proportion of shared inputs
allocated to the first stage, and 1 −τ denotes the proportion of shared inputs allocated to
the second stage.τ is usually 0.5.

The two-stage WP-SBM-DEA model is defined as follows, and the subscripts 1 and 2
denote the first stage and the second stage, respectively.

In the first stage:

min ρm∗
1j =

1− 1
a1

a1
∑

r1=1

w1g
r1

τx1m
r1 j

1 + 1
b1+c1

(
b1
∑

r2=1

ω1h
r2

y1m
r2 j

+
c2
∑

r3=1

ω1s
r3

z1m
r3 j

) (1)

s.t.



τx1m
r1 j =

k
∑

j=1
τx1m

r1 j λj −ω
1g
r1

y1m
r2 j =

k
∑

j=1
y1m

r2 j µj −ω1h
r2

z1m
r3 j =

k
∑

j=1
z1m

r3 j ξ j + ω1s
r3
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r1 , ω1h

r2
, w1s

r3
≥ 0; λj, µj, ξj ≥ 0; x1m

r1 j , y1m
r2 j , z1m

r3 j ≥ 0
r1 = 1, 2, . . . , a2; r2 = 1, 2, . . . , b2; r3 = 1, 2, . . . , c2; j = 1, 2, . . . , k

In the second stage:

min ρm∗
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where ρm∗
1j represents the sustainable operation efficiency of a port in the mth year; ρm∗

2j

represents the containerization efficiency of a port in the mth year; ω
g
r1 , ωh

r2
and ωs

r3
are

vectors denoting the slacks of the input indicator, the desired output indicator, and the
undesired output indicator at a port j, respectively, where ω

g
r1 is the input excess, ωh

r2
is

the shortfall of the desired output, and ωs
r3

is the superscalar of the undesired output;

ω
1g
r1 /τx1m

r1 j is the input redundancy ratio in the first stage; ω
2g
r1 /x2m

r1 j is the input redundancy

ratio in the second stage; ωh
r2

/ym
r2 j is the desired output redundancy; and ωs

r3
/zm

r3 j is the
undesired output redundancy.

ρm∗
j is a strict monotonic decreasing function, 0 ≤ ρm∗

j ≤ 1. Supposing the optimal

solution is represented by
(

λ∗r1
, µ∗r2

, ξ∗r3
, wg

r1
∗, ωh∗

r2
, ws∗

r3

)
, when ρm

j
∗ = 1, ω

g
r1
∗ = 0, ωh∗

r2
= 0,

and ωs∗
r3

= 0, the solution is optimally efficient. When ρm
j
∗ < 1, the port can improve its

SDC by adjusting the values of input indicators, desired output indicators, and undesired
output indicators, so that ρm

j
∗ → 1 .

φ1 =
∑k

j=1 τxm
r1 jλj + ∑k

j=1 y1m
r2 j µj + ∑k

j=1 z1m
r3 j ξ j

∑k
j=1 x1m

r1 j λj + ∑k
j=1 y1m

r2 j
(
λj + µj

)
+ ∑k

j=1 y2m
r2 j µj + ∑k

j=1

(
z1m

r3 j + z2m
r3 j

)
ξ j

(3)

φ2 =
∑k

j=1

[
(1− τ)x1m

r1 j + y1m
r2 j

]
λj + ∑k

j=1 y2m
r2 j µj + ∑k

j=1 z2m
r3 j ξ j

∑k
j=1 x1m

r1 j λj + ∑k
j=1 y1m

r2 j
(
λj + µj

)
+ ∑k

j=1 y2m
r2 j µj + ∑k

j=1

(
z1m

r3 j + z2m
r3 j

)
ξ j

(4)

Ωm
j = φ1ρm∗

1j + φ2ρm∗
2j (5)

where φ1 and φ2 represent the weights in the two stages, respectively.
k
∑

j=1
x1m

r1 j λj +

k
∑

j=1
y1m

r2 j
(
λj + µj

)
+

k
∑

j=1
y2m

r2 j µj +
k
∑

j=1

(
z1m

r3 j + z2m
r3 j

)
ξ j denotes the total amount of input and

output in the two-stage network DEA model.
k
∑

j=1
τxm

r1 jλj +
k
∑

j=1
y1m

r2 j µj +
k
∑

j=1
z1m

r3 j ξ j and

k
∑

j=1

[
(1− τ)x1m

r1 j + y1m
r2 j

]
λj +

k
∑

j=1
y2m

r2 j µj +
k
∑

j=1
z2m

r3 j ξ j denote the total amount of input and out-

put in the first and second stages, respectively. Ωm
j represents the SDC of port j in the

mth year.

3.1.2. Spatial Correlation Test of the Port’s SDC

A spatial autocorrelation model is often used to test the degree of correlation between
adjacent regions and to discern the spatial correlation, which is the most popular global
cluster analysis method, also known as the Moran’s I test. This method is adjusted to
investigate the spatial relationship of Chinese ports, defined by Equation (6) [47]:

I =
n ∑n

i=1 ∑n
j=1 Wij

(
Xi − X

)(
Xj − X

)(
n ∑n

i=1 ∑n
j=1 Wij

)
∑n

i
(
Xi − X

)2 (6)

where I denotes the value of Moran’s I, ranging from −1 to 1. I > 0 signifies an affirmative
spatial autocorrelation on the SDC, and I < 0 signifies an unfavorable spatial autocorrelation;

X = 1
n

n
∑

i=1
Xi, and Xi is the SDC of port i; Wij is the spatial weight matrix, describing the

correlation effect of the spatial dependence and heterogeneity of an observed variable, and
verifying the spatial spillover effect.
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The z-statistic Z(I), after standardizing the Moran’s I, is chosen to inspect its signifi-
cance, fitting a standard normal distribution asymptotically [48,49].

Z(I) = (I − E(I))/
√

V(I) (7)

where E(I) = −1/(n− 1) and V(I) = E
(

I2)− E(I).
After reviewing the previous literature [50,51], the spatial weight matrix Wij is fur-

ther represented by the adjacent matrix WA
ij , the geospatial distance matrix Ws

ij, and the

economic distance matrix WE
ij , respectively. WA

ij reflects the spatial adjacent relationship

between ports, Ws
ij is the geospatial proximity between ports, and WE

ij represents the gap
in economic development between ports.

WA
ij =

{
1 (two ports i and j are adjacent)

0 (two ports i and j are not adjacent)
(8)

Ws
ij =

{
1/dij (i 6= j)

0 (i = j)
(9)

WE
ij =

{
1/
∣∣Yi −Y j

∣∣ (i 6= j)
0 (i = j)

(10)

where dij = r cos−1[cos
(
Ei − Ej

)
cos Ni cos Nj + sin Ni sin Nj

]
; r is the earth radius ; Ei is

the longitude of port i; Ni is the latitude of port i; and Yi and Y j are the average annual
revenue of port i and j, respectively.

3.1.3. Space Panel Econometric Models

There are three types of spatial panel econometric models [52,53]: the spatial panel
lag model (SAR), the spatial panel error model (SEM), and the spatial panel Durbin model
(SDM). The panel model for assessing the port’s SDC is developed by the following steps:

(1) A ordinary least squares (OLS) regression is used to evaluate the port’s panel data.

Cim = αi + βXim + eim (11)

where Cim is the SDC of port i at time m; αi is a constant; β is a coefficient ; Xim is the
set of independent variables including the explanatory variables and control variables;
and eim is a tiny error term.

(2) A spatial effect ωs and a time effect εt are introduced to the OLS regression model,
representing spatial changes over time, which makes a spatial econometric model.

Cim = αi + βXim + eim + ωs + εt (12)

(3) A spatial weight matrix Wij is introduced to the spatial econometric model so that
an integrated spatial model is presented, where Wij is WA

ij , Ws
ij or WE

ij , denoting the
adjacency matrix, the geospatial distance matrix, and the economic distance matrix.

Cim = αi + βXim + η
n

∑
j=1

WijCjm + δ
n

∑
j=1

Wij ϕjm +γ
n

∑
j=1

WijXjm +σCi,m−1 + eim +ωs + εt

(13)
where η is a coefficient representing the spatial spillover effect of SDC; δ is a coefficient
representing the spatial spillover effect of the error term; ϕ is the spatial autocorrela-
tion error term; γ is a coefficient representing the spatial spillover effect of ERs; Ci,m−1
is the explained variable with a first-order lag; σ is a coefficient; and i and j are two
ports (i = 1, 2, . . . , n; j = 1, 2, . . . , n).
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Three types of the model are defined as follows: When δ = 0, Equation (13) is an SDM
model; when δ = 0, γ = 0, it is an SLM model; when σ = 0, η = 0, and δ = 0, it is an
SEM model.

3.2. Data and Variables
3.2.1. Data Sources

The input and output data are from various sources including the China Statistical
Yearbook, China Environmental Yearbook, and China’s Port Statistical Yearbook. The
Chinese ports are classified by their regions (shown in Table 1), and the port’s SDC is set as
the explained variable.

Table 1. Chinese ports and their regions.

Region Port Name

Bohai Rim Region Dalian Port, Yingkou Port, Tianjin Port, Tangshan Port, Qinhuangdao Port, Qingdao Port,
Yantai Port, Rizhao Port

Yangtze River Delta Region Shanghai Port, Ningbo Port, Lianyungang Port

Southeast Coastal Area Xiamen Port, Fuzhou Port

Pearl River Delta Region Guangzhou Port, Shenzhen Port, Zhuhai Port, Shantou Port

Southwest Coastal Area Zhanjiang Port, Beibu Gulf Port, Haikou Port

3.2.2. Explanatory Variables

There are several methods to select explanatory variables in the Porter Hypothesis.
Majumdar and Marcus [54] and Tosun and Knill [55] divided ERs into agile regulations and
stiff regulations. Chris et al. [56] divided ERs into voluntary regulations and mandatory
regulations. After reviewing the literature, we divided ERs into mandatory regulations,
public media regulations, and voluntary regulations.

A mandatory regulation enables the port authority to monitor whether the port oper-
ation meets the environmental standards or not. Investment in environmental pollution
control (EPC) was utilized as an indicator of mandatory regulation.

Public media could be a social monitor who is aware of the port environmental
behaviors and pollution problems. After an environmental pollution event happens, the
port managers have to deal with the pressure from the public media, and the port would
lose its market share [57]. Port market share (PMS) was set as an indicator for public
media regulations.

Voluntary regulations are the additional measures that a port adopts voluntarily for
environmental protection during its operation. Environmental protection expenditure
(EPE) was set as an indicator of voluntary regulations.

3.2.3. Control Variables

After reviewing previous studies [58,59], we suggested five control variables: (1) oper-
ation scale, (2) market size, (3) international trade dependence, (4) knowledge accumulation
capacity, and (5) environmental pollution.

The operation scale can improve the competitiveness of a port, and the gross operation
income (GOI) was chosen to represent its operation scale. The market size of a port is
affected by the local population (POP). A port with a higher SDC may have a higher
international trade volume, and the ratio of the foreign trade volume to the domestic
one (FTD) is to denote the international trade dependence. Knowledge helps to develop
innovative ideas and improve port productivity, and the knowledge accumulation capacity
(KAC) is denoted by the proportion of employees holding a bachelor’s degree or above to
the total employees in a port. Environmental pollution is usually determined by carbon
emissions (CO2) in a port, estimated by a method proposed by Liao et al. [60], which is
determined by the cargo volume and energy consumption of ports.
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4. Results
4.1. SDC of Twenty Chinese Ports

Descriptive statistical data of variables from 20 Chinese ports are listed in Table 2.

Table 2. Descriptive statistical data of the variables.

Indicator Variable Unit Mean Max Min S.D.

The shared Inputs

Dock length m 31,109.2 126,921 4563 26,825.71

Quantity of berths count 229.755 1238 32 273.741

Ratio of 1000-ton berths to all berths % 43.97 94.3 2 25.24

Desired outputs
Cargo volume ×108 ton 3.043 10.84 0.23 2.077

Container traffic volume ×104 TEU 800.54 4201 20.56 933.91

Undesired outputs
Other cargo volume ×108 ton 1.54 7.95 0.02 1.73

CO2 ×104 ton 22.59 78.64 1.48 13.87

Explained variables SDC / 0.617 0.953 0.065 0.198

Explanatory variables

EPC ×108 yuan 52.88 278.9 6.9 49.4

EPE ×108 yuan 22.73 233.39 0.79 27.51

PMS % 33.34 66.3 8.6 11.83

Control variables

GOI ×108 yuan 61.24 380.43 2.16 67.06

POP ×104 individual 735.2 2426 149.1 513.2

FTD % 40.57 48.8 32.7 5.88

KAC % 20.71 49.6 3 10.3

CO2 ×104 ton 22.59 78.64 1.48 13.87

The SDC of ports was evaluated by the two-stage WP-SBM-DEA model, and their
SDC values from 2009 to 2018 with their means shown in Table 3.

Table 3. Sustainable development capability (SDC) of 20 Chinese ports from 2009 to 2018.

Port No. Port Name 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 Mean

1 Dalian Port 0.710 0.730 0.720 0.743 0.754 0.733 0.750 0.754 0.761 0.767 0.742
2 Tianjin Port 0.854 0.844 0.856 0.885 0.879 0.884 0.881 0.888 0.876 0.895 0.874
3 Shanghai Port 0.923 0.933 0.924 0.942 0.945 0.926 0.947 0.953 0.941 0.963 0.940
4 Ningbo Port 0.895 0.901 0.898 0.894 0.892 0.864 0.852 0.902 0.852 0.865 0.882
5 Guangzhou Port 0.837 0.845 0.846 0.842 0.836 0.812 0.806 0.852 0.806 0.813 0.830
6 Shenzhen Port 0.755 0.763 0.616 0.639 0.672 0.688 0.702 0.719 0.717 0.727 0.700
7 Qingdao Port 0.803 0.802 0.827 0.794 0.800 0.806 0.799 0.811 0.783 0.793 0.802
8 Xiamen Port 0.681 0.680 0.680 0.661 0.633 0.688 0.663 0.678 0.672 0.673 0.671
9 Tangshan Port 0.634 0.637 0.640 0.627 0.615 0.655 0.627 0.632 0.633 0.630 0.633

10 Qinhuangdao Port 0.589 0.592 0.593 0.586 0.584 0.573 0.591 0.584 0.594 0.587 0.587
11 Yingkou Port 0.650 0.648 0.655 0.640 0.637 0.633 0.652 0.656 0.627 0.644 0.644
12 Lianyungang Port 0.570 0.568 0.613 0.616 0.614 0.609 0.617 0.614 0.593 0.592 0.601
13 Rizhao Port 0.516 0.529 0.535 0.524 0.529 0.532 0.536 0.531 0.527 0.509 0.527
14 Zhanjiang Port 0.476 0.498 0.505 0.509 0.503 0.492 0.507 0.502 0.497 0.479 0.497
15 Beibu Gulf Port 0.416 0.433 0.434 0.446 0.431 0.429 0.426 0.418 0.421 0.418 0.427
16 Fuzhou Port 0.532 0.556 0.565 0.553 0.550 0.543 0.521 0.486 0.490 0.496 0.529
17 Yantai Port 0.546 0.568 0.579 0.564 0.561 0.552 0.53 0.5 0.522 0.512 0.543
18 Zhuhai Port 0.385 0.428 0.420 0.436 0.442 0.431 0.433 0.423 0.438 0.435 0.427
19 Shantou Port 0.352 0.394 0.381 0.379 0.389 0.366 0.374 0.369 0.374 0.368 0.375
20 Haikou Port 0.065 0.068 0.066 0.087 0.113 0.127 0.139 0.144 0.158 0.144 0.111

Notes: The data were obtained by MATLAB R2018b. Original data were retrieved from the China Statistical Yearbook, China Environmental
Yearbook, and China’s Port Statistical Yearbook.
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After reviewing their locations, the result revealed that ports in the Bohai Rim Region
and the Yangtze River Delta Region had higher SDC than other regions. Though most
ports had a steady tendency of improving their SDC over time, the gaps of their SDC did
not narrow. Chinese ports were divided into six groups based on their SDC values (shown
in Table 4).

Table 4. Classification of Chinese ports by their SDC.

Grade Range Port No. Count of Ports

1 0.9 ≤ SDC ≤ 1 3 1

2 0.8 ≤ SDC < 0.9 2, 4, 5, 7 4

3 0.7 ≤ SDC < 0.8 1, 6 2

4 0.6 ≤ SDC < 0.7 8, 9, 11, 12 4

5 0.5 ≤ SDC < 0.6 10, 13, 16, 17 4

6 0 ≤ SDC < 0.5 14, 15, 18, 19, 20 5

The Shanghai port is the only one ranked Grade 1, whose SDC was 0.939. One-quarter
were bigger than 0.8, which are located in megacities. Nearly half of Chinese ports were
lower than 0.6, which are mainly located in middle-size cities along the Chinese east
coastline. This result shows that the majority of Chinese ports need to improve their SDC.

4.2. Spatial Autocorrelation Test
4.2.1. Global Spatial Autocorrelation Analysis

The global spatial autocorrelation of Chinese ports in their SDC is denoted by the
Moran’s I values, evaluated by WA

ij , WS
ij , and WE

ij and shown in Table 5.
The values of Moran’s I of Chinese ports has remained stable over the last decade.

Though the Moran’s I value determined by the spatial adjacency matrix decreased slightly
in the last three years, the other two Moran’s I values remained unchanged from 2009 to
2018. Considering the Chinese GDP was 5.1 trillion USD in 2009 and 13.6 trillion USD in
2018, the Moran’s I value by the spatial economic distance matrix remained unchanged,
which was 0.347 in 2018 and 0.355 in 2009.

Table 5. Global spatial autocorrelation of Chinese ports from 2009 to 2018.

Year 2009 2010 2011 2012 2013

Moran′s I by WA
ij

0.235 ∗∗

(1.659)
0.238 ∗∗

(1.699)
0.262 ∗∗

(1.848)
0.248 ∗∗

(1.753)
0.262 ∗∗

(1.814)

Moran′s I by WS
ij

0.053 ∗

(1.387)
0.054 ∗

(1.422)
0.086 ∗∗

(1.851)
0.075 ∗∗

(1.691)
0.077 ∗∗

(1.704)

Moran′s I by WE
ij

0.355 ∗∗∗

(3.174)
0.340 ∗∗∗

(3.096)
0.313 ∗∗

(2.897)
0.312 ∗∗

(2.870)
0.306 ∗∗

(2.797)

Year 2014 2015 2016 2017 2018

Moran′s I by WA
ij

0.253 ∗∗

(1.754)
0.238 ∗∗

(1.662)
0.191 ∗

(1.376)
0.214 ∗

(1.510)
0.212 ∗

(1.499)

Moran′s I by WA
ij

0.074 ∗∗

(1.659)
0.068 ∗

(1.576)
0.049 ∗

(1.310)
0.06 ∗

(1.455)
0.06 ∗

(1.448)

Moran′s I by WA
ij

0.343 ∗∗∗

(3.067)
0.329 ∗∗

(2.948)
0.331 ∗∗

(2.924)
0.351 ∗∗∗

(3.092)
0.347 ∗∗∗

(3.054)

Note: Z-statistics in the parenthesis. *, **, *** mean that p values are less than 0.1, 0.05, and 0.01, respectively. All tables below are the same.
The data were obtained by Stata 15.0.
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4.2.2. Local Spatial Autocorrelation Analysis

The Moran’s I values of Chinese ports in their SDC by WA
ij and WS

ij passed the 10%

significance and by WE
ij passed the 5% significance test, which demonstrates that the

Chinese ports’ SDC was significantly dependent on the economic distance. Chinese ports
were divided into four groups: H-H, L-H, L-L, and H-L, according to their SDC by WE

ij in
2009, 2012, 2015, and 2018 (shown in Table 6), where H represents a higher correlation and
L represents a lower correlation.

Table 6. Distribution of ports based on their SDC.

Year Correlation Mode Port No. Port Quantity

2009

H-H 1, 2, 3, 4, 5, 6, 7, 8, 9 9

L-H 10, 13 2

L-L 12, 14, 15, 16, 17, 18, 19, 20 8

H-L 11 1

2012

H-H 1, 2, 3, 4, 5, 6, 7, 8, 9 9

L-H 10, 13,18 3

L-L 12, 14, 15, 16, 17, 19, 20 7

H-L 11 1

2015

H-H 1, 2, 3, 4, 5, 6, 7, 8, 9 9

L-H 10,18 2

L-L 12, 13,14, 15, 16, 17, 19, 20 8

H-L 11 1

2018

H-H 1, 2, 3, 4, 5, 6, 7, 8, 9 9

L-H 10 1

L-L 12, 13, 14, 15, 16, 17, 18, 19, 20 9

H-L 11 1

Out of 20 ports over the last decade, nine ports were in H-H, whose SDC were higher
and had a higher cluster, and seven to nine ports were in the L-L, whose SDC were lower
and their gaps in economic development were small. There are only one to three ports
located in L-H, which had a lower cluster degree, but were surrounded by ports with
higher SDC. One port, Yingkou Port, remained in H-L from 2009 to 2018, where the SDC
was higher, but is surrounded by ports with lower SDC.

The local indicators of spatial association (LISA) are often used to reflect the spatial
aspects [61]. Their LISAs are visualized in five regions with their geographic locations, as
shown in Figure 2. Their cluster maps are visualized in Figure 3, which also validates the
spatial heterogeneity and cluster phenomenon of the port’s SDC.
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Figure 3. Spatial relationships of twenty Chinese ports, 2009–2018. The figures were drawn by ArcGIS 10.3.

4.3. Results by Various Econometric Models

The SDC of Chinese ports were investigated by conventional econometric models with
OLS, fixed-effect, and random-effect, respectively, and spatial panel econometric models
with WA

ij , WS
ij , and WE

ij , respectively.

4.3.1. Conventional Panel Econometric Models

Several conventional panel econometric models with OLS, fixed-effect, and random-
effect were constructed as the baseline. Their Hausman test was 22.81 (p < 0.01), revealing
that the econometric models are suitable to analyze the fixed-effects of ports. Their variance-
inflating factors (VIFs) were small, which showed no multi-collinearity between indicators
(Table 7).
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Table 7. Results of the conventional panel econometric models.

Variable OLS Model Fixed-Effect Model Random-Effect Model VIFs

EPC −0.48
(−0.51)

−0.055
(−0.74)

−0.056
(−0.72) 1.97

EPE 0.707
(1.26)

0.472 ∗∗∗

(10.69)
0.472 ∗∗∗

(10.21) 1.21

PMS −0.702 ∗∗

(−2.32)
0.022
(0.88)

0.021
(0.8) 1.07

GOI 0.462
(0.84)

0.035
(0.81)

0.036
(0.78) 2.33

POP −1.102
(−0.22)

0.282
(0.71)

0.28
(0.68) 2.71

FTD 0.043
(0.05)

0.076
(1.16)

0.076
(1.1) 2.76

KAC 0.043
(0.06)

0.124 ∗∗

(2.15)
0.124 ∗∗

(2.06) 1.62

CO2
0.403
(0.41)

0.122
(1.57)

0.122
(1.5) 1.19

sigma−u 0.201 0.143

R2 0.035 0.441 0.441

Obs 200 200 200

Hausman-test 22.81 ∗∗∗

Note: t-statistics in parenthesis. **, *** mean that p values are less than 0.05, and 0.01, respectively. All tables below are the same. The data
were obtained by Stata 15.0.

4.3.2. Spatial Panel Econometric Model

Among the three types of spatial panel econometric model, the Hausman test suggests
that SDM should choose the fixed-effects, where the fitting goodness R2 in the space fixed-
effect model is the largest, and the log-likelihood value in the spatial-temporal fixed-effect
model is the largest. Therefore, the SDM is suitable for analyzing Chinese ports, and the
spatial fixed-effect model or the spatial-temporal fixed-effect model is recommended for
the SDM. Three regressional results of Chinese ports by three spatial econometric models
with WA

ij , WS
ij , and WE

ij are shown in Tables 8–10, respectively.

The regressional results by spatial econometric models with WA
ij showed that four

variables, EPE, POP, FTD, and KAC, were positive and statistically significant both in the
spatial fixed-effect model and the spatial-temporal fixed-effect model. The results also
revealed that three spatial lag variables, W∗EPE, W∗FTD, and W∗KAC, were statistically
significant in the spatial fixed-effect model, and two spatial lag variables, W∗PMS, and
W∗KAC, were statistically significant in the spatial-temporal fixed-effect model.

The regressional results by spatial econometric models with WS
ij showed that three

variables, EPE, POP, and FTD, were positive and statistically significant in the spatial fixed-
effect model, and six variables, EPE, GOI, POP, FTD, KAC, and CO2, were positive and
statistically significant in the spatial-temporal fixed-effect model. The results also showed
that three spatial lag variables, W∗GOI, W∗FTD, and W∗KAC, were statistically significant
in the spatial fixed-effect model, and three spatial lag variables, W∗PMS, W∗FTD, and
W∗CO2, were statistically significant in the spatial-temporal fixed-effect model.

The regressional results by spatial econometric models with WE
ij showed that two

variables, EPE and KAC, were positive and statistically significant in the spatial fixed-
effect model, and four variables, EPE, GOI, POP, and FTD, were positive and statistically
significant in the spatial-temporal fixed-effect model. The results also showed that two
spatial lag variables, W∗EPE and W∗POP, were statistically significant in the spatial fixed-



J. Mar. Sci. Eng. 2021, 9, 301 15 of 22

effect model, and one spatial lag variable, W∗EPE, was statistically significant in the
spatial-temporal fixed-effect model.

Table 8. Regressional results by spatial econometric models with WA
ij .

Variable SAR SEM
SDM

No Fixed Spatial Fixed Time Fixed Spatial-Temporal Fixed

EPC −0.059
(−0.84)

−0.071
(−1.01)

0.035
(0.44)

0.035
(0.48)

−0.121
(−0.11)

0.003
(0.04)

EPE 0.473 ∗∗∗

(11.51)
0.484 ∗∗∗

(11.68)
0.515 ∗∗∗

(12.13)
0.515 ∗∗∗

(12.77)
0.812 ∗

(1.39)
0.519 ∗∗∗

(12.57)

PMS 0.022
(0.94)

0.017
(0.72)

−0.002
(−0.08)

−0.001
(−0.05)

−0.756 ∗∗∗

(−2.51)
0.013
(0.55)

GOI 0.038
(0.93)

0.046
(1.15)

0.05
(1.17)

0.049
(1.2)

0.5
(0.85)

0.06
(1.37)

POP 0.279
(0.76)

0.287
(0.77)

0.88 ∗∗

(2.12)
0.88 ∗∗

(2.23)
1.28

(0.22)
0.96 ∗∗

(2.36)

FTD 0.077
(1.27)

0.057
(0.89)

0.31 ∗∗∗

(2.72)
0.304 ∗∗∗

(2.01)
−0.796
(−0.49)

0.357 ∗∗∗

(3.07)

KAC 0.124 ∗∗

(2.33)
0.15 ∗∗∗

(2.71)
0.109 ∗∗

(1.94)
0.108 ∗∗

(2.01)
0.195
(0.24)

0.119 ∗∗

(2.06)

CO2
0.122 ∗

(1.7)
0.127 ∗

(1.72)
0.022
(0.27)

0.022
(0.28)

0.093
(0.07)

0.03
(0.32)

W∗EPC −0.033
(−0.29)

−0.033
(−0.31)

−0.019
(−0.01)

−0.126
(−0.89)

W∗EPE −0.18 ∗∗

(−1.91)
−0.169 ∗

(−1.87)
−0.24
(−0.2)

−0.101
(−1)

W∗PMS 0.037
(0.96)

0.037
(1.02)

−0.055
(−0.1)

0.068 ∗

(1.71)

W∗GOI −0.088
(−1.31)

−0.087
(−1.36)

0.134
(0.14)

−0.065
(−0.94)

W∗POP −0.262
(−0.38)

−0.242
(−0.37)

−2.247
(−0.22)

0.086
(0.12)

W∗FTD 0.503 ∗∗∗ 3.64) 0.507 ∗∗∗.
(3.85)

0.072
(0.02)

0.324
(1.4)

W∗KAC 0.246 ∗∗∗

(2.9)
0.246 ∗∗∗

(3.06)
0.899
(0.68)

0.187 ∗∗

(1.99)

W∗CO2
0.095
(0.83)

0.096
(0.88)

−0.67
(−0.23)

0.143
(0.69)

log l 563.55 564.69 493.98 579.73 52.2 584.63

*, **, *** mean that p values are less than 0.1, 0.05, and 0.01, respectively. All tables below are the same. The data were obtained by Stata 15.0.

All results demonstrate that in the spatial fixed-effect model, it is better to choose the
spatial adjacent weight matrix to analyze the spatial spillover effect, and in the spatial-
temporal fixed-effect model, it is better to choose the spatial geospatial distance matrix.
Furthermore, to analyze the spatial spillover effect, it is better to choose the spatial-temporal
fixed-effect model with the geospatial distance matrix than the spatial fixed-effect model
with the adjacent matrix.

The explanatory variables in the space fixed-effect model and the spatial-temporal
fixed-effect model revealed that the voluntary regulations were positively correlated with
the SDC of Chinese ports and the EPE was positive and statistically significant, therefore
strengthening that voluntary regulation can improve the SDC of Chinese ports. Neither
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EPC nor PMS was statistically significant, meaning neither mandatory regulation nor
public media regulation could help a port to improve its SDC.

Table 9. Regressional results by spatial econometric models with WS
ij .

Variable SAR SEM
SDM

No Fixed Spatial Fixed Time Fixed Spatial-Temporal Fixed

EPC −0.051
(−0.74)

−0.067
(−0.94)

0.028
(0.36)

0.028
(0.37)

−0.352
(−0.31)

−0.046
(−0.59)

EPE 0.467 ∗∗∗

(11.33)
0.478 ∗∗∗

(11.5)
0.487 ∗∗∗

(11.79)
0.486 ∗∗∗

(12.4)
0.708
(1.15)

0.483 ∗∗∗

(11.49)

PMS 0.022
(0.94)

0.021
(0.91)

0.003
(0.15)

0.004
(0.18)

−0.876 ∗∗∗

(−2.73)
0.014
(0.61)

GOI 0.032
(0.8)

0.039
(0.95)

0.041
(1.26)

0.04
(1.02)

0.538
(0.91)

0.075 ∗

(1.84)

POP 0.312
(0.85)

0.268
(0.72)

1.116 ∗∗∗

(2.56)
1.119 ∗∗∗

(1.26)
−0.399
(−0.06)

0.704 ∗

(1.64)

FTD 0.079
(1.3)

0.058
(0.86)

0.327 ∗∗∗

(2.84)
0.324 ∗∗∗

(2.96)
−0.444
(−0.25)

0.251 ∗∗

(2.06)

KAC −0.122 ∗∗

(−2.28)
−0.136 ∗∗

(−2.47)
0.075

(−1.33)
0.074

(−1.38)
0.115
(0.14)

0.137 ∗∗

(−2.41)

CO2
0.125 ∗

(1.73)
0.124 ∗

(1.67)
0.01

(0.09)
0.01

(0.11)
1.066
(0.68)

0.19 ∗

(1.75)

W∗EPC 0.131
(0.68)

0.135
(0.74)

−2.349
(−0.48)

−0.597 ∗

(−1.78)

W∗EPE −0.245
(−1.52)

−0.23
(−1.49)

−1.049
(−0.36)

−0.21
(−0.94)

W∗PMS 0.077
(1)

0.076
(1.04)

−1.144
(−0.87)

0.168∗

(1.81)

W∗GOI −0.253 ∗∗

(−2.14)
−0.254 ∗∗

(−2.26)
0.182
(0.09)

−0.123
(−0.91)

W∗POP 0.377
(0.34)

0.394
(0.38)

2.88
(0.15)

0.539
(0.41)

W∗FTD 0.638 ∗∗∗

(3.89)
0.643 ∗∗∗

(4.13)
3.076
(0.42)

0.914∗

(1.84)

W∗KAC 0.374 ∗∗

(2.23)
0.377 ∗∗

(2.38)
1.966
(0.61)

0.098
(0.44)

W∗CO2
0.142
(1.01)

0.145
(1.09)

6.741
(0.92)

1.351 ∗∗∗

(2.66)

log l 563.73 563.77 493.92 580.24 47.97 586.46

R2 0.446 0.441 0.528 0.528 0.0064 0.145

Obs 200 200 200 200 200 200

*, **, *** mean that p values are less than 0.1, 0.05, and 0.01, respectively. All tables below are the same. The data were obtained by Stata 15.0.

Among the control variables, market size, foreign trade dependence, and knowledge
accumulation capacity were positively correlated with the SDC of Chinese ports in both
two fixed-effect models based on three weight matrices. POP, FTD, and KAC were positive
and statistically significant, suggesting that ports can improve their SDC by expanding
their market size, increasing international trade, or recruiting more top talent. GOI only
passed the significant test in the spatial-temporal fixed-effect model, and CO2 was not
statistically significant in any model.
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Table 10. Regressional results by spatial econometric models with WE
ij .

Variable SAR SEM
SDM

No Fixed Spatial Fixed Time Fixed Spatial-Temporal Fixed

EPC −0.054
(−0.79)

−0.073
(−1.05)

−0.016
(−0.2)

−0.012
(−0.16)

−0.28
(−0.29)

0.01
(0.07)

EPE 0.468 ∗∗∗

(11.51)
0.47 ∗∗∗

(11.66)
0.5 ∗∗∗

(11.46)
0.5 ∗∗∗

(12.06)
0.586 ∗∗

(1.19)
0.481 ∗∗∗

(11.9)

PMS 0.022
(0.95)

0.021
(0.92)

0.021
(0.85)

0.022
(0.94)

−0.7 ∗∗∗

(−2.54)
0.026
(1.08)

GOI 0.027
(0.66)

0.026
(0.66)

0.053
(1.26)

0.052
(1.3)

−0.0005 ∗∗∗

(−3.32)
0.08 ∗∗

(1.95)

POP 0.319
(0.87)

0.392
(1.08)

0.051
(1.24)

0.49
(1.26)

0.418
(0.83)

1.09∗∗

(2.41)

FTD 0.072
(1.2)

0.065
(1.01)

0.167
(1.36)

0.164
(1.4)

0.387
(0.07)

0.33∗∗∗

(2.64)

KAC −0.12 ∗∗

(−2.26)
−0.13 ∗∗

(−2.34)
0.113 ∗∗

(1.89)
0.115 ∗∗

(2.03)
1.02

(0.67)
0.053
(0.89)

CO2
0.13 ∗

(1.82)
0.13 ∗

(1.72)
0.064
(0.65)

0.066
(0.7)

0.171
(0.14)

0.05
(0.49)

W∗EPC 0.232
(1.14)

0.244
(1.26)

−0.106
(−0.02)

0.535
(1.4)

W∗EPE 0.225 ∗

(1.55)
0.169 ∗∗

(1.19)
1.02

(0.69)
0.226 ∗∗

(1.42)

W∗PMS 0.01.
(0.22)

0.01
(19)

0.036
(0.07)

0.04
(0.91)

W∗GOI 0.071
(0.81)

0.07
(0.85)

0.154
(0.14)

0.117
(1.3)

W∗POP −1.808∗

(−1.86)
−1.836 ∗∗

(−1.99)
0.953
(0.06)

0.672
(0.51)

W∗FTD 0.247
(1.33)

0.253
(1.43)

−1.224
(−0.32)

−0.394
(−1.25)

W∗KAC −0.002
(−0.02)

−0.003
(−0.03)

−0.121
(−0.09)

−0.01
(−0.07)

W∗CO2
0.05

(0.31)
0.053
(0.37)

−1.995
(−0.52)

−0.156
(−0.49)

log l 564.65 565.38 488.1 572.13 70.7 582.2

R2 0.441 0.441 0.474 0.477 0.0012 0.0462

Obs 200 200 200 200 200 200

*, **, *** mean that p values are less than 0.1, 0.05, and 0.01, respectively. All tables below are the same. The data were obtained by Stata 15.0.

4.3.3. Spatial Spillover Effect

When a spatial lag exists in the SDM, its regressional result will not directly embody
the impact of explanatory variables on the SDC. Based on a method where LeSage and
Pace [62] solve this problem by decomposing the total effects into direct and indirect effects,
the effects of variables were divided into direct effects, indirect effects, and total effects, and
several partial differential equations were designed to evaluate the spatial spillover effect.
The spatial spillover effect of Chinese Ports was investigated by the spatial fixed-effect
model with WA

ij and the spatial-temporal fixed-effect model with WS
ij , respectively. The

results are shown in Tables 11 and 12.
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Table 11. The spatial spillover effect by the spatial fixed-effect model with WA
ij .

SDM Variable
Effect of Type

Direct Effect Indirect Effect Total Effect

Spatial Fixed

IEPC 0.034 (0.48) −0.036 (−0.29) −0.001 (−0.01)

EPE 0.51 ∗∗∗ (12.05) −0.116 (−1.34) 0.394 ∗∗∗ (3.69)

PMS 0.0003 (0.01) 0.042 (1) 0.043 (0.87)

GOI 0.046 (1.08) −0.082 (−1.11) −0.035 (−0.36)

POP 0.853∗∗ (2.22) −0.15 (−0.21) 0.703 (0.86)

FTD 0.27 ∗∗∗ (2.75) 0.506 ∗∗∗ (4.16) 0.237 ∗∗ (2.29)

KAC 0.263 ∗∗∗ (2.84) 0.096 ∗ (1.85) 0.167 ∗ (1.5)

CO2 0.03 (0.4) 0.108 (0.88) 0.138 (1.07)
*, **, *** mean that p values are less than 0.1, 0.05, and 0.01, respectively. All tables below are the same. The data
were obtained by Stata 15.0.

Table 12. The spatial spillover effect by the spatial-temporal fixed-effect model with WS
ij .

SDM Variable
Effect of Type

Direct Effect Indirect Effect Total Effect

Spatial-temporal fixed

EPC −0.037 (−0.48) −0.513 ∗ (−1.66) −0.55 ∗ (−1.74)

EPE 0.488 ∗∗∗ (11.44) −0.269 ∗ (−1.45) 0.219 ∗∗∗ (1.06)

PMS 0.011 (0.49) 0.144 ∗ (1.75) 0.155 ∗ (1.78)

GOI 0.078 ∗∗ (1.88) −0.108 (−0.9) −0.03 (−0.23)

POP 0.675 ∗ (1.59) 0.342 (0.3) 1.016 (0.86)

FTD 0.255 ∗∗ (2.25) 0.835 (1.84) 0.58 ∗∗ (1.15)

KAC 0.141∗∗∗ (2.6) 0.12 (0.58) 0.212 ∗ (1.3)

CO2 0.174 ∗∗ (1.69) 1.175 ∗∗ (2.45) 1.349 ∗∗ (2.5)
*, **, *** mean that p values are less than 0.1, 0.05, and 0.01, respectively. All tables below are the same. The data
were obtained by Stata 15.0.

The results revealed that all spatial econometric models were robust to study the
SDC spillover effects of the Chinese ports. Among those models, the spatial-temporal
fixed-effect model with the geospatial distance matrix was better in studying it than the
spatial fixed-effect model with the adjacent matrix.

4.3.4. Discussion of Spatial Spillover Effects

The direct effect and the total effect of EPE on the SDC passed the 1% significance test
positively, which means that voluntary regulation helps to improve the port’s SDC and its
competitiveness. The indirect effect of EPE on the SDC passed the 10% significance test
negatively, which means that other ports will compete for enhancement of their SDC after
a port adopts more voluntary regulations.

The direct effect of GOI on the SDC passed the 5% significance test positively, and
the indirect effect and the total effect of GOI on the SDC were negative, which failed the
significance test. It can be concluded that expanding a port’s operation scale will improve
its SDC, thereby, it will raise its revenue and gain more competitiveness. However, it may
hurt the other ports’ operations, which will weaken the SDC of other ports. When a port
expands its operation scale as a monopoly, it will harm the competitiveness of the entire
port industry.

The direct effect of POP on the SDC passed the 10% significance test positively, and
the indirect effect and the total effect of POP on the SDC were positive but failed the
significance test. It can be concluded that the growth of population in a port will add
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workforce and attract top talent, and then improve the port’s SDC. Other ports may rely on
the population growth to improve their SDC, but this effect is not significant.

The direct effect and the total effect of FTD on the SDC passed the 5% significance test
positively, and the indirect effect of FTD on the SDC was positive but failed the significance
test. This reveals that the economic development of a port will improve its SDC and may
help other ports to improve their SDC and the nationwide SDC, but the latter effect is
not significant.

The direct effect of KAC on the SDC passed the 5% significance test positively, and
the indirect effect and the total effect of KAC on the SDC were positive but failed the
significance test. It can be concluded that a port recruiting more top talent will improve its
SDC, and other ports will do the same thing to improve their SDC, but the latter effect is
not significant.

The direct effect, the indirect effect, and the total effect of CO2 on the SDC passed the
5% significance test positively. It is generally accepted that improving the SDC relies on
expanding the port’s cargo volume, which will add carbon emissions and cause more envi-
ronmental problems. There are three ways to control carbon emissions: (1) a port should
strengthen its voluntary regulations; (2) the port authority should enact more effective ERs;
and (3) the public media as a supervision tool could focus on the environmental problems.

5. Conclusions and Suggestions

In this paper, a two-stage WP-SBM-DEA model was constructed to address the dy-
namic operational features of Chinese ports and to investigate the spatial characteristics
of their SDC, whose data were from 2009 to 2018. The spatial spillover effects of various
ERs on the port’s SDC are discussed, which revealed the synergistic effects of various ERs
on the port’s SDC and suggests that the port authority and port enterprises rethink the
importance of ERs.

After investigating the SDC of Chinese ports, we showed that the SDC of Chinese ports
varies by location, and they are heterogeneous and clustered spatially. After comparing
several DEA models, an academic finding revealed that the spatial-temporal fixed-effect
model with the geospatial distance matrix was more suitable to investigate the spatial
effects of the port’s SDC. The results of the spatial spillover effect study illustrates that a
powerful tool for the port companies to balance the economic development and ecological
civilization is to adopt more voluntary regulations than any other regulations. The possible
measures to boost a port’s SDC are to expand its operation scale and market size, to increase
its international market, and to recruit more top talent.

There are also several suggestions for the port authorities and companies. Since the
spatial spillover effect of the port’s SDC is mostly affected by the geospatial distance, the
port authority should strengthen the mutual water transportation between ports. Since
the advanced ports, mainly located in the Bohai Rim region, the Yangtze River Delta
region, and the Pearl River Delta region, have higher cargo volume and emit more carbon
dioxide than others, the port authority should enact different ERs to improve the port’s
SDC in terms of its environmental pressure. After comparing three kinds of regulations,
an excessive voluntary regulation or public media regulation would hurt the port’s SDC.
Therefore, the implementation of ERs and regulations should conform to the principle of
appropriateness and local conditions.

Future research should pay attention to the synergy of green technology on the port’s
SDC. For example, introducing clean energy technology for the port equipment, as a
frontier in the port industry, would propel the improvement in the port’s SDC. In addition,
more mathematical models can be developed to quantitatively evaluate the synergy effects
of ERs on the port’s SDC.
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