Role of Storm Erosion Potential and Beach Morphology in Controlling Dune Erosion
Abstract
:1. Introduction
1.1. Background
1.2. The Storm Erosion Index
- (a)
- Investigate the role of erosion potential, described by SEI and PEI, and beach morphology in controlling observed storm-induced dune erosion, and
- (b)
- Develop a tool which predicts dune erosion in a computationally efficient manner, enabling future forecasts and vulnerability assessments to be performed on a local scale.
2. Study Area and Storm Climate
3. Methodology
3.1. Data Compilation and Preliminary Analysis
3.2. Classification and Regression Tree (CART) Analysis
4. Results
4.1. Preliminary Analysis
- Crest elevation (CrestZ)
- Toe elevation (ToeZ)
- Berm volume (MHWVol)
- Dune volume (DVol)
- Sediment grain size (d50)
- The Storm Erosion Index (SEI)
- Peak Erosion Intensity (PEI)
4.2. Prediction of Damage Classes
5. Discussion
5.1. Predictors of Dune Impacts
5.2. Model Performance
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barone, D.; McKenna, K.; Farrell, S. Hurricane Sandy: Beach-dune performance at New Jersey Beach Profile Network sites. Shore Beach 2014, 82, 13–23. [Google Scholar]
- Tomiczek, T.; Kennedy, A.; Zhang, Y.; Owensby, M.; Hope, M.E.; Lin, N.; Flory, A. Hurricane Damage Classification Methodology and Fragility Functions Derived from Hurricane Sandy’s Effects in Coastal New Jersey. J. Waterw. Port Coast. Ocean Eng. 2017, 143, 04017027. [Google Scholar] [CrossRef]
- Houser, C.; Wernette, P.; Rentschlar, E.; Jones, H.; Hammond, B.; Trimble, S. Post-storm beach and dune recovery: Implications for barrier island resilience. Geomorphology 2015, 234, 54–63. [Google Scholar] [CrossRef]
- Morton, R.A.; Jeffrey, G.P.; James, C.G. Stages and Durations of Post-Storm Beach Recovery, Southeastern Texas Coast, U.S.A. J. Coast. Res. 1994, 10, 884–908. [Google Scholar]
- Mathew, S.; Davidson-Arnott, R.G.; Ollerhead, J. Evolution of a beach–dune system following a catastrophic storm overwash event: Greenwich Dunes, Prince Edward Island, 1936–2005. Can. J. Earth Sci. 2010, 47, 273–290. [Google Scholar] [CrossRef]
- Schott, T.; Landsea, C.; Hafele, G.; Lorens, J.; Taylor, A.; Thurm, H.; Ward, B.; Willis, M.; Zaleski, W. The Saffir-Simpson Hurricane Wind Scale; NOAA/National Weather Service: Silver Spring, MD, USA, 2012.
- Simpson, R.H.; Saffir, H. The hurricane disaster potential scale. Weatherwise 1974, 27, 169. [Google Scholar]
- Dolan, R.; Davis, R.E. An intensity scale for Atlantic coast northeast storms. J. Coast. Res. 1992, 8, 840–853. [Google Scholar]
- Mendoza, E.T.; Jimenez, J.A.; Mateo, J. A coastal storms intensity scale for the Catalan sea (NW Mediterranean). Nat. Hazards Earth Syst. Sci. 2011, 11, 2453–2462. [Google Scholar] [CrossRef] [Green Version]
- Kriebel, D.; Dalrymple, R.; Pratt, A.; Sakovich, V. Shoreline risk index for northeasters. In Proceedings of the 1996 Conference on Natural Disaster Reduction, Washington, DC, USA, 3–5 December 1996; pp. 251–252. [Google Scholar]
- Walker, R.A.; Basco, D.R. Application of Coastal Storm Impulse (Cosi) Parameter to Predict Coastal Erosion. Coast. Eng. Proc. 2011, 1, 23. [Google Scholar] [CrossRef] [Green Version]
- Kraus, N.C.; Wise, R.A. Simulation of January 4, 1992 storm erosion at Ocean City, Maryland. Shore Beach 1993, 61, 34–41. [Google Scholar]
- Zhang, K.Q.; Douglas, B.C.; Leatherman, S.P. Beach erosion potential for severe nor’easters. J. Coast. Res. 2001, 17, 309–321. [Google Scholar]
- Miller, J.K.; Livermont, E. A predictive index for wave and storm surge induced erosion. In Proceedings of the 31st International Conference on Coastal Engineering, Hamburg, Germany, 31 August–5 September 2008; pp. 4143–4153. [Google Scholar]
- Morgan, K.L.; Krohn, M.D. Post-Hurricane Sandy coastal oblique aerial photographs collected from Cape Lookout, North Carolina, to Montauk, New York, November 4–6, 2012. Data Ser. 2014, 858. [Google Scholar] [CrossRef]
- The Stockton University Coastal Research Center. Beach Dune Performance Assessment of New Jersey Beach Profile Network (NJBPN) Sites at Northern Ocean County, New Jersey, after Hurricane Sandy Related to FEMA Disaster DR-NJ-4086; The Stockton University Coastal Research Center: Port Republic, NJ, USA, 2012. [Google Scholar]
- Plant, N.G.; Stockdon, H. Probabilistic prediction of barrier-island response to hurricanes. J. Geophys. Res. Space Phys. 2012, 117, 117. [Google Scholar] [CrossRef]
- Splinter, K.D.; Kearney, E.T.; Turner, I. Drivers of alongshore variable dune erosion during a storm event: Observations and modelling. Coast. Eng. 2018, 131, 31–41. [Google Scholar] [CrossRef]
- Beuzen, T.; Harley, M.D.; Splinter, K.D.; Turner, I.L. Controls of Variability in Berm and Dune Storm Erosion. J. Geophys. Res. Earth Surf. 2019, 124, 2647–2665. [Google Scholar] [CrossRef]
- Palmsten, M.L.; Splinter, K.D.; Plant, N.G.; Stockdon, H.F. Probabilistic estimation of dune retreat on the Gold Coast, Australia. Shore Beach 2014, 82, 35–43. [Google Scholar]
- Sallenger, A.H. Storm impact scale for barrier islands. J. Coast. Res. 2000, 16, 890–895. [Google Scholar]
- Overbeck, J.R.; Long, J.W.; Stockdon, H.F. Testing model parameters for wave-induced dune erosion using observations from Hurricane Sandy. Geophys. Res. Lett. 2017, 44, 937–945. [Google Scholar] [CrossRef]
- Judge, E.K.; Overton, M.F.; Fisher, J.S. Vulnerability Indicators for Coastal Dunes. J. Waterw. Port Coast. Ocean Eng. 2003, 129, 270–278. [Google Scholar] [CrossRef]
- Deierlein, G.G.; Zsarnóczay, A. State of the Art in Computational Simulation for Natural Hazards Engineering (Version v2); Zenodo: Genève, Switzerland, 2021. [Google Scholar] [CrossRef]
- Wehof, J.; Miller, J.K.; Engle, J. Application of the Storm Erosion Index (SEI) to three unique storms. In Proceedings of the 34th International Conference on Coastal Engineering, Seoul, Korea, 15–20 June 2014. [Google Scholar]
- Lemke, L.; Miller, J.K. Evaluation of storms through the lens of erosion potential along the New Jersey, USA coast. Coast. Eng. 2020, 158, 103699. [Google Scholar] [CrossRef]
- Janssen, M.; Lemke, L.; Miller, J. Application of Storm Erosion Index (SEI) to parameterize spatial storm intensity and impacts from Hurricane Michael. Shore Beach 2019, 87, 41–50. [Google Scholar] [CrossRef]
- Cheng, J.; Cossu, F.T.; Wang, P. Factors controlling longshore variations of beach changes induced by Tropical Storm Eta (2020) along Pinellas County beaches, west-central Florida. Shore Beach 2021, 89, 75–85. [Google Scholar] [CrossRef]
- Zhang, K.; Leatherman, S. Barrier Island Population along the U.S. Atlantic and Gulf Coasts. J. Coast. Res. 2011, 27, 356. [Google Scholar] [CrossRef]
- Walling, K.; Herrington, T.O.; Miller, J.K. Hurricane Sandy damage comparison: Oceanfront houses protected by a beach and dune system with vs. without a rock seawall. Shore Beach 2016, 84, 35–41. [Google Scholar]
- Janssen, M.S. Risk-Based Assessment of Coastal Defense Projects: Quantifying Hazard, Vulnerability, and Parametric Design Applications. Ph.D. Thesis, Stevens Institute of Technology, Hoboken, NJ, USA, 2021. [Google Scholar]
- The Richard Stockton Coastal Research Center. Beach-Dune System Susceptibility Assessment for the Bourough of Mantoloking; The Richard Stockton Coastal Research Center: Ocean County, NJ, USA, 2004. [Google Scholar]
- Lee, J.M.; Park, J.Y.; Choi, J.Y. Evaluation of Sub-aerial Topographic Surveying Techniques Using Total Station and RTK-GPS for Applications in Macrotidal Sand Beach Environment. J. Coast. Res. 2013, 10065, 535–540. [Google Scholar] [CrossRef]
- Brodie, K.L.; Spore, N.J. Foredune Classification and Storm Response: Automated Analysis of Terrestrial Lidar Dems. In Proceedings of the Coastal Sediments 2015, San Diego, CA, USA, 11–15 May 2015. [Google Scholar]
- Breiman, L.; Friedman, J.; Stone, C.J.; Olshen, R.A. Classification and Regression Trees; CRC Press: Boca Raton, FL, USA, 1984. [Google Scholar]
- De’ath, G.; Fabricius, K.E. Classification and regression trees: A powerful yet simple technique for ecological data analysis. Ecology 2000, 81, 3178–3192. [Google Scholar] [CrossRef]
- Olden, J.D.; Lawler, J.J.; Poff, N.L. Machine Learning Methods Without Tears: A Primer for Ecologists. Q. Rev. Biol. 2008, 83, 171–193. [Google Scholar] [CrossRef] [Green Version]
- Breiman, L. Heuristics of instability and stabilization in model selection. Ann. Stat. 1996, 24, 2350–2383. [Google Scholar] [CrossRef]
- Li, R.-H.; Belford, G.G. Instability of decision tree classification algorithms. In Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Edmonton, AB, Canada, 23–26 July 2002; pp. 570–575. [Google Scholar]
- Sutton, C.D. Classification and Regression Trees, Bagging, and Boosting. Handb. Stat. 2005, 24, 303–329. [Google Scholar] [CrossRef] [Green Version]
- Breiman, L. Bagging predictors. Mach. Learn. 1996, 24, 123–140. [Google Scholar] [CrossRef] [Green Version]
- Lemke, L.; Miller, J.K. EOF analysis of shoreline and beach slope variability at a feeder beach constructed within a groin field at Long Branch, New Jersey. Coast. Eng. 2017, 121, 14–25. [Google Scholar] [CrossRef]
- Pearre, N.S.; Puleo, J.A. Quantifying Seasonal Shoreline Variability at Rehoboth Beach, Delaware, Using Automated Imaging Techniques. J. Coast. Res. 2009, 254, 900–914. [Google Scholar] [CrossRef]
- Diez, J.; Cohn, N.; Kaminsky, G.M.; Medina, R.; Ruggiero, P. Spatial and Temporal Variability of Dissipative Dry Beach Profiles in the Pacific Northwest, U.S.A. J. Coast. Res. 2018, 34, 510–523. [Google Scholar] [CrossRef]
- Almarshed, B.; Figlus, J.; Miller, J.; Verhagen, H.J. Innovative Coastal Risk Reduction through Hybrid Design: Combining Sand Cover and Structural Defenses. J. Coast. Res. 2019, 36, 174–188. [Google Scholar] [CrossRef]
- Boers, M.; van Geer, P.; van Gent, M. Dike and dune revetment impact on dune erosion. In Proceedings of the Coastal Sediments 2011: In 3 Volumes, Miami, FL, USA, 2–6 May 2011. [Google Scholar]
- Zimmerman, T.; Miller, J.K. UAS-SfM approach to evaluate the performance of notched groins within a groin field and their impact on the morphological evolution of a beach nourishment. Coast. Eng. 2021, 170, 103997. [Google Scholar] [CrossRef]
- Harley, M.D.; Turner, I.L.; Short, A.D.; Ranasinghe, R. An empirical model of beach response to storms-SE Australia. In Proceedings of the Coasts and Ports 2009: In a Dynamic Environment, Wellington, New Zealand, 16–18 September 2009. [Google Scholar]
- Feagin, R.; Furman, M.; Salgado, K.; Martinez, M.; Innocenti, R.; Eubanks, K.; Figlus, J.; Huff, T.; Sigren, J.; Silva, R. The role of beach and sand dune vegetation in mediating wave run up erosion. Estuar. Coast. Shelf Sci. 2019, 219, 97–106. [Google Scholar] [CrossRef]
- Sigren, J.M.; Figlus, J.; Highfield, W.; Feagin, R.A.; Armitage, A.R. The Effects of Coastal Dune Volume and Vegetation on Storm-Induced Property Damage: Analysis from Hurricane Ike. J. Coast. Res. 2018, 341, 164–173. [Google Scholar] [CrossRef]
- Charbonneau, B.R.; Wootton, L.S.; Wnek, J.P.; Langley, J.A.; Posner, M.A. A species effect on storm erosion: Invasive sedge stabilized dunes more than native grass during Hurricane Sandy. J. Appl. Ecol. 2017, 54, 1385–1394. [Google Scholar] [CrossRef] [Green Version]
- Palmsten, M.L.; Holman, R.A. Laboratory investigation of dune erosion using stereo video. Coast. Eng. 2012, 60, 123–135. [Google Scholar] [CrossRef]
- Larson, M.; Erikson, L.; Hanson, H. An analytical model to predict dune erosion due to wave impact. Coast. Eng. 2004, 51, 675–696. [Google Scholar] [CrossRef]
Event | SEI | SEI tr [yr] | PEI | PEI tr [yr] |
---|---|---|---|---|
October 1991 | 1534 | 5.2 | 67.3 | 5.2 |
January 1992 | 1017 | 2.2 | 64.4 | 4.1 |
December 1992 | 3326 | 24 | 90.8 | 20 |
December 1994 | 869 | 1.7 | 57.5 | 2.3 |
January 1996 | 719 | 1.3 | 51.1 | 1.4 |
February 1998 | 1434 | 4.5 | 67.0 | 5.0 |
September 2003 | 1040 | 2.3 | 53.8 | 1.8 |
October 12 2005 | 1779 | 6.8 | 54.3 | 1.8 |
October 25 2005 | 866 | 1.7 | 60.0 | 1.4 |
September 2006 | 964 | 2.0 | 50.3 | 1.4 |
November 2007 | 670 | 1.2 | 60.4 | 2.9 |
May 2008 | 998 | 2.1 | 53.4 | 1.7 |
September 2008 | 1714 | 6.4 | 54.3 | 1.8 |
November 2009 (Vets) | 2986 | 18 | 74.8 | 9.1 |
March 2010 | 1220 | 3.2 | 58.7 | 2.5 |
September 2010 | 581 | 1.0 | 62.9 | 3.6 |
August 2011 (Irene) | 788 | 1.4 | 73.3 | 8.2 |
October 2012 (Sandy) | 3056 | 19 | 119 | 49 |
Parameter | Definition |
---|---|
Berm width (bwidth) | Horizontal cross-shore distance from dune toe to shoreline (MHW) |
Berm volume (mhwvol) | Volume of material seaward of dune toe and above MHW per alongshore unit |
Foredune width (fwidth) | Horizontal cross-shore distance from dune crest to dune toe |
Foredune volume (fvol) | Volume of material seaward of dune crest and above dune toe per alongshore unit |
Dune volume (dvol) | Volume of material seaward of dune heel and above dune toe per alongshore unit |
Dune crest elevation (crestz) | Primary dune peak elevation |
Dune toe elevation (toez) | Primary dune toe elevation |
Dune crest “freeboard” (crestfb) | Height of crest relative to storm maximum water level |
Dune toe “freeboard” (toefb) | Height of toe relative to storm maximum water level |
Intertidal slope (islope) | End point slope between MHW and MLW |
Beach slope (bslope) | End point slope between dune toe and MHW |
Foredune slope (fslope) | End point slope between dune crest and dune toe |
Damage Class | Definition |
---|---|
Major | Dune volume loss > 40% |
Moderate | Dune volume loss 5–40% |
Minor | Dune volume loss < 5% |
Node ID | Assigned Class | Number of Observations in Each Damage Class Based on Known Data | |||
---|---|---|---|---|---|
Minor | Moderate | Major | Total | ||
1 | Minor | 394 (96.8%) | 12 (2.9%) | 1 (0.2%) | 407 |
2 | Major | 3 (50.0%) | 0 (0.0%) | 3 (50.0%) | 6 |
3 | Moderate | 1 (16.7%) | 5 (83.3%) | 0 (0.0%) | 6 |
4 | Moderate | 2 (25.0%) | 5 (62.5%) | 1 (12.5%) | 8 |
5 | Minor | 29 (87.9%) | 4 (12.1%) | 0 (0.0%) | 33 |
6 | Minor | 54 (96.4%) | 2 (3.6%) | 0 (0.0%) | 56 |
7 | Major | 2 (20.0%) | 3 (30.0%) | 5 (50.0%) | 10 |
8 | Moderate | 9 (31.0%) | 19 (65.5%) | 1 (3.4%) | 29 |
9 | Minor | 9 (100.0%) | 0 (0.0%) | 0 (0.0%) | 9 |
10 | Major | 2 (7.4%) | 4 (14.8%) | 21 (77.8%) | 27 |
11 | Moderate | 0 (0.0%) | 6 (100.0%) | 0 (0.0%) | 6 |
Parameter [Units] | Minimum | Mean | Median | Maximum | IQR * |
---|---|---|---|---|---|
Berm volume [m3/m] | 1.8 | 75.2 | 62.5 | 420.1 | 56.1 |
Dune volume [m3/m] | 1.5 | 49.9 | 39.2 | 281.7 | 46.2 |
Median grain size [mm] | 0.16 | 0.42 | 0.38 | 2.19 | 0.20 |
Dune crest elevation [m NAVD] | 2.2 | 5.1 | 5.1 | 7.8 | 1.6 |
Dune toe elevation [m NAVD] | 1.0 | 2.7 | 2.6 | 4.8 | 1.0 |
Storm Erosion Index | 55 | 1456 | 1069 | 3871 | 1155 |
Peak Erosion Intensity | 24.3 | 65.9 | 60.6 | 163.3 | 16.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lemke, L.; Miller, J.K. Role of Storm Erosion Potential and Beach Morphology in Controlling Dune Erosion. J. Mar. Sci. Eng. 2021, 9, 1428. https://doi.org/10.3390/jmse9121428
Lemke L, Miller JK. Role of Storm Erosion Potential and Beach Morphology in Controlling Dune Erosion. Journal of Marine Science and Engineering. 2021; 9(12):1428. https://doi.org/10.3390/jmse9121428
Chicago/Turabian StyleLemke, Laura, and Jon K. Miller. 2021. "Role of Storm Erosion Potential and Beach Morphology in Controlling Dune Erosion" Journal of Marine Science and Engineering 9, no. 12: 1428. https://doi.org/10.3390/jmse9121428