Satellite-Derived Protein Concentration of Phytoplankton in the Southwestern East/Japan Sea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sampling
2.2. Development of the Protein Concentration Algorithm
2.3. Satellite Ocean Color Data
3. Result
3.1. Physical and Chemical Conditions in the EJS
3.2. Derivation of Protein Concentration of Phytoplankton Algorithm in the EJS
3.3. Comparison of Algorithm-Derived Concentrations of Protein with Field-Measured Data
3.4. Spatial and Seasonal Variation in MODIS-Derived Protein Concentration
3.5. Long-Term Variation in MODIS-derived Protein Concentration
4. Discussion
4.1. Majour Controlling Factors for the Protein Concentration of Phytoplankton
4.2. The Spatial and Seasonal Variation in Protein Concentration of Phytoplankton in the EJS
4.3. The Low Limit of Protein Concentration of Phytoplankton
4.4. Recent Trend of Protein Concentration of Phytoplankton
5. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kang, Y.S.; Kim, J.Y.; Kim, H.G.; Park, J.H. Long-term changes in zooplankton and its relationship with squid, Todarodes pacificus, catch in Japan/East Sea. Fish. Oceanogr. 2002, 11, 337–346. [Google Scholar] [CrossRef]
- Kim, D.; Yang, E.J.; Kim, K.H.; Shin, C.-W.; Park, J.; Yoo, S.; Hyun, J.-H. Impact of an anticyclonic eddy on the summer nutrient and chlorophyll a distributions in the Ulleung Basin, East Sea (Japan Sea). ICES J. Mar. Sci. 2012, 69, 23–29. [Google Scholar] [CrossRef] [Green Version]
- Lim, J.-H.; Son, S.; Park, J.-W.; Kwak, J.H.; Kang, C.-K.; Son, Y.B.; Kwon, J.-N.; Lee, S.H. Enhanced biological activity by an anticyclonic warm eddy during early spring in the East Sea (Japan Sea) detected by the geostationary ocean color satellite. Ocean Sci. J. 2012, 47, 377–385. [Google Scholar] [CrossRef]
- Joo, H.T.; Park, J.W.; Son, S.H.; Noh, J.-H.; Jeong, J.-Y.; Kwak, J.H.; Saux-Picart, S.; Choi, J.H.; Kang, C.-K.; Lee, S.H. Long-term annual primary production in the Ulleung Basin as a biological hot spot in the East/Japan Sea. J. Geophys. Res. Ocean. 2014, 119, 3002–3011. [Google Scholar] [CrossRef] [Green Version]
- Chang, K.-I.; Zhang, C.-I.; Park, C.; Kang, D.-J.; Ju, S.-J.; Lee, S.-H.; Wimbush, M. (Eds.) Oceanography of the East Sea (Japan Sea); Springer International Publishing: Cham, Switzerland, 2016; ISBN 978-3-319-22719-1. [Google Scholar]
- Chiba, S.; Toshiro, S. Interdecadal change in the upper water column environment and spring diatom community structure in the Japan Sea: An early summer hypothesis. Mar. Ecol. Prog. Ser. 2012, 231, 23–35. [Google Scholar] [CrossRef]
- Lee, S.H.; Son, S.; Dahms, H.-U.; Park, J.W.; Lim, J.-H.; Noh, J.-H.; Kwon, J.-I.; Joo, H.T.; Jeong, J.Y.; Kang, C.-K. Decadal changes of phytoplankton chlorophyll-a in the East Sea/Sea of Japan. Oceanology 2014, 54, 771–779. [Google Scholar] [CrossRef]
- Geider, R.J.; Moore, C.M.; Ross, O.N. The role of cost–benefit analysis in models of phytoplankton growth and acclimation. Plant. Ecol. Divers. 2009, 2, 165–178. [Google Scholar] [CrossRef]
- Yamada, K.; Ishizaka, J.; Yoo, S.; Kim, H.-c.; Chiba, S. Seasonal and interannual variability of sea surface chlorophyll a concentration in the Japan/East Sea (JES). Prog. Oceanogr. 2004, 61, 193–211. [Google Scholar] [CrossRef]
- Jo, N.; Kang, J.J.; Park, W.G.; Lee, B.R.; Yun, M.S.; Lee, J.H.; Kim, S.M.; Lee, D.; Joo, H.T.; Lee, J.H.; et al. Seasonal variation in the biochemical compositions of phytoplankton and zooplankton communities in the southwestern East/Japan Sea. Deep Sea Res. Part II Top. Stud. Oceanogr. 2017, 143, 82–90. [Google Scholar] [CrossRef]
- Jung, H.K.; Rahman, M.S.; Kang, C.-K.; Park, S.-Y.; Lee, S.H.; Park, H.J.; Kim, H.-W.; Lee, C.I. The influence of climate regime shifts on the marine environment and ecosystems in the East Asian Marginal Seas and their mechanisms. Deep Sea Res. Part II Top. Stud. Oceanogr. 2017, 143, 110–120. [Google Scholar] [CrossRef]
- Smit, A.J.; Robertson, B.L.; Preez, D.R. Influence of ammonium-N pulse concentrations and frequency, tank condition and nitrogen starvation on growth rate and biochemical composition of Gracilaria gracilis. J. Appl. Phycol. 1996, 8, 473–481. [Google Scholar] [CrossRef]
- Litzow, M.A.; Bailey, K.M.; Prahl, F.G.; Heintz, R. Climate regime shifts and reorganization of fish communities: The essential fatty acid limitation hypothesis. Mar. Ecol. Prog. Ser. 2006, 315, 1–11. [Google Scholar] [CrossRef] [Green Version]
- DiTullio, G.R.; Laws, E.A. Estimates of phytoplankton N uptake based on 14CO2 incorporation into protein. Limnol. Oceanogr. 1983, 28, 177–185. [Google Scholar] [CrossRef]
- Lee, S.H.; Kim, H.-J.; Whitledge, T.E. High incorporation of carbon into proteins by the phytoplankton of the Bering Strait and Chukchi Sea. Cont. Shelf Res. 2009, 29, 1689–1696. [Google Scholar] [CrossRef]
- Geider, R.J.; MacIntyre, H.L.; Kana, T.M. A dynamic model of photoadaptation in phytoplankton. Limnol. Oceanogr. 1996, 41, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Marañón, E.; Fernández, E.; Anadón, R. Patterns of macromolecular synthesis by natural phytoplankton assemblages under changing upwelling regimes: In situ observations and microcosm experiments. J. Exp. Mar. Biol. Ecol. 1995, 88, 1–28. [Google Scholar] [CrossRef]
- Marañón, E.; González, N. Primary production, calcification and macromolecular synthesis in a bloom of the coccolithophore Emiliania huxleyi in the North Sea. Mar. Ecol. Prog. Ser. 1997, 157, 61–77. [Google Scholar] [CrossRef] [Green Version]
- Morris, I. Photosynthetic products, physiological state, and phytoplankton growth. Can. B Fish. Aquat. Sci. 1981, 210, 83–102. [Google Scholar]
- Graham, L.; Graham, J.; Wilcox, L. Algae, 2nd ed.; Pearson Education Inc.: San Francisco, CA, USA, 2009; pp. 33–34. [Google Scholar]
- Reynolds, R.; Stramski, D.; Wright, V.; Woźniak, S. Measurements and characterization of particle size distributions in coastal waters. J. Geophys. Res. Ocean. 2010, 115, C08024. [Google Scholar] [CrossRef]
- Vymazal, J. Algae and Element Cycling in Wetlands; Lewis Publishers Inc.: Boca Raton, FL, USA, 1995. [Google Scholar]
- Scott, J. Effect of growth rate of the food alga on the growth/ingestion efficiency of a marine herbivore. J. Mar. Biol. Assoc. UK 1980, 60, 681–702. [Google Scholar] [CrossRef]
- Lindqvist, K.; Lignell, R. Intracellular partitioning of 14CO2 in phytoplankton during a growth season in the northern Baltic. Mar. Ecol. Prog. Ser. 1997, 152, 41–50. [Google Scholar] [CrossRef]
- Roy, S. Distributions of Phytoplankton Carbohydrate, Protein and Lipid in the World Oceans from Satellite Ocean Colour. ISME J. 2018, 12, 1457–1472. [Google Scholar] [CrossRef] [Green Version]
- IOCCG. Phytoplankton Functional Types from Space. In Reports of the International Ocean-Colour Coordinating Group (IOCCG); No 15; Sathyendranath, S., Ed.; International Ocean-Colour Coordinating Group (IOCCG): Dartmouth, NS, USA, 2014. [Google Scholar]
- Mouw, C.B.; Hardman-Mountford, N.J.; Alvain, S.; Bracher, A.; Brewin, R.J.; Bricaud, A. A consumer’s guide to satellite remote sensing of multiple phytoplankton groups in the global ocean. Front. Mar. Sci. 2017, 4, 41. [Google Scholar] [CrossRef] [Green Version]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef]
- Bhavya, P.; Kim, B.K.; Jo, N.; Kim, K.; Kang, J.J.; Lee, J.H.; Ahn, S.H. A review on the macromolecular compositions of phytoplankton and the implications for aquatic biogeochemistry. Ocean Sci. J. 2019, 54, 1–14. [Google Scholar] [CrossRef]
- Joo, H.; Lee, D.; Son, S.H.; Lee, S.H. Annual New Production of Phytoplankton Estimated from MODIS-Derived Nitrate Concentration in the East/Japan Sea. Remote Sens. 2018, 10, 806. [Google Scholar] [CrossRef] [Green Version]
- Werdell, P.J.; Bailey, S.W.; Franz, B.A.; Harding, L.W., Jr.; Feldman, G.C.; McClain, C.R. Regional and seasonal variability of chlorophyll-a in Chesapeake Bay as observed by SeaWiFS and MODIS-Aqua. Remote Sens. Environ. 2009, 113, 1319–1330. [Google Scholar] [CrossRef]
- Zuenko, Y.; Selina, M.; Stonik, I. On conditions of phytoplankton blooms in the coastal waters of the north-western East/Japan Sea. Ocean Sci. J. 2006, 41, 31–41. [Google Scholar] [CrossRef]
- McCarthy, J.J.; Taylor, W.R.; Taft, J.L. Nitrogenous nutrition of the plankton in the Chesapeake Bay. 1. Nutrient availability and phytoplankton preferences. Limnol. Oceanogr. 1977, 22, 996–1011. [Google Scholar] [CrossRef]
- McCarthy, J.J.; Wynne, D.; Berman, T. The uptake of dissolved nitrogen? Us nutrients by Lake Kinneret (Israel) microplanktorP. Limnol. Oceanogr. 1982, 27, 673–680. [Google Scholar] [CrossRef]
- Dortch, Q.; Postel, J.R. During upwelling off the Biochemical indicators of N utilization by phytoplankton Washington coast. Limnol. Oceanogr. 1989, 34, 758–773. [Google Scholar] [CrossRef]
- Mallet, C.; Charpin, M.; Devaux, J. Nitrate reductase activity of phytoplankton populations in eutrophic Lake Aydat and meso-oligotrophic Lake Pavin: A comparison. In Oceans, Rivers and Lakes: Energy and Substance Transfers at Interfaces; Amiard, J.-C., Le Rouzic, B., Berthet, B., Bertru, G., Eds.; Amazon: Nantes, France, 1998; pp. 135–148. [Google Scholar]
- Chen, C.-Y.; Yeh, K.-L.; Aisyah, R.; Lee, D.-J.; Chang, J.-S. Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: A critical review. Bioresour. Technol. 2011, 102, 71–81. [Google Scholar] [CrossRef]
- Bona, F.; Capuzzo, A.; Franchino, M.; Maffei, M.E. Semicontinuous nitrogen limitation as convenient operation strategy to maximize fatty acid production in Neochloris oleoabundans. Algal Res. 2014, 5, 1–6. [Google Scholar] [CrossRef]
- Jiang, Y.; Yoshida, T.; Quigg, A. Photosynthetic performance, lipid production and biomass composition in response to nitrogen limitation in marine microalgae. Plant Physiol. Biochem. 2012, 54, 70–77. [Google Scholar] [CrossRef]
- Klok, A.J.; Martens, D.E.; Wijffels, R.H.; Lamers, P.P. Simultaneous growth and neutral lipid accumulation in microalgae. Bioresour. Technol. 2013, 134, 233–243. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.J.; Joo, H.; Lee, J.H.; Lee, J.H.; Lee, H.W.; Lee, D. Comparison of biochemical compositions of phytoplankton during spring and fall seasons in the northern East/Japan Sea. Deep Sea Res. Part II 2017, 143, 73–81. [Google Scholar] [CrossRef]
- Kang, J.J.; Jang, H.K.; Lim, J.-H.; Lee, D.; Lee, J.H.; Bae, H. Characteristics of Different Size Phytoplankton for Primary Production and Biochemical Compositions in the Western East/Japan Sea. Front. Microbiol. 2020, 11, 3306. [Google Scholar] [CrossRef] [PubMed]
- Onitsuka, G.; Yanagi, T.; Yoon, J.H. A numerical study on nutrient sources in the surface layer of the Japan Sea using a coupled physical-ecosystem model. J. Geophys. Res. Ocean. 2007, 112, C05042. [Google Scholar] [CrossRef] [Green Version]
- Yoo, S.; Park, J. Why is the southwest the most productive region of the East Sea/Sea of Japan? J. Mar. Syst. 2009, 78, 301–315. [Google Scholar] [CrossRef]
- Lim, S.; Jang, C.J.; Oh, I.S.; Park, J. Climatology of the mixed layer depth in the East/Japan Sea. J. Mar. Syst. 2012, 96–97, 1–14. [Google Scholar] [CrossRef]
- Suárez, I.; Marañón, E. Photosynthate allocation in a temperate sea over an annual cycle: The relationship between protein synthesis and phytoplankton physiological state. J. Sea Res. 2005, 50, 285–299. [Google Scholar] [CrossRef]
- Halsey, K.H.; Jones, B.M. Phytoplankton strategies for photosynthetic energy allocation. Annu. Rev. Mar. Sci. 2015, 7, 265–297. [Google Scholar] [CrossRef]
- Kim, K.; Kim, K.R.; Min, D.H.; Volkov, Y.; Yoon, J.H.; Takematsu, M. Warming and structural changes in the East (Japan) Sea: A clue to future changes in global oceans? Geophys. Res. Lett. 2001, 28, 3293–3296. [Google Scholar] [CrossRef]
- Jo, C.O.; Park, S.; Kim, Y.H.; Park, K.-A.; Park, J.J.; Park, M.-K.; Kim, K.-R. Spatial distribution of seasonality of SeaWiFS chlorophyll-a concentrations in the East/Japan Sea. J. Mar. Syst. 2014, 139, 288–298. [Google Scholar] [CrossRef]
- Toseland, A.; Daines, S.J.; Clark, J.R.; Kirkham, A.; Strauss, J.; Uhlig, C.; Leton, T.M.; Valentin, K.; Pearson, G.A.; Moulton, V.; et al. The impact of temperature on marine phytoplankton resource allocation and metabolism. Nat. Clim. Chang. 2013, 3, 979–984. [Google Scholar] [CrossRef]
- Sverdrup, H. On conditions for the vernal blooming of phytoplankton. Cons. Int. Explor. Mer. 1953, 18, 287–295. [Google Scholar] [CrossRef]
- Yentsch, C. Estimates of ‘new production’ in the Mid-North Atlantic. J. Plankton Res. 1990, 12, 717–734. [Google Scholar] [CrossRef]
- Hanawa, K.; Talley, L.D. Mode waters. Int. Geophys. Ser. 2001, 77, 373–386. [Google Scholar]
- Chang, P.-H.; Cho, C.-H.; Ryoo, S.-B. Recent changes of Mixed Layer Depth in the East/Japan Sea: 1994–2007. Asia Pac. J. Atmos. Sci. 2011, 47, 497–501. [Google Scholar] [CrossRef]
Year | Month | Number of Stations | Longitude Range | Latitude Range |
---|---|---|---|---|
2012 | March | 8 | 129.5° E–131.5° E | 35.2° N–38° N |
July | 6 | |||
October | 6 | |||
2013 | January | 1 | 129.4° E–131° E | 35.7° N–37.7° N |
May | 5 | |||
June | 5 | |||
August | 12 | |||
September | 3 | |||
2014 | April | 4 | 128.9° E–131.9° E | 35.2° N–37.9° N |
May | 4 | |||
June | 11 | |||
July | 6 | |||
August | 7 | |||
September | 6 | |||
October | 9 | |||
November | 20 | |||
2015 | May | 13 | 128.6° E–131.9° E | 36.5° N–38.3° N |
June | 5 | |||
July | 10 | |||
November | 5 | |||
2016 | April | 8 | 130.3° E–132.3° E | 37° N–38° N |
2017 | May | 9 | 129° E–131.65° E | 35.6° N–37.9° N |
June | 3 | |||
2018 | February–March | 9 | 128.8° E–131.3° E | 35.6° N–38.2° N |
April | 10 | |||
August | 10 | |||
October | 10 |
Included Independent Variables | Regression Coefficient (bk) | Standard Error of bk | Standardized Regression Coefficient | t-Test | p-Value | VIF | R2 (%) |
---|---|---|---|---|---|---|---|
Constant | 51.44 | 5.844 | - | 8.802 | 0.000 ** | ||
Chl-a | 23.404 | 2.142 | 0.675 | 10.926 | 0.000 ** | 1.008 | 48.7 |
SSN | −6.755 | 1.620 | −0.258 | −4.169 | 0.000 ** | 1.008 | 55.3 |
February (n = 17) | PRT | MLD | SSN | SST | Chl-a |
---|---|---|---|---|---|
PRT | 1 | - | - | - | - |
MLD | −0.740 0.001 ** | 1 | - | - | - |
SSN | −0.927 0.0000 ** | 0.650 0.005 ** | 1 | - | - |
SST | 0.851 0.000 ** | −0.576 0.015 ** | −0.981 0.000 ** | 1 | - |
Chl-a | 0.877 0.000 ** | −0.696 0.002 ** | −0.633 0.006 ** | 0.500 0.041 * | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bae, H.; Lee, D.; Kang, J.J.; Lee, J.H.; Jo, N.; Kim, K.; Jang, H.K.; Kim, M.J.; Kim, Y.; Kwon, J.-I.; et al. Satellite-Derived Protein Concentration of Phytoplankton in the Southwestern East/Japan Sea. J. Mar. Sci. Eng. 2021, 9, 189. https://doi.org/10.3390/jmse9020189
Bae H, Lee D, Kang JJ, Lee JH, Jo N, Kim K, Jang HK, Kim MJ, Kim Y, Kwon J-I, et al. Satellite-Derived Protein Concentration of Phytoplankton in the Southwestern East/Japan Sea. Journal of Marine Science and Engineering. 2021; 9(2):189. https://doi.org/10.3390/jmse9020189
Chicago/Turabian StyleBae, Hyeonji, Dabin Lee, Jae Joong Kang, Jae Hyung Lee, Naeun Jo, Kwanwoo Kim, Hyo Keun Jang, Myung Joon Kim, Yejin Kim, Jae-Il Kwon, and et al. 2021. "Satellite-Derived Protein Concentration of Phytoplankton in the Southwestern East/Japan Sea" Journal of Marine Science and Engineering 9, no. 2: 189. https://doi.org/10.3390/jmse9020189
APA StyleBae, H., Lee, D., Kang, J. J., Lee, J. H., Jo, N., Kim, K., Jang, H. K., Kim, M. J., Kim, Y., Kwon, J.-I., & Lee, S. H. (2021). Satellite-Derived Protein Concentration of Phytoplankton in the Southwestern East/Japan Sea. Journal of Marine Science and Engineering, 9(2), 189. https://doi.org/10.3390/jmse9020189