Late Pleistocene Boulder Slumps Eroded from a Basalt Shoreline at El Confital Beach on Gran Canaria (Canary Islands, Spain)
Abstract
:1. Introduction
2. Geographical and Geological Setting
3. Materials and Methods
3.1. Data Collection
3.2. Hydraulic Model
4. Results
4.1. Characteristics of the Conglomerate
4.2. Comparative Variation in Clast Shapes
4.3. Comparative Variation in Clast Sizes
4.4. Paleontological Inferences on Water Depth
4.5. Storm Intensity as a Function of Estimated Wave Height
5. Discussion
5.1. Integration of Paleontological and Physical Data
5.2. Inference from Historical Storms in the North Atlantic
5.3. Comparison with Coastal Boulder Deposits Elsewhere
5.4. Notes on the Geoheritage of El Confital Beach
6. Conclusions
- Consolidated cobble-boulder deposits preserved in multiple samples from Upper Pleistocene strata exhibit evidence of major slumps from a rocky shoreline formed by basalt flows during a prior stage of development related to the small volcanic peninsula of La Isleta.
- Preserved in conglomerate deposits that are well cemented, the average estimated volume and weight of individual basalt boulders from a total of 166 samples suggest wave heights between 4.2 and 4.5 m responsible for their derivation from an adjacent stratiform and joint-bound body of parent rock. The largest basalt boulder from all six sample sites is estimated to weigh 2.25 metric tons and may have been moved by a wave of extraordinary height around 10 m. Alternately, smaller waves may have gradually loosened this block from its parent body until the force of gravity entrained it within the conglomerate.
- Often ellipsoidal to angular in shape but typically well rounded, the degree of wear to which individual boulders were subjected implies the action of multiple storm events that also gradually enlarged the size of the channels in which the conglomerates were entrained. Ellipsoidal shapes were governed by the spacing of vertical joints in the parent basalt flow.
- An associated marine biota consisting of diverse mollusks dates the conglomerates to an age consistent with Marine Isotope Stage 5e, equivalent to the Eemian Stage during the last interglacial epoch. The biota also includes rhodoliths formed by coralline red algae growing in spherical forms unattached to the seabed, as well as abundant evidence of platy red algae encrusted directly onto many boulders. Much the same biota lives the present-day embayment at El Confital and represents an inter-tidal to very shallow subtidal habitat.
- Historical records from major storm events that impacted the Canary and nearby Azorean islands confirm that wave heights in the range of those predicted by mathematical models for the erosion of the El Confital conglomerates are reasonable for erosion of all but perhaps the largest boulders entrained, therein.
- Given the importance of geoheritage at El Confital beach and the boulder deposits described in this paper, it remains necessary to implement an adequate management plan against human impact and climate change.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Sample | Long Axis (cm) | Intermediate Axis (cm) | Short Axis (cm) | Volume (cm3) | Adjust to 80% | Weight (kg) | EWH Nott [17] (m) | EWH Pepe et al. [19] (m) |
---|---|---|---|---|---|---|---|---|
1 | 28.5 | 15 | 5.5 | 2351 | 1881 | 5.3 | 2.9 | 1.2 |
2 | 41 | 34 | 25 | 34,850 | 27,880 | 79.2 | 4.1 | 5.7 |
3 | 30 | 25 | 24 | 18,000 | 14,400 | 40.0 | 3.0 | 5.4 |
4 | 16 | 11 | 7 | 1232 | 986 | 2.8 | 1.6 | 1.6 |
5 | 29 | 21 | 13.2 | 8039 | 6431 | 18.2 | 2.9 | 3.0 |
6 | 44 | 19 | 11 | 9196 | 9357 | 26.6 | 4.4 | 2.5 |
7 | 28 | 25 | 9.5 | 6650 | 5320 | 15.0 | 2.8 | 2.2 |
8 | 58 | 53.5 | 17 | 52,751 | 42,201 | 119.9 | 5.8 | 3.8 |
9 | 54 | 46 | 25.5 | 63,342 | 50,674 | 143.9 | 5.4 | 5.8 |
10 | 68.5 | 34 | 20 | 46,580 | 37,264 | 105.8 | 6.9 | 4.5 |
11 | 37 | 23 | 22 | 18,722 | 14,978 | 42.5 | 3.7 | 5.0 |
12 | 35 | 34 | 18 | 21,420 | 17,136 | 48.7 | 3.5 | 4.1 |
13 | 24 | 16 | 8 | 3072 | 2458 | 7.0 | 2.4 | 1.8 |
14 | 14 | 10 | 7.5 | 1050 | 840 | 2.4 | 1.4 | 1.7 |
15 | 74 | 64 | 56 | 265,216 | 212,173 | 602.6 | 7.4 | 12.7 |
16 | 38 | 23 | 18 | 15,732 | 12,586 | 35.7 | 3.8 | 4.1 |
17 | 63 | 36 | 22 | 49,896 | 39,917 | 113.4 | 6.3 | 5.0 |
18 | 46 | 24 | 23 | 25,392 | 20,314 | 57.7 | 4.6 | 5.2 |
19 | 53 | 34 | 16 | 28,832 | 23,066 | 65.5 | 5.3 | 3.6 |
20 | 21 | 18 | 13 | 4914 | 3931 | 11.0 | 2.1 | 2.9 |
21 | 45 | 21 | 10 | 9450 | 7560 | 21.5 | 4.5 | 2.3 |
22 | 41 | 20.5 | 13 | 10,927 | 8741 | 24.8 | 4.1 | 2.9 |
23 | 75 | 45 | 15 | 50,625 | 40,500 | 115.0 | 7.5 | 3.4 |
24 | 45 | 41 | 24 | 44,280 | 35,424 | 100.6 | 4.5 | 5.4 |
25 | 72 | 36 | 23 | 59,616 | 47,693 | 135.4 | 7.2 | 5.2 |
26 | 71 | 34 | 18 | 43,452 | 34,762 | 98.7 | 7.1 | 4.1 |
27 | 88 | 59 | 23 | 119,416 | 95,533 | 271.3 | 8.8 | 5.2 |
28 | 43.5 | 26 | 13 | 14,703 | 11,762 | 33.4 | 4.4 | 2.9 |
29 | 23 | 18 | 10 | 4140 | 3312 | 9.4 | 2.3 | 2.3 |
30 | 40 | 33.5 | 12 | 16,080 | 12,864 | 36.5 | 4.0 | 2.7 |
Average | 44.85 | 30 | 17.5 | 34,998 | 28,065 | 79.7 | 4.5 | 3.9 |
Sample | Long Axis (cm) | Intermediate Axis (cm) | Short Axis (cm) | Volume (cm3) | Adjustto 80% | Weight (kg) | EWH Nott [17] (m) | EWH Pepe et al. [19] (m) |
---|---|---|---|---|---|---|---|---|
1 | 99 | 82 | 46 | 373,428 | 298,742 | 848.4 | 9.9 | 10.4 |
2 | 71 | 48 | 27 | 92,016 | 73,613 | 209.1 | 7.1 | 6.1 |
3 | 27 | 19 | 10 | 5130 | 4104 | 11.7 | 2.7 | 2.3 |
4 | 55 | 27 | 25 | 37,125 | 29,700 | 10.5 | 5.5 | 5.7 |
5 | 33 | 16 | 8 | 4224 | 3379 | 9.6 | 3.3 | 1.8 |
6 | 46.5 | 45 | 43 | 89,978 | 71,982 | 204.4 | 4.7 | 9.7 |
7 | 62 | 24 | 24 | 35,712 | 28,570 | 81.1 | 6.2 | 5.4 |
8 | 56 | 30 | 20 | 33,600 | 26,880 | 76.3 | 5.6 | 4.5 |
9 | 58 | 51 | 35 | 103,530 | 82,824 | 235.2 | 5.8 | 7.9 |
10 | 19 | 15 | 7.5 | 2138 | 1710 | 4.9 | 1.9 | 1.7 |
11 | 47.5 | 42.5 | 37.5 | 75,703 | 60,563 | 172 | 4.8 | 8.5 |
12 | 46 | 30 | 54 | 74,520 | 59,616 | 169.3 | 4.6 | 12.2 |
13 | 64 | 42 | 36 | 96,768 | 77,414 | 219.9 | 6.4 | 8.2 |
14 | 47 | 29 | 24 | 32,712 | 26,170 | 74.3 | 4.7 | 5.4 |
15 | 27 | 18.5 | 7.5 | 3746 | 2997 | 8.5 | 2.7 | 1.7 |
16 | 48 | 35 | 23.5 | 39,480 | 31,584 | 89.7 | 4.8 | 5.3 |
17 | 77 | 46.5 | 25 | 89,513 | 71,610 | 203.4 | 7.7 | 5.7 |
18 | 42 | 41 | 20 | 34,440 | 27,552 | 78.2 | 4.2 | 4.5 |
19 | 33 | 31.5 | 13.5 | 14,033 | 11,227 | 31.9 | 3.3 | 3.1 |
20 | 43 | 40 | 27.5 | 47,300 | 37,840 | 107.5 | 4.3 | 6.2 |
21 | 36 | 34 | 14 | 17,136 | 13,709 | 38.9 | 3.6 | 3.2 |
22 | 19 | 17 | 13 | 4199 | 3359 | 9.5 | 1.9 | 2.9 |
23 | 69 | 24 | 21 | 34,776 | 27,821 | 79.0 | 6.9 | 4.8 |
24 | 56 | 31 | 24 | 41,664 | 33,331 | 94.7 | 5.6 | 5.4 |
25 | 30 | 17 | 15 | 7650 | 6120 | 17.4 | 3.0 | 3.4 |
26 | 31 | 26 | 18 | 14,508 | 11,606 | 33.0 | 3.1 | 4.1 |
27 | 53 | 32 | 16.5 | 27,984 | 22,387 | 63.6 | 5.3 | 3.7 |
28 | 43.5 | 31.5 | 22 | 30,146 | 24,116 | 68.5 | 4.4 | 5.0 |
Average | 49 | 33 | 23.5 | 12,213 | 9786 | 116.1 | 4.8 | 5.3 |
Sample | Long Axis (cm) | Intermediate Axis (cm) | Short Axis (cm) | Volume (cm3) | Adjustto 80% | Weight (kg) | EWH Nott [17] (m) | EWH Pepe et al. [19] (m) |
---|---|---|---|---|---|---|---|---|
1 | 53.5 | 26 | 24 | 33,384 | 26,707 | 75.8 | 5.4 | 5.4 |
2 | 45 | 29 | 22 | 28,710 | 22,968 | 65.2 | 4.5 | 5.0 |
3 | 31 | 26 | 17 | 13,702 | 10,962 | 31.1 | 3.1 | 3.8 |
4 | 50 | 30 | 23 | 34,500 | 27,600 | 78.3 | 5.0 | 5.2 |
5 | 33 | 25 | 17 | 14,025 | 11,220 | 31.9 | 3.3 | 3.8 |
6 | 100 | 70 | 45 | 315,000 | 252,000 | 713.7 | 10.0 | 10.2 |
7 | 22 | 18 | 17 | 6732 | 5386 | 15.3 | 2.2 | 3.8 |
8 | 25 | 13 | 11.5 | 3738 | 2990 | 8.5 | 2.5 | 2.6 |
9 | 27.5 | 12 | 10 | 3300 | 2640 | 7.5 | 2.8 | 2.3 |
10 | 52 | 23 | 14 | 16,744 | 13,395 | 38.0 | 5.2 | 3.2 |
11 | 17.5 | 20 | 20 | 7000 | 5600 | 15.9 | 1.8 | 4.5 |
12 | 44 | 11 | 11 | 5324 | 4259 | 12.1 | 4.4 | 2.5 |
13 | 47 | 19 | 19 | 16,967 | 13,574 | 38.6 | 4.7 | 4.3 |
14 | 35 | 11 | 11 | 11,235 | 3388 | 9.6 | 3.5 | 2.5 |
15 | 145 | 21 | 21 | 63,945 | 51,156 | 145.3 | 14.5 | 4.8 |
16 | 26 | 10 | 10 | 2600 | 2080 | 5.9 | 2.6 | 2.3 |
17 | 13.5 | 7 | 7 | 662 | 529 | 1.5 | 1.4 | 1.6 |
18 | 32 | 6 | 6 | 1152 | 922 | 2.6 | 3.2 | 1.4 |
19 | 52.5 | 18 | 18 | 17,010 | 13,608 | 38.6 | 5.3 | 4.1 |
20 | 26 | 8 | 8 | 1664 | 1331 | 3.8 | 2.6 | 1.8 |
21 | 30 | 16 | 16 | 7680 | 6144 | 17.4 | 3.0 | 3.6 |
22 | 23 | 18.5 | 18.5 | 7872 | 6297 | 17.5 | 2.3 | 4.2 |
23 | 120 | 44 | 44 | 232,320 | 185,856 | 527.8 | 12.0 | 10.0 |
24 | 28 | 14 | 14 | 5488 | 4390 | 12.5 | 2.8 | 3.2 |
25 | 40 | 16 | 16 | 10,240 | 8192 | 23.3 | 4.0 | 3.6 |
26 | 18 | 4.5 | 4.5 | 365 | 292 | 0.8 | 1.8 | 1.0 |
27 | 26 | 8 | 8 | 1664 | 1331 | 3.8 | 2.6 | 1.8 |
28 | 21 | 5 | 5 | 525 | 420 | 1.2 | 2.1 | 1.1 |
29 | 19 | 6.5 | 6.5 | 803 | 642 | 1.8 | 1.9 | 1.5 |
30 | 17 | 4 | 4 | 272 | 218 | 0.6 | 1.7 | 0.9 |
Average | 79 | 18 | 15.5 | 28,821 | 22,870 | 64.9 | 4.1 | 3.5 |
Sample | Long Axis (cm) | Intermediate Axis (cm) | Short Axis (cm) | Volume (cm3) | Adjustto 80% | Weight (kg) | EWH Nott [17] (m) | EWH Pepe et al. [19] (m) |
---|---|---|---|---|---|---|---|---|
1 | 55 | 38 | 18 | 37,620 | 30,096 | 85.5 | 5.5 | 4.1 |
2 | 52.5 | 42 | 21 | 46,305 | 37,044 | 105.2 | 5.3 | 4.8 |
3 | 50 | 25 | 22 | 27,500 | 22,000 | 62.48 | 5.0 | 5.0 |
4 | 59 | 53.5 | 20 | 63,130 | 50,504 | 143.4 | 5.9 | 4.5 |
5 | 35 | 19.5 | 22 | 15,015 | 12,012 | 34.1 | 3.5 | 5.0 |
6 | 31 | 21 | 17 | 11,067 | 8854 | 25.1 | 3.1 | 3.8 |
7 | 30 | 13 | 6 | 2340 | 1872 | 5.3 | 3.0 | 1.4 |
8 | 52 | 20 | 15 | 15,600 | 12,450 | 35.4 | 5.2 | 3.4 |
9 | 35 | 31.5 | 15 | 16,538 | 13,230 | 37.6 | 3.5 | 3.4 |
10 | 25 | 9 | 8.5 | 1913 | 1530 | 4.3 | 2.5 | 1.9 |
11 | 52 | 16 | 8 | 6656 | 5325 | 15.1 | 5.2 | 1.8 |
12 | 24 | 23 | 19 | 10,488 | 8390 | 23.8 | 2.4 | 4.3 |
13 | 28 | 21 | 7.5 | 4410 | 3528 | 10.0 | 2.8 | 1.7 |
14 | 42 | 20 | 10 | 8400 | 6720 | 19.1 | 4.2 | 2.3 |
15 | 42 | 29 | 21 | 25,578 | 20,462 | 58.1 | 4.2 | 4.8 |
16 | 32 | 19 | 10.5 | 6384 | 5107 | 14.5 | 3.2 | 2.4 |
17 | 41 | 37 | 9 | 13,653 | 10,922 | 31.0 | 4.1 | 2.0 |
18 | 23 | 12 | 11 | 3036 | 2429 | 6.9 | 2.3 | 2.5 |
19 | 38 | 29 | 19 | 20,938 | 16,750 | 47.6 | 3.8 | 4.3 |
20 | 22 | 14.5 | 9.5 | 3031 | 2424 | 6.9 | 2.2 | 2.2 |
21 | 25 | 9 | 5 | 1125 | 900 | 2.6 | 2.5 | 1.1 |
22 | 30 | 11 | 6.5 | 2145 | 1716 | 4.9 | 3.0 | 1.5 |
23 | 22 | 11 | 8 | 1936 | 1549 | 4.4 | 2.2 | 1.8 |
24 | 49 | 38 | 24 | 44,688 | 35,750 | 101.5 | 4.9 | 5.4 |
25 | 51 | 34 | 30 | 52,020 | 41,616 | 147.7 | 5.1 | 6.8 |
26 | 41 | 19.5 | 14 | 11,193 | 8954 | 25.4 | 4.1 | 3.2 |
27 | 31 | 21 | 7 | 4552 | 3646 | 10.4 | 3.1 | 1.6 |
28 | 56.5 | 51 | 20 | 57,630 | 46,104 | 130.9 | 5.7 | 4.5 |
29 | 41 | 26.5 | 14 | 15,211 | 12,169 | 34.6 | 4.1 | 3.2 |
30 | 55 | 43 | 20 | 25,800 | 20,640 | 58.6 | 4.3 | 4.5 |
Average | 39 | 25 | 14.5 | 18,530 | 14,823 | 43.1 | 3.9 | 3.3 |
Sample | Long Axis (cm) | Intermediate Axis (cm) | Short Axis (cm) | Volume (cm3) | Adjust to 80% | Weight (kg) | EWH Nott [17] (m) | EWH Pepe et al. [19] (m) |
---|---|---|---|---|---|---|---|---|
1 | 57 | 28 | 22 | 35,112 | 28,090 | 79.8 | 5.7 | 5.0 |
2 | 76 | 37 | 20 | 56,240 | 44,992 | 127.8 | 7.6 | 4.5 |
3 | 38 | 28 | 27 | 28,728 | 22,982 | 65.3 | 3.8 | 6.1 |
4 | 46.5 | 30 | 20 | 27,900 | 22,320 | 63.4 | 4.7 | 4.5 |
5 | 46 | 34 | 22.5 | 35,190 | 28,152 | 80.0 | 4.6 | 5.1 |
6 | 61 | 30 | 21 | 38,430 | 30,744 | 87.3 | 6.1 | 4.8 |
7 | 45 | 38 | 11 | 18,810 | 15,048 | 42.7 | 4.5 | 2.5 |
8 | 59 | 43 | 38 | 96,406 | 77,125 | 219.0 | 5.9 | 8.6 |
9 | 114 | 97 | 27 | 298,566 | 238,853 | 678.3 | 11.9 | 6.1 |
10 | 81.5 | 42 | 25 | 85,575 | 68,460 | 194.4 | 8.2 | 5.7 |
11 | 43 | 28 | 17.5 | 21,070 | 16,856 | 47.9 | 4.3 | 4.0 |
12 | 41 | 28 | 13 | 14,924 | 11,939 | 33.9 | 4.1 | 2.9 |
13 | 39 | 33 | 17 | 21,879 | 17,503 | 49.7 | 3.9 | 3.8 |
14 | 30 | 25 | 7 | 5250 | 4200 | 11.9 | 3.0 | 1.6 |
15 | 22 | 11.5 | 6.5 | 1645 | 1316 | 3.7 | 2.2 | 1.5 |
16 | 27.5 | 14.5 | 4 | 1595 | 1276 | 3.6 | 2.8 | 0.9 |
17 | 20 | 8 | 5 | 800 | 640 | 1.8 | 2.0 | 1.1 |
18 | 32 | 27 | 27 | 23,328 | 18,662 | 53.0 | 3.2 | 6.1 |
19 | 19 | 10 | 7.5 | 1425 | 1140 | 3.2 | 1.9 | 1.7 |
20 | 17.5 | 16 | 9 | 2520 | 2016 | 5.7 | 1.8 | 2.0 |
21 | 27 | 17 | 6.5 | 2984 | 2387 | 6.8 | 2.7 | 1.5 |
22 | 22 | 12 | 6 | 1584 | 1267 | 3.6 | 2.2 | 1.4 |
23 | 12.5 | 7 | 4 | 350 | 280 | 0.8 | 1.3 | 0.9 |
24 | 19 | 11 | 10 | 2090 | 1672 | 4.7 | 1.9 | 2.3 |
Average | 41.5 | 27 | 15.5 | 34,267 | 27,413 | 77.8 | 4.2 | 3.5 |
Sample | Long Axis (cm) | Intermediate Axis (cm) | Short Axis (cm) | Volume (cm3) | Adjust to 80% | Weight (kg) | EWH Nott [17] (m) | EWH Pepe et al. [19] (m) |
---|---|---|---|---|---|---|---|---|
1 | 58 | 54 | 34 | 106,488 | 85,190 | 242.0 | 5.8 | 7.7 |
2 | 214 | 94 | 50 | 1,005,800 | 804,640 | 2258.0 | 21.5 | 11.3 |
3 | 84 | 83 | 71 | 495,012 | 396,010 | 1124.6 | 8.4 | 16.1 |
4 | 47 | 33 | 26 | 40,326 | 32,261 | 91.6 | 4.7 | 5.9 |
5 | 33 | 17 | 13 | 7293 | 5834 | 16.6 | 3.3 | 2.9 |
6 | 50.5 | 49 | 28 | 69,286 | 55,429 | 157.4 | 5.1 | 6.3 |
7 | 70.5 | 52 | 32 | 117,312 | 93,850 | 266.5 | 7.1 | 7.2 |
8 | 85 | 44 | 32 | 119,680 | 95,744 | 271.9 | 8.5 | 7.2 |
9 | 40 | 31 | 13 | 16,120 | 12,896 | 36.6 | 4.0 | 2.9 |
10 | 46.5 | 24 | 16 | 17,856 | 14,285 | 40.6 | 4.7 | 3.6 |
11 | 34.5 | 27.5 | 17.5 | 16,603 | 13,283 | 37.7 | 3.5 | 4.0 |
12 | 31 | 24 | 18 | 13,392 | 10,714 | 30.4 | 3.1 | 4.1 |
13 | 40.5 | 24 | 23 | 22,356 | 17,885 | 50.6 | 4.1 | 5.2 |
14 | 57 | 41 | 27 | 63,099 | 50,479 | 143.3 | 5.7 | 6.1 |
15 | 65 | 60 | 41 | 159,900 | 127,920 | 363.3 | 6.5 | 9.3 |
16 | 41 | 38 | 25 | 38,950 | 31,160 | 88.5 | 4.1 | 5.7 |
17 | 33 | 21 | 16 | 11,088 | 8870 | 25.2 | 3.3 | 3.6 |
18 | 92 | 61 | 26 | 145,912 | 116,730 | 331.5 | 9.2 | 5.9 |
19 | 27 | 11 | 11 | 3267 | 2614 | 7.4 | 2.7 | 2.5 |
20 | 44 | 41 | 7 | 12,628 | 10,102 | 28.7 | 4.4 | 1.6 |
21 | 13 | 9.5 | 5 | 618 | 494 | 1.4 | 1.3 | 1.1 |
22 | 30 | 30 | 29 | 26,100 | 20,880 | 59.3 | 3.0 | 6.6 |
23 | 41 | 27 | 18 | 19,926 | 15,941 | 45.3 | 4.1 | 4.1 |
24 | 41 | 24 | 15 | 14,760 | 11,808 | 33.5 | 4.1 | 3.4 |
Average | 55 | 38 | 25 | 105,991 | 84,792 | 239.7 | 5.5 | 5.6 |
References
- Ávila, S.P.; Johnson, M.E.; Rebelo, A.C.; Baptista, L.; Melo, C.S. Comparison of modern and Pleistocene (MIS 5e) coastal Boulder deposits from Santa Maria Island (Azores Archipelago, NE Atlantic Ocean). J. Mar. Sci. Eng. 2020, 8, 386. [Google Scholar] [CrossRef]
- Johnson, M.E.; Ramalho, R.; da Silva, C.M. Storm-related rhodolith deposits from the Upper Pleistocene and recycled coastal Holocene on Sal island (Cabo Verde Archipelago). Geosciences 2020, 10, 419. [Google Scholar] [CrossRef]
- Scheffers, A.; Kelletat, D. Megaboulder movement by superstorms: A geomorphological approach. J. Coastal Res. 2020, 36, 844–856. [Google Scholar] [CrossRef]
- Johnson, M.E.; Ledesma-Vázquez, J.; Guardado-Grance, R. Coastal geomorphology of a Holocene Hurricane Deposit on a Pleistocene Marine Terrace from Isla Carmen (Baja California Sur, Mexico). J. Mar. Sci. Eng. 2018, 6, 108. [Google Scholar] [CrossRef] [Green Version]
- Johnson, M.E.; Guardado-France, R.; Johnson, E.M.; Ledesma-Vázquez, J. Geomorphology of a Holocene Hurricane deposit eroded from rhyolite sea cliffs on Ensenada Almeja (Baja California Sur, Mexico). J. Mar. Sci. Eng. 2019, 7, 193. [Google Scholar] [CrossRef] [Green Version]
- Johnson, M.E.; Johnson, E.M.; Guardado-France, R.; Ledesma-Vázquez, J. Holocene hurricane deposits eroded as coastal barriers from andesite sea cliffs at Puerto Escondido (Baja California Sur, Mexico). J. Mar. Sci. Eng. 2020, 8, 75. [Google Scholar] [CrossRef] [Green Version]
- van de Bogaard, P. The origin of the Canary Island Seamount Province—New ages of old seamounts. Sci. Rep. 2013, 3, 2107. [Google Scholar] [CrossRef] [Green Version]
- McDougall, I.; Schmincke, H.H. Geochronology of Gran Canaria, Canary Islands: Age of shield building volcanisms and other magmatic phases. Bull. Volcanol. 1997, 40, 57–77. [Google Scholar] [CrossRef]
- Hansen, A. Los Volcanes Recientes de Gran Canaria; Rueda-Cabildo Insular de Gran Canaria: Las Palmas, Spania, 1987; 151p. [Google Scholar]
- Balcells, R.; Barrera, J.L. Mapa geológico y Memoria de la Hoja 1101-I-II (Las Palmas de Gran Canaria). Mapa Geolópgica de España E. 1:25.000. Seguna Serie (MAGNA), Primera edición. IGME (Institute of Geology and Mineralogy of Spain). 1990; 130p. [Google Scholar]
- González-Rodríguez, A.; Melo, C.S.; Galindo, I.; Mangas, J.; Sánchez, N.; Coello, J.; Lozano-Francisco, M.C.; Johnson, M.; Romero, C.; Vegas, J.; et al. Historia geológica y reconstrucción paleobiológica de los depósitos paleontológicas de la Playa de El Confital (Gran Canaria Islas Canarias). In Yacimientos Paleontológicos Excepcionales en la Peninsula Ibérica; Cuadernos del Museo Geominero, n° 27; Vaz, N., Sá, A.A., Eds.; Publicaciones del Instituto Geológica y Minero de España: Madrid, Spain, 2018; pp. 491–499. ISBN 978-84-9138-066-5. [Google Scholar]
- Bethencourt-González, J.; Dorta-Antequera, P. The storm of November 1826 in the Canary Islands: Possibly a tropical cyclone? Geogr. Ann. Series A Phys. Geogr. 2010, 92, 329–337. [Google Scholar] [CrossRef]
- Wentworth, C.K. A scale of grade and class terms for clastic sediments. J. Geol. 1922, 27, 377–392. [Google Scholar] [CrossRef]
- Ruban, D.A. Costal boulder deposits of the Neogene world: A synopsis. J. Mar. Sci. Eng. 2019, 7, 446. [Google Scholar] [CrossRef] [Green Version]
- Sneed, E.D.; Folk, R.L. Pebbles in the lower Colorado River of Texas: A study in particle morphogenesis. J. Geol. 1958, 66, 114–150. [Google Scholar] [CrossRef]
- Hernández Gutiérrez, L. Caracterización Geomecánica de las Rocas Volcánicass de las Islas Canarias. Ph.D. Thesis, Departamento de Biología Animal, Edafología y Geología, Universidad de la Laguna, Santa Cruz de Tenerife, Spain, 2014; 308p. [Google Scholar]
- Nott, J. Waves, coastal bolder deposits and the importance of pre-transport setting. Earth Planet. Sci. Lett. 2003, 210, 269–276. [Google Scholar] [CrossRef]
- Nandasena, N.A.K.; Paris, R.; Tanaka, N. Reassessment of hydrodynamic equations: Minimum flow velocity to initiate boulder transport by high energy events (storms, tsunamis). Mar. Geol. 2011, 281, 70–84. [Google Scholar] [CrossRef]
- Pepe, F.; Corradino, M.; Parrino, N.; Besio, G.; Presti, V.L.; Renda, P.; Calcagnile, L.; Quarta, G.; Sulli, A.; Antonioli, F. Boulder coastal deposits at Favignana Island rocky coast (Sicily, Italy): Litho-structural and hydrodynamic control. Geomorphology 2018, 303, 191–209. [Google Scholar]
- Meco, J.; Guillou, H.; Carracedo, J.C.; Lomoschitz, A.; Ramos, A.J.G.; Rodríguez Yanez, J.J. The maximum warmings of the Pleistocene world climate recorded in the Canary Islands. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2002, 185, 197–210. [Google Scholar] [CrossRef] [Green Version]
- Martín-González, E.; González-Rodríguez, A.; Vera-Peláez, J.L.; Lozano-Francisco, M.C.; Castillo, C. Asociaciones de moluscos de los depósitos litorales del Pleistoceno superior de Tenerife (Islas Canarias, España). Vieraea 2016, 44, 87–106. [Google Scholar]
- Martín-González, E.; González-Rodríguez, A.; Galindo, I.; Mangas, J.; Romero, M.C.; Sánchez, N.; Coello, J.J.; Márquez, A.; Vegas, J.; De Vera, A.; et al. Review of the MIS 5e coastal outcrops from Fuerteventura (Canary islands). Vieraea 2019, 46, 667–688. [Google Scholar]
- Tuya, F.; Ramírez, R.; Sánchez-Jerez, P.; Haroun, R.J.; González-Ramos, A.J.; Coca, J. Coastal resources exploitation can mask bottom up mesoscale regulation of intertidal populations. Hydrobiologia 2006, 553, 337–344. [Google Scholar]
- Haroun, R.J.; Gil-Rogríguez, M.C.; Díaz de Castro, J.; Prud’homme van Reine, W.F. A checklist of the marine plants from the Canary Islands (Central Eastern Atlantic Ocean). Botanica Marina 2002, 45, 139–169. [Google Scholar] [CrossRef] [Green Version]
- Kossin, J.P.; Camargo, S.J.; Sitkowski, M. Climate modulation of North Atlantic hurricane tracks. J. Climate 2010, 23, 3057–3076. [Google Scholar] [CrossRef]
- Borges, P. Ambientes litorais nos grupos Central e Oriental do Arquipélago dos Açores, Conteúdos e Dinamica de Microescale. Unpublished Ph.D. Thesis in Geology, Universidade do Açores, Ponta Delgada, Portugal, 2003; pp. 1–412. [Google Scholar]
- Gonçalves, M.; Martinho, P.; Soares, C.G. Assessment of wave energy in the Canary Islands. Renew. Energy 2014, 68, 774–784. [Google Scholar] [CrossRef]
- Gonçalves, M.; Martinho, P.; Soares, C.G. Wave energy assessment based on a 33-year hind-case for the Canary Islands. Renew. Energy 2020, 152, 258–269. [Google Scholar] [CrossRef]
- May, S.M.; Engel, M.; Brill, D.; Squire, P.; Scheffers, A.; Kelletat, D. Coastal Hazards from Tropical Cyclones and Extratropical Winter Storms Based on Holocene Storm Chronologies. In Coastal World Heritage Sites; Springer Nature: Berlin, Germany, 2012; Volume 6, pp. 557–585. [Google Scholar]
- Johnson, M.E. Holocene boulder beach eroded from chromite and dunite sea cliffs at Støpet on Leka Island (Northern Norway). J. Mar. Sci. Eng. 2020, 8, 644. [Google Scholar] [CrossRef]
- Suárez Rodríguez, C. Crónicas Urbanas de Historia Natural, Charles Lyell y Pedro Maffiotte en Las Palmas de Gran Canaria; Idea: Las Palmas, Gran Canaria, 2018; 242p. [Google Scholar]
- Déniz González, I. Patrimonio Geológico Costero en Las Palmas de Gran Canaria: Inventario y Valoración de los Lugares de Interés Geológico; Acreditación de la Etapa Investigadora (AEI) del Doctorado de Gestión Costera, Universidad de Las Palmas: Las Palmas, Gran Canaria, 2011; 262p. [Google Scholar]
- Meco, J.; Koppers, A.A.P.; Miggins, D.P.; Lomoschitz, A.; Betancort, J.F. The Canary record of the evolution of the North Atlantic Pliocene: New 40Ar/39Ar ages and some notable palaeontological evidence. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2015, 435, 53–69. [Google Scholar] [CrossRef] [Green Version]
- Martín-González, E.; Galindo, I.; Vegas, J.; Sánchez, N.; Coello, J.J.; Romero, C.; González-Rodríguez, A. Selección preliminar de Lugares de Interés Paleontológico para el inventario de Patrimonio Geológico de Canarias. Cuad. Museo Geomin. 2019, 30, 49–55. [Google Scholar]
- Déniz González, I.; Mangas, J. Lugares de interés geológico en la costa de Las Palmas de Gran Canaria (Islas Canarias): Inventario y valoración. Geo-temas 2012, 13, 1253–1256. [Google Scholar]
- García-Cortés, A.; Vegas, J.; Carcavilla, L.; Díaz-Martínez, E. Conceptual Base and Methodology of the Spanish Inventory of Sites of Geological Interest (IELIG); Instituto Geológico y Minero de España: Madrid, Spain, 2019; 102p, ISBN 978-84-9138-092-4. [Google Scholar]
- Wignall, R.M.L.; Gordon, J.E.; Brazier, V.; MacFadyen, C.C.J.; Everett, N.S. A Climate Change Risk-Based Assessment for Nationally and Internationally Important Geoheritage Sites in Scotland Including all Earth Science Features in Sites of Special Scientific Interest (SSS); Scottish Natural Heritage Research Report No. 1014; Inverness, Scotland, 2018; 53p, Available online: https://www.researchgate.net/profile/Vanessa-Kirkbride/publication/323696506_A_climate_change_risk-based_assessment_for_nationally_and_internationally_important_geoheritage_sites_in_Scotland_including_all_Earth_science_features_in_Sites_of_Special_Scientific_Interest_SSSI_Scot/links/5aa66dafa6fdcc29af5308db/A-climate-change-risk-based-assessment-for-nationally-and-internationally-important-geoheritage-sites-in-Scotland-including-all-Earth-science-features-in-Sites-of-Special-Scientific-Interest-SSSI-Scot.pdf (accessed on 28 January 2021).
Phylum | Class | Species | Phylum | Class | Species |
---|---|---|---|---|---|
Mollusca | Gastropoda | Acanthina dontelei * Alvania macandrewi A. scabra Barleiia unifasciata Bolma rugosa Bittium reticulatum Bursa scrobilator | Mollusca | Bivalvia | Barbatia barbata Bractechlamys corallinoides Cardita calyculata Chama gryphoides Ctema decussata Glycymeris glycymeris |
Cerithium vulgatum Cheilea equestris | Pecten sp. Venus verrucosa | ||||
Clanculus berthelotii Columbella adansoni Conus guanche C. pulcher Coralliophila meyendorffi Dendropoma cristatum Diodora gibberula Erosaria spurca Gemophos viverratus Gibbula candei Gibbula sp. Haliotis tubeculata Littorina littorea Luria lurida Manzonia crassa Marginella glabella Mitra cornea Monoplex parthenopeus Naria spurca Patella aspera P. candei P. crenata P. piperata Phorcus atratus P. sauciatus Pusia zebrina Stramanita haemastoma Tectarius striatus Thylacodes arenarius Vermetus triquetrus Vermetus sp. Vexillum zebrinum Zebina vitrea | Arthropoda | Cirripedia | Balanus trigonus |
Confital Locality | Number of Samples | Average Boulder Volume (cm3) | Average Boulder Weight (kg) | EAWH (m) Nott [17] | EAWH (m) Pepe et al. [19] | Max. Boulder Volume (cm3) | Max. Boulder Weight (kg) | EMWH (m) Nott [17] | EMWH (m) Pepe et al. [19] |
---|---|---|---|---|---|---|---|---|---|
1 | 30 | 28,065 | 79.7 | 4.5 | 3.9 | 212,173 | 602.6 | 7.4 | 12.7 |
2 | 28 | 9786 | 116.1 | 4.8 | 5.3 | 298,742 | 848.4 | 9.9 | 10.4 |
3 | 30 | 22,870 | 64.9 | 4.1 | 3.5 | 252,000 | 713.7 | 10 | 10.2 |
4 | 30 | 14,823 | 43.1 | 3.9 | 3.3 | 50,540 | 143.4 | 5.9 | 6.8 |
5 | 24 | 34,267 | 77.8 | 4.2 | 3.5 | 238,853 | 678.3 | 11.9 | 8.6 |
6 | 24 | 84,792 | 239.7 | 5.5 | 5.6 | 804,640 | 2258 | 21.5 | 16.1 |
Average | 27.66 | 32,434 | 103.5 | 4.5 | 4.2 | 309,491 | 874.1 | 11.1 | 10.8 |
Order | Date | Type Event | Locations | Scale of Destruction |
---|---|---|---|---|
1 | 25 January 1713 | major storm | Gran Canaria and Tenerife | Major destruction, overflow in Vega de Arucas |
2 | 1 November 1755 | tsunami | Tenerife, Gran Canaria, and Lanzarote | Destruction in coastal areas due to Lisbon earthquake |
3 | 6 January 1766 | major storm | Gran Canaria | Torrential rain; lahaar in Agüimes |
4 | 7–8 November 1826 | major storm | all islands | Damage throughout the Canaries and loss of life |
5 | 7 January 1856 | hurricane | Tenerife and El Hierro | 50 buildings destroyed including the harbor and pier; two fatalities |
6 | 13 February 1875 | major storm | Las Palmas de Gran Canaria | Damage to ships in the harbor, one fatality |
7 | 16 January 1895 | major storm | Gran Canaria | Overflow at E Confital, house destruction |
8 | 25–26 December 1898 | major storm | Gran Canaria | Damage to pier and docked ships |
9 | 3 March 1903 | major storm | Gran Canaria | No reported damage |
10 | 16 December 1903 | major storm | Gran Canaria | Raging sea; one fatality |
11 | 2 February 1904 | major storm | Gran Canaria | Disappearance of sand from El Confital |
12 | 28–29 October 1905 | major storm | Gran Canaria | Streets of Las Palmas flooded; one fatality |
13 | 17 January 1910 | major storm | Gran Canaria | Pier damage |
14 | 30 January 1910 | major storm | Gran Canaria | Overflow in Las Palmas; one fatality |
15 | 26–27 December 1910 | major storm | All islands | Las Palmas harbor closed to traffic |
16 | 1912 | major storm | Gran Canaria | Overflow in Las Palmas |
17 | 7–9 February 1912 | major storm | Gran Canaria | Homes in Las Canteras destroyed |
18 | 22 November 1913 | major storm | Gran Canaria | Homes in Las Canteras damaged |
19 | 26 November 1915 | major storm | Gran Canaria | Harbor closure |
20 | 19 November 1933 | major storm | Gran Canaria | Wave destruction; one fatality at El Confital |
21 | 12–13 December 1957 | major storm | Gran Canaria | Major destruction to Las Nieves harbor |
22 | 10 September 1961 | major storm | Gran Canaria | one fatality at Las Salinas de El Confital |
23 | 21 February 1966 | major storm | Gran Canaria | Wave heights between 10 and 12 m |
24 | 23–26 November 1968 | major storm | Tenerife and Gran Canaria | Wave height of 10 m in Tenerife; wind speed of 118 km/h in Gran Canaria |
25 | 21 April 1970 | major storm | Gran Canaria | Wave height of 8 m; wind speed over 90 km/h |
26 | 18 February 1971 | major storm | Gran Canaria | Damage in El Confital |
27 | February 1989 | major storm | Gran Canaria | Overflow; home damage; closure of Puerto de La Luz harbor |
28 | 28–29 November 2005 | major storm DELTA | all islands | Damage to harbors and beaches |
29 | 21 December 2009 | major storm | Gran Canaria | Overflow; precipitation levels of 130 mm/h; damage to homes |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galindo, I.; Johnson, M.E.; Martín-González, E.; Romero, C.; Vegas, J.; Melo, C.S.; Ávila, S.P.; Sánchez, N. Late Pleistocene Boulder Slumps Eroded from a Basalt Shoreline at El Confital Beach on Gran Canaria (Canary Islands, Spain). J. Mar. Sci. Eng. 2021, 9, 138. https://doi.org/10.3390/jmse9020138
Galindo I, Johnson ME, Martín-González E, Romero C, Vegas J, Melo CS, Ávila SP, Sánchez N. Late Pleistocene Boulder Slumps Eroded from a Basalt Shoreline at El Confital Beach on Gran Canaria (Canary Islands, Spain). Journal of Marine Science and Engineering. 2021; 9(2):138. https://doi.org/10.3390/jmse9020138
Chicago/Turabian StyleGalindo, Inés, Markes E. Johnson, Esther Martín-González, Carmen Romero, Juana Vegas, Carlos S. Melo, Sérgio P. Ávila, and Nieves Sánchez. 2021. "Late Pleistocene Boulder Slumps Eroded from a Basalt Shoreline at El Confital Beach on Gran Canaria (Canary Islands, Spain)" Journal of Marine Science and Engineering 9, no. 2: 138. https://doi.org/10.3390/jmse9020138
APA StyleGalindo, I., Johnson, M. E., Martín-González, E., Romero, C., Vegas, J., Melo, C. S., Ávila, S. P., & Sánchez, N. (2021). Late Pleistocene Boulder Slumps Eroded from a Basalt Shoreline at El Confital Beach on Gran Canaria (Canary Islands, Spain). Journal of Marine Science and Engineering, 9(2), 138. https://doi.org/10.3390/jmse9020138