Development of a Hadal Microbial In Situ Multi-Stage Filtering and Preserving Device
Abstract
1. Introduction
2. Equipment Design
2.1. Structural Design
2.2. Control Cabin and Battery Pack
2.3. Electrical Machine
3. Simulation Analysis
4. Experiment
4.1. Laboratory Experiment
4.2. High-Pressure Test
4.3. Sea Trail
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Ramirez-Llodra, E.; Brandt, A.; Danovaro, R.; De Mol, B.; Escobar, E.; German, C.R.; Levin, L.A.; Arbizu, P.M.; Menot, L.; Buhj-Mortensen, P. Deep, diverse and definitely different: Unique attributes of the world’s largest ecosystem. Biogeosciences 2010, 7, 2851–2899. [Google Scholar] [CrossRef]
- Grassle, J.F.; Maciolek, N.J. Deep-Sea Species Richness: Regional and Local Diversity Estimates from Quantitative Bottom Samples. Am. Nat. 1992, 139, 313–341. [Google Scholar] [CrossRef]
- Leon-Zayas, R.; Novotny, M.; Podell, S.; Shepard, C.M.; Berkenpas, E.; Nikolenko, S.; Pevzner, P.; Lasken, R.S.; Bartlett, D.H. Single cells within the Puerto Ricotrench suggest hadal adaptation of microbial lineages. Appl. Environ. Microbiol. 2015, 81, 8265–8276. [Google Scholar] [CrossRef][Green Version]
- León-Zayas, R.; Peoples, L.; Biddle, J.F.; Podell, S.; Novotny, M.; Cameron, J.; Lasken, R.S.; Bartlett, D.H. The metabolic potential of the single cell genomes obtainedfrom the Challenger Deep, Mariana Trench within the candidate superphylum Parcubacteria (OD1). Envion. Microbiol. 2017, 19, 2769–2784. [Google Scholar] [CrossRef]
- Smith, A.B.; Stockley, B. The geological history of deep-sea colonization by echinoids: Roles of surface productivity and deep-water ventilation. Proc. R. Soc. B Biol. Sci. 2005, 272, 865–869. [Google Scholar] [CrossRef] [PubMed]
- Gage, J.; Tyler, P. Deep-Sea Biology: A Natural History of Organisms at the Deep-Sea Floor. J. Anim. Ecol. 1992, 61, 527–528. [Google Scholar]
- Brown, C.; Hodgson, A. The Ecology of Deep-Sea Hydrothermal Vents. Afr. Zool. 2001, 36, 119–120. [Google Scholar] [CrossRef]
- Corliss, B.H. Microhabitats of benthic foraminifera within deep-sea sediments. Nature 1985, 314, 435–438. [Google Scholar] [CrossRef]
- Mason, O.U.; Scott, N.M.; Gonzalez, A.; Robbins-Pianka, A.; Baelum, J.; Kimrel, J.; Bouskill, N.J.; Prestat, E.; Borglin, S.; Joyner, D.C.; et al. Metagenomics reveals sediment microbial community response to Deepwater Horizon oil spill. ISME J. 2014, 8, 1464–1475. [Google Scholar] [CrossRef]
- Lu, Z.M.; Deng, Y.; Nostrand, J.V.; He, Z.; Voordeckers, J.; Zhou, A.; Lee, Y.-J.; Mason, O.U.; Dubonsky, E.A.; Chavarria, K.L.; et al. Microbial gene functions enriched in the Deepwater Horizon deep-sea oil plume. ISME J. 2012, 6, 451–460. [Google Scholar] [CrossRef] [PubMed]
- Feling, R.H.; Buchanan, G.O.; Mincer, T.J.; Kauffman, C.A.; Jensen, P.R.; Fenical, W. Salinosporamide A: A Highly Cytotoxic Proteasome Inhibitor from a Novel Microbial Source, a Marine Bacterium of the New Genus Salinospora. Angew. Chem. Int. Ed. 2010, 42, 355–357. [Google Scholar] [CrossRef]
- Andrianasolo, E.; Lutz, R.; Falkowski, P. Deep-Sea Hydrothermal Vents as a New Source of Drug Discovery. Stud. Nat. Prod. Chem. 2012, 36, 43–66. [Google Scholar]
- Haefner, B. Drugs from the deep: Marine natural products as drug candidates. Drug Discov. Today 2003, 8, 536–544. [Google Scholar] [CrossRef]
- Emerson, D.; Fleming, E.J.; Mcbeth, J.M. Iron-oxidizing bacteria: An environmental and genomic perspective. Annu. Rev. Microbiol. 2010, 64, 561. [Google Scholar]
- Huang, J.-M.; Baker, B.J.; Li, J.-T.; Wang, Y. New microbial lineages capable of carbon fixation and nutrient cycling in deep-sea sediments of the northern South China Sea. Appl. Environ. Microbiol. 2019, 85, e00523-19. [Google Scholar] [CrossRef]
- Cario, A.; Oliver, G.C.; Rogers, K.L. Exploring the deep marine biosphere: Challenges, innovations, and opportunities. Front. Earth Sci. 2019, 7, 225. [Google Scholar] [CrossRef]
- Tamburini, C. Life Under Pressure. Deep-Sea Microbial Ecology. Life as We Know It. Cellular Origin and Life in Extreme Habitats and Astrobiology; Springer: Berlin/Heidelberg, Germany, 2006; pp. 1–17. [Google Scholar]
- Tamburini, C.; Boutrif, M.; Garel, M.; Colwell, R.R.; Deming, J.W. Prokaryotic responses to hydrostatic pressure in the ocean—A review. Environ. Microbiol. 2013, 15, 1262–1274. [Google Scholar] [CrossRef]
- Teague, J.; Scott, T.B.; Sharma, S.; Graham, G.; Allen, M.J. An alternative method to Niskin sampling for molecular analysis of the marine environment. J. Mar. Sci. Eng. 2017, 5, 22. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, Z.M.; Li, J.; He, L.-S.; Cui, G.-J.; Li, W.-L.; Chen, J.; Xin, Y.-Z.; Cai, D.-S.; Zhang, A.-Q. Hadal water sampling by in situ microbial filtration and fixation (ISMIFF) apparatus. Deep. Sea Res. Part I Oceanogr. Res. Pap. 2019, 144, 132–137. [Google Scholar] [CrossRef]
- McNichol, J.; Sylva, S.P.; Thomas, F.; Taylor, C.D.; Sievert, S.M.; Seewald, J.S. Assessing microbial processes in deep-sea hydrothermal systems by incubation at in situ temperature and pressure. Deep. Sea Res. Part I Oceanogr. Res. Pap. 2016, 115, 221–232. [Google Scholar] [CrossRef]
- Peoples, L.M.; Norenberg, M.; Price, D.; McGoldrick, M.; Novotny, M.; Bochdansky, A.; Bartlett, D.H. A full-ocean-depth rated modular lander and pressure-retaining sampler capable of collecting hadal-endemic microbes under in situ conditions. Deep. Sea Res. Part I Oceanogr. Res. Pap. 2019, 143, 50–57. [Google Scholar] [CrossRef]
- Parkes, R.J.; Sellek, G.; Webster, G.; Martin, D.; Anders, E.; Weightman, A.J.; Sass, H. Culturable prokaryotic diversity of deep, gas hydrate sediments: First use of a continuous high-pressure, anaerobic, enrichment and isolation system for subseafloor sediments (DeepIsoBUG). Environ. Microbiol. 2009, 11, 3140–3153. [Google Scholar] [CrossRef]
- Garel, M.; Bonin, P.; Martini, S.; Guasco, S.; Roumagnac, M.; Bhairy, N.; Armougom, F.; Tamburini, C. Pressure-Retaining Sampler and High-Pressure Systems to Study Deep-Sea Microbes Under in situ Conditions. Front. Microbiol. 2019, 10, 453. [Google Scholar] [CrossRef]
- Ottengraf, S.P.P.; van den Oever, A.H.C. Kinetics of organic compound removal from waste gases with a biological filter. Biotechnol. Bioeng. 1983, 25, 3089–3102. [Google Scholar] [CrossRef] [PubMed]
- Viotti, P.; Eramo, B.; Boni, M.R.; Carucci, A.; Leccese, M.; Sbaffoni, S. Development and calibration of a mathematical model for the simulation of the biofiltration process. Adv. Environ. Res. 2002, 7, 11–33. [Google Scholar] [CrossRef]
- Sami, S.; Rahimi, A. Non-isothermal modelling of H2S removal in a biofilter. Environ. Technol. 2011, 32, 373–381. [Google Scholar] [CrossRef] [PubMed]
Main Technical | Parameter |
---|---|
Maximum working depth | ≥10,000 m |
Running hour | ≥1 h |
Single filtration water quantity | ≥15 L |
Storage fluid injection | ≥100 mL |
Membrane diameter | ≥100 mm |
Size of membrane pores | ≤5 μm |
Filtration stages | 3 |
Power supply | Direct current main |
Deployment | Deep-sea lander |
Serial Number | Content | Parameter |
---|---|---|
1 | Nominal voltage | 51 V |
2 | Nominal capacity | 1012 Wh |
3 | Charge cut-off voltage | 51 V |
4 | Discharge cut-off voltage | 40 V |
5 | Overcharge protection voltage | 60 V |
6 | Over-discharge protection voltage | 32 V |
Flow Velocity(mL/min) | 3 μm Filter Pressure Drop (bar) | 0.2 μm Filter Pressure Drop (bar) | 0.1 μm Filter Pressure Drop (bar) | Overall Pressure Drop (bar) | |
---|---|---|---|---|---|
Mixed cellulose ester filter membrane | 100 | 0.013 | 0.171 | 0.162 | 0.346 |
150 | 0.015 | 0.203 | 0.203 | 0.434 | |
200 | 0.044 | 0.202 | 0.239 | 0.485 | |
250 | 0.039 | 0.227 | 0.253 | 0.519 | |
300 | 0.054 | 0.257 | 0.291 | 0.602 | |
350 | 0.056 | 0.335 | 0.314 | 0.705 | |
400 | 0.068 | 0.420 | 0.334 | 0.822 | |
Glass fiber filter membrane | 100 | 0.070 | 0.016 | 0.122 | 0.208 |
150 | 0.063 | 0.019 | 0.133 | 0.215 | |
200 | 0.061 | 0.043 | 0.120 | 0.224 | |
250 | 0.066 | 0.023 | 0.145 | 0.234 | |
300 | 0.041 | 0.035 | 0.159 | 0.235 | |
350 | 0.039 | 0.034 | 0.163 | 0.236 | |
400 | 0.042 | 0.031 | 0.165 | 0.238 | |
Polypropylene filter membrane | 20 | 0.010 | 0.071 | 0.285 | 0.366 |
40 | 0.004 | 0.186 | 0.314 | 0.504 | |
60 | 0.006 | 0.203 | 0.356 | 0.565 | |
80 | 0.013 | 0.232 | 0.370 | 0.615 | |
100 | 0.017 | 0.247 | 0.377 | 0.641 | |
120 | 0.021 | 0.268 | 0.384 | 0.673 | |
140 | 0.022 | 0.277 | 0.393 | 0.701 | |
Polycarbonate filter membrane | 20 | 0.010 | 0.023 | 0.296 | 0.329 |
40 | 0.010 | 0.027 | 0.321 | 0.358 | |
60 | 0.009 | 0.033 | 0.414 | 0.456 | |
80 | 0.010 | 0.038 | 0.525 | 0.573 | |
100 | 0.008 | 0.041 | 0.634 | 0.683 | |
120 | 0.004 | 0.044 | 0.675 | 0.723 | |
140 | 0.012 | 0.046 | 0.788 | 0.846 |
Serial Number | Water Depth | Productive Time | Filter Volume | The Pore Size of the Filter Membrane |
---|---|---|---|---|
lander1 | 7745 | 5 h | 50 L | 3, 0.2, 0.1 μm |
lander2 | 10,895 | 3 h | 30 L | 3, 0.2, 0.1 μm |
lander3 | 10,892 | 5 h | 50 L | 3, 0.2, 0.1 μm |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruan, D.; Chen, J.; Wang, H.; Peng, X.; Zhou, P.; He, W. Development of a Hadal Microbial In Situ Multi-Stage Filtering and Preserving Device. J. Mar. Sci. Eng. 2021, 9, 1424. https://doi.org/10.3390/jmse9121424
Ruan D, Chen J, Wang H, Peng X, Zhou P, He W. Development of a Hadal Microbial In Situ Multi-Stage Filtering and Preserving Device. Journal of Marine Science and Engineering. 2021; 9(12):1424. https://doi.org/10.3390/jmse9121424
Chicago/Turabian StyleRuan, Dongrui, Jiawang Chen, Hao Wang, Xiaoqing Peng, Peng Zhou, and Weitao He. 2021. "Development of a Hadal Microbial In Situ Multi-Stage Filtering and Preserving Device" Journal of Marine Science and Engineering 9, no. 12: 1424. https://doi.org/10.3390/jmse9121424
APA StyleRuan, D., Chen, J., Wang, H., Peng, X., Zhou, P., & He, W. (2021). Development of a Hadal Microbial In Situ Multi-Stage Filtering and Preserving Device. Journal of Marine Science and Engineering, 9(12), 1424. https://doi.org/10.3390/jmse9121424