Development of a Hadal Microbial In Situ Multi-Stage Filtering and Preserving Device
Abstract
:1. Introduction
2. Equipment Design
2.1. Structural Design
2.2. Control Cabin and Battery Pack
2.3. Electrical Machine
3. Simulation Analysis
4. Experiment
4.1. Laboratory Experiment
4.2. High-Pressure Test
4.3. Sea Trail
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Ramirez-Llodra, E.; Brandt, A.; Danovaro, R.; De Mol, B.; Escobar, E.; German, C.R.; Levin, L.A.; Arbizu, P.M.; Menot, L.; Buhj-Mortensen, P. Deep, diverse and definitely different: Unique attributes of the world’s largest ecosystem. Biogeosciences 2010, 7, 2851–2899. [Google Scholar] [CrossRef] [Green Version]
- Grassle, J.F.; Maciolek, N.J. Deep-Sea Species Richness: Regional and Local Diversity Estimates from Quantitative Bottom Samples. Am. Nat. 1992, 139, 313–341. [Google Scholar] [CrossRef]
- Leon-Zayas, R.; Novotny, M.; Podell, S.; Shepard, C.M.; Berkenpas, E.; Nikolenko, S.; Pevzner, P.; Lasken, R.S.; Bartlett, D.H. Single cells within the Puerto Ricotrench suggest hadal adaptation of microbial lineages. Appl. Environ. Microbiol. 2015, 81, 8265–8276. [Google Scholar] [CrossRef] [Green Version]
- León-Zayas, R.; Peoples, L.; Biddle, J.F.; Podell, S.; Novotny, M.; Cameron, J.; Lasken, R.S.; Bartlett, D.H. The metabolic potential of the single cell genomes obtainedfrom the Challenger Deep, Mariana Trench within the candidate superphylum Parcubacteria (OD1). Envion. Microbiol. 2017, 19, 2769–2784. [Google Scholar] [CrossRef]
- Smith, A.B.; Stockley, B. The geological history of deep-sea colonization by echinoids: Roles of surface productivity and deep-water ventilation. Proc. R. Soc. B Biol. Sci. 2005, 272, 865–869. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gage, J.; Tyler, P. Deep-Sea Biology: A Natural History of Organisms at the Deep-Sea Floor. J. Anim. Ecol. 1992, 61, 527–528. [Google Scholar]
- Brown, C.; Hodgson, A. The Ecology of Deep-Sea Hydrothermal Vents. Afr. Zool. 2001, 36, 119–120. [Google Scholar] [CrossRef]
- Corliss, B.H. Microhabitats of benthic foraminifera within deep-sea sediments. Nature 1985, 314, 435–438. [Google Scholar] [CrossRef]
- Mason, O.U.; Scott, N.M.; Gonzalez, A.; Robbins-Pianka, A.; Baelum, J.; Kimrel, J.; Bouskill, N.J.; Prestat, E.; Borglin, S.; Joyner, D.C.; et al. Metagenomics reveals sediment microbial community response to Deepwater Horizon oil spill. ISME J. 2014, 8, 1464–1475. [Google Scholar] [CrossRef] [Green Version]
- Lu, Z.M.; Deng, Y.; Nostrand, J.V.; He, Z.; Voordeckers, J.; Zhou, A.; Lee, Y.-J.; Mason, O.U.; Dubonsky, E.A.; Chavarria, K.L.; et al. Microbial gene functions enriched in the Deepwater Horizon deep-sea oil plume. ISME J. 2012, 6, 451–460. [Google Scholar] [CrossRef] [PubMed]
- Feling, R.H.; Buchanan, G.O.; Mincer, T.J.; Kauffman, C.A.; Jensen, P.R.; Fenical, W. Salinosporamide A: A Highly Cytotoxic Proteasome Inhibitor from a Novel Microbial Source, a Marine Bacterium of the New Genus Salinospora. Angew. Chem. Int. Ed. 2010, 42, 355–357. [Google Scholar] [CrossRef]
- Andrianasolo, E.; Lutz, R.; Falkowski, P. Deep-Sea Hydrothermal Vents as a New Source of Drug Discovery. Stud. Nat. Prod. Chem. 2012, 36, 43–66. [Google Scholar]
- Haefner, B. Drugs from the deep: Marine natural products as drug candidates. Drug Discov. Today 2003, 8, 536–544. [Google Scholar] [CrossRef]
- Emerson, D.; Fleming, E.J.; Mcbeth, J.M. Iron-oxidizing bacteria: An environmental and genomic perspective. Annu. Rev. Microbiol. 2010, 64, 561. [Google Scholar]
- Huang, J.-M.; Baker, B.J.; Li, J.-T.; Wang, Y. New microbial lineages capable of carbon fixation and nutrient cycling in deep-sea sediments of the northern South China Sea. Appl. Environ. Microbiol. 2019, 85, e00523-19. [Google Scholar] [CrossRef] [Green Version]
- Cario, A.; Oliver, G.C.; Rogers, K.L. Exploring the deep marine biosphere: Challenges, innovations, and opportunities. Front. Earth Sci. 2019, 7, 225. [Google Scholar] [CrossRef]
- Tamburini, C. Life Under Pressure. Deep-Sea Microbial Ecology. Life as We Know It. Cellular Origin and Life in Extreme Habitats and Astrobiology; Springer: Berlin/Heidelberg, Germany, 2006; pp. 1–17. [Google Scholar]
- Tamburini, C.; Boutrif, M.; Garel, M.; Colwell, R.R.; Deming, J.W. Prokaryotic responses to hydrostatic pressure in the ocean—A review. Environ. Microbiol. 2013, 15, 1262–1274. [Google Scholar] [CrossRef]
- Teague, J.; Scott, T.B.; Sharma, S.; Graham, G.; Allen, M.J. An alternative method to Niskin sampling for molecular analysis of the marine environment. J. Mar. Sci. Eng. 2017, 5, 22. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Gao, Z.M.; Li, J.; He, L.-S.; Cui, G.-J.; Li, W.-L.; Chen, J.; Xin, Y.-Z.; Cai, D.-S.; Zhang, A.-Q. Hadal water sampling by in situ microbial filtration and fixation (ISMIFF) apparatus. Deep. Sea Res. Part I Oceanogr. Res. Pap. 2019, 144, 132–137. [Google Scholar] [CrossRef]
- McNichol, J.; Sylva, S.P.; Thomas, F.; Taylor, C.D.; Sievert, S.M.; Seewald, J.S. Assessing microbial processes in deep-sea hydrothermal systems by incubation at in situ temperature and pressure. Deep. Sea Res. Part I Oceanogr. Res. Pap. 2016, 115, 221–232. [Google Scholar] [CrossRef] [Green Version]
- Peoples, L.M.; Norenberg, M.; Price, D.; McGoldrick, M.; Novotny, M.; Bochdansky, A.; Bartlett, D.H. A full-ocean-depth rated modular lander and pressure-retaining sampler capable of collecting hadal-endemic microbes under in situ conditions. Deep. Sea Res. Part I Oceanogr. Res. Pap. 2019, 143, 50–57. [Google Scholar] [CrossRef]
- Parkes, R.J.; Sellek, G.; Webster, G.; Martin, D.; Anders, E.; Weightman, A.J.; Sass, H. Culturable prokaryotic diversity of deep, gas hydrate sediments: First use of a continuous high-pressure, anaerobic, enrichment and isolation system for subseafloor sediments (DeepIsoBUG). Environ. Microbiol. 2009, 11, 3140–3153. [Google Scholar] [CrossRef] [Green Version]
- Garel, M.; Bonin, P.; Martini, S.; Guasco, S.; Roumagnac, M.; Bhairy, N.; Armougom, F.; Tamburini, C. Pressure-Retaining Sampler and High-Pressure Systems to Study Deep-Sea Microbes Under in situ Conditions. Front. Microbiol. 2019, 10, 453. [Google Scholar] [CrossRef] [Green Version]
- Ottengraf, S.P.P.; van den Oever, A.H.C. Kinetics of organic compound removal from waste gases with a biological filter. Biotechnol. Bioeng. 1983, 25, 3089–3102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Viotti, P.; Eramo, B.; Boni, M.R.; Carucci, A.; Leccese, M.; Sbaffoni, S. Development and calibration of a mathematical model for the simulation of the biofiltration process. Adv. Environ. Res. 2002, 7, 11–33. [Google Scholar] [CrossRef]
- Sami, S.; Rahimi, A. Non-isothermal modelling of H2S removal in a biofilter. Environ. Technol. 2011, 32, 373–381. [Google Scholar] [CrossRef] [PubMed]
Main Technical | Parameter |
---|---|
Maximum working depth | ≥10,000 m |
Running hour | ≥1 h |
Single filtration water quantity | ≥15 L |
Storage fluid injection | ≥100 mL |
Membrane diameter | ≥100 mm |
Size of membrane pores | ≤5 μm |
Filtration stages | 3 |
Power supply | Direct current main |
Deployment | Deep-sea lander |
Serial Number | Content | Parameter |
---|---|---|
1 | Nominal voltage | 51 V |
2 | Nominal capacity | 1012 Wh |
3 | Charge cut-off voltage | 51 V |
4 | Discharge cut-off voltage | 40 V |
5 | Overcharge protection voltage | 60 V |
6 | Over-discharge protection voltage | 32 V |
Flow Velocity(mL/min) | 3 μm Filter Pressure Drop (bar) | 0.2 μm Filter Pressure Drop (bar) | 0.1 μm Filter Pressure Drop (bar) | Overall Pressure Drop (bar) | |
---|---|---|---|---|---|
Mixed cellulose ester filter membrane | 100 | 0.013 | 0.171 | 0.162 | 0.346 |
150 | 0.015 | 0.203 | 0.203 | 0.434 | |
200 | 0.044 | 0.202 | 0.239 | 0.485 | |
250 | 0.039 | 0.227 | 0.253 | 0.519 | |
300 | 0.054 | 0.257 | 0.291 | 0.602 | |
350 | 0.056 | 0.335 | 0.314 | 0.705 | |
400 | 0.068 | 0.420 | 0.334 | 0.822 | |
Glass fiber filter membrane | 100 | 0.070 | 0.016 | 0.122 | 0.208 |
150 | 0.063 | 0.019 | 0.133 | 0.215 | |
200 | 0.061 | 0.043 | 0.120 | 0.224 | |
250 | 0.066 | 0.023 | 0.145 | 0.234 | |
300 | 0.041 | 0.035 | 0.159 | 0.235 | |
350 | 0.039 | 0.034 | 0.163 | 0.236 | |
400 | 0.042 | 0.031 | 0.165 | 0.238 | |
Polypropylene filter membrane | 20 | 0.010 | 0.071 | 0.285 | 0.366 |
40 | 0.004 | 0.186 | 0.314 | 0.504 | |
60 | 0.006 | 0.203 | 0.356 | 0.565 | |
80 | 0.013 | 0.232 | 0.370 | 0.615 | |
100 | 0.017 | 0.247 | 0.377 | 0.641 | |
120 | 0.021 | 0.268 | 0.384 | 0.673 | |
140 | 0.022 | 0.277 | 0.393 | 0.701 | |
Polycarbonate filter membrane | 20 | 0.010 | 0.023 | 0.296 | 0.329 |
40 | 0.010 | 0.027 | 0.321 | 0.358 | |
60 | 0.009 | 0.033 | 0.414 | 0.456 | |
80 | 0.010 | 0.038 | 0.525 | 0.573 | |
100 | 0.008 | 0.041 | 0.634 | 0.683 | |
120 | 0.004 | 0.044 | 0.675 | 0.723 | |
140 | 0.012 | 0.046 | 0.788 | 0.846 |
Serial Number | Water Depth | Productive Time | Filter Volume | The Pore Size of the Filter Membrane |
---|---|---|---|---|
lander1 | 7745 | 5 h | 50 L | 3, 0.2, 0.1 μm |
lander2 | 10,895 | 3 h | 30 L | 3, 0.2, 0.1 μm |
lander3 | 10,892 | 5 h | 50 L | 3, 0.2, 0.1 μm |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruan, D.; Chen, J.; Wang, H.; Peng, X.; Zhou, P.; He, W. Development of a Hadal Microbial In Situ Multi-Stage Filtering and Preserving Device. J. Mar. Sci. Eng. 2021, 9, 1424. https://doi.org/10.3390/jmse9121424
Ruan D, Chen J, Wang H, Peng X, Zhou P, He W. Development of a Hadal Microbial In Situ Multi-Stage Filtering and Preserving Device. Journal of Marine Science and Engineering. 2021; 9(12):1424. https://doi.org/10.3390/jmse9121424
Chicago/Turabian StyleRuan, Dongrui, Jiawang Chen, Hao Wang, Xiaoqing Peng, Peng Zhou, and Weitao He. 2021. "Development of a Hadal Microbial In Situ Multi-Stage Filtering and Preserving Device" Journal of Marine Science and Engineering 9, no. 12: 1424. https://doi.org/10.3390/jmse9121424
APA StyleRuan, D., Chen, J., Wang, H., Peng, X., Zhou, P., & He, W. (2021). Development of a Hadal Microbial In Situ Multi-Stage Filtering and Preserving Device. Journal of Marine Science and Engineering, 9(12), 1424. https://doi.org/10.3390/jmse9121424