Regional Collision Risk Prediction System at a Collision Area Considering Spatial Pattern
Abstract
:1. Introduction
2. Theoretical Background
2.1. Near Collision
2.2. Fuzzy Inference System Based on near Collision
2.3. DBSCAN
- : if ;
- : if ;
- : if .
2.4. Long Short-Term Memory
3. Regional Collision Risk Prediction System
3.1. Process of System Development
3.2. Global Spatial Pattern
3.3. Local Spatial Pattern
Algorithm 1. Near-collision spatial pattern using DBSCAN |
Input:, , , Output: Cluster () 1 Initialize 2 for do as (1); 3 IF 4 ← 5 Repetition (1) ← Expand 6 else if 7 continue next point ← 8 end 9 end |
3.4. System Development
4. Results and Discussion
4.1. Simulation Results
4.2. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
AIS | automatic identification system |
ARPA | automatic radar plotting aids |
CRI | collision risk index |
DBSCAN | density-based spatial clustering of application with noise |
FIS | fuzzy inference system |
FIS-NC | fuzzy inference system based on near collision |
LSTM | long short-term memory |
MASS | maritime autonomous surface ships |
OS | own ship |
RNN | recurrent neural network |
RMSE | root mean square error |
SD | ship domain |
TS | target ship |
VCD | variance of compass degree |
VTS | vessel traffic service |
VTSO | vessel traffic service operator |
Appendix A
Source | Development Purpose | Research Method | Utilization | |||||
---|---|---|---|---|---|---|---|---|
AIS Maritime Traffic data | Ship Trajectory | Collision Risk Index | Ship Domain | Near Collision | Actual Collision | |||
Qu et al. [4] | Collision risk assessment | Fuzzy logic | √ | - | √ | √ | - | - |
Zhen et al. [5] | Collision risk assessment | DBSCAN | √ | - | √ | - | - | - |
Kim et al. [6] | Caution area traffic prediction | CNN | √ | √ | - | - | - | - |
Zhang et al. [7] | Regional ship near-miss collision risk assessment | VCRO | √ | - | √ | √ | √ | - |
Liu et al. [8] | Real-time regional collision risk prediction | DBSCAN, RNN | √ | - | √ | √ | - | - |
Capobianco et al. [9] | Ship trajectory prediction | LSTM | √ | √ | - | - | - | - |
Chen et al. [10] | Real-time regional collision risk analysis | DBCAN, VO | √ | - | √ | √ | √ | - |
Murray and Perera [11] | Regional ship behavior prediction | RNN, HDBSCAN | √ | √ | - | - | - | |
J. Mazurek et al. [12] | Ship–ship collision frequency based on trajectory | IWRAP Mk2 | √ | √ | - | - | - | - |
Namgung and Kim (this paper) | Regional collision risk prediction | DBSCAN, Fuzzy logic, LSTM | √ | √ | √ | √ | √ | √ |
References
- Korean Maritime Safety Tribunal. Status of Marine Accidents. Available online: https://www.kmst.go.kr/kmst/statistics/annualReport/selectAnnualReportList.do (accessed on 6 May 2021).
- International Maritime Organization. Guidelines for Vessel Traffic Services, IMO Resolution A; International Maritime Organization: London, UK, 1997. [Google Scholar]
- IALA Guideline 1089, Provision of VTS Services (INS, TOS, NAS), 1st ed.; International Association of Marine Aids to Navigation and Lighthouse Authorities: Saint Germain en Laye, France, 2012.
- Qu, X.; Meng, Q.; Li, S.Y. Ship collision risk assessment for the Singapore strait. Accid. Anal. Prev. 2011, 43, 2030–2036. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhen, R.; Riveiro, M.; Jin, Y. A novel analytic framework of real-time multi-vessel collision risk assessment for maritime traffic surveillance. Ocean Eng. 2017, 145, 492–501. [Google Scholar] [CrossRef]
- Kim, K.; Lee, K.M. Deep learning-based caution area traffic prediction with automatic identification system sensor data. Sensors 2018, 18, 3172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, W.; Feng, X.; Qi, Y.; Shu, F.; Zhang, Y.; Wang, Y. Towards a model of regional vessel near-miss collision risk assessment for open waters based on AIS data. J. Navig. 2019, 72, 1449–1468. [Google Scholar] [CrossRef]
- Liu, D.; Wang, X.; Cai, Y.; Liu, Z.; Liu, Z.-J. A novel framework of real-time regional collision risk prediction based on the RNN approach. J. Mar. Sci. Eng. 2020, 8, 224. [Google Scholar] [CrossRef] [Green Version]
- Capobianco, S.; Millefiory, L.M.; Forti, N.; Braca, P.; Willett, P. Deep learning methods for vessel trajectory prediction based on recurrent neural networks. arXiv 2021, arXiv:2101.02486. [Google Scholar] [CrossRef]
- Chen, P.; Li, M.; Mou, J. A velocity obstacle-based real-time regional ship collision risk analysis method. J. Mar. Sci. Eng. 2021, 9, 428. [Google Scholar] [CrossRef]
- Murray, B.; Perera, L.P. An AIS-based deep learning framework for regional ship behavior prediction. Reliab. Eng. Syst. Saf. 2021, 215, 107819. [Google Scholar] [CrossRef]
- Mazurek, J.; Lu, L.; Montewka, J.; Krata, H.; Kujala, P. An updated method identifying collision-prone locations for ships. A cased study for oil tankers navigating in the Gulf of Finland. Reliab. Eng. Syst. Saf. 2022, 217, 108024. [Google Scholar] [CrossRef]
- Namgung, H.; Kim, J.-S. Collision risk inference system for maritime autonomous surface ships using COLREGs rules compliant collision avoidance. IEEE Access 2021, 9, 7823–7835. [Google Scholar] [CrossRef]
- Ester, M.; Kriegel, H.; Sander, J.; Xu, X. A density-based algorithm for discovering clusters in large spatial databases with noise. In Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining (KDD’96), Portland, OR, USA, 2–4 August 1996; pp. 226–231. [Google Scholar]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Van Westrenen, F.; Baldauf, M. Improving conflicts detection in maritime traffic: Case studies on the effect of traffic complexity on ship collisions. Proc. Inst. Mech. Eng. Part M J. Eng. Marit. Environ. 2020, 234, 209–222. [Google Scholar] [CrossRef]
- Szlapczynski, R.; Szlapczynska, J. Review of ship safety domains: Models and applications. Ocean Eng. 2017, 145, 277–289. [Google Scholar] [CrossRef]
- Fujii, Y.; Tanaka, K. Studies in marine traffic engineering: Traffic capacity. J. Navig. 1971, 24, 543–552. [Google Scholar] [CrossRef]
- Bakdi, A.; Glad, I.K.; Vanem, E.; Engelhardtsen, Ø. AIS-based multiple vessel collision and grounding risk identification based on adaptive safety domain. J. Mar. Sci. Eng. 2020, 8, 5. [Google Scholar] [CrossRef] [Green Version]
- Cockcroft, A.N.; Lameijer, J.N.F. A Guide to the Collision Avoidance Rules, 7th ed.; Butterworth Heinemann: Oxford, UK, 2011; pp. 1–183. [Google Scholar]
- IMO. Convention on the International Regulations for Preventing Collisions at Sea, 8th ed.; International Maritime Organization: London, UK, 1972. [Google Scholar]
Collision | Danger | Threat | Attention | |
Collision | Collision | Collision | Collision | |
Danger | Danger | Danger | Danger | |
Danger | Danger | Threat | Threat | |
Threat | Attention | Attention | Attention | |
Danger | Collision | Attention | Danger |
Clustering 1 | Clustering 2 | Clustering 3 | ||||||
---|---|---|---|---|---|---|---|---|
Relative Distance | FIS-NC | Developed System | Relative Distance | FIS-NC | Developed System | Relative Distance | FIS-NC | Developed System |
3.720 | 0.000 | 0.008 | 3.092 | 0.000 | 0.007 | 4.354 | 0.000 | 0.007 |
3.558 | 0.006 | 0.013 | 3.078 | 0.009 | 0.014 | 4.166 | 0.008 | 0.014 |
3.363 | 0.009 | 0.029 | 3.032 | 0.010 | 0.031 | 4.002 | 0.008 | 0.018 |
3.104 | 0.011 | 0.055 | 2.974 | 0.011 | 0.023 | 3.787 | 0.008 | 0.032 |
2.848 | 0.068 | 0.177 | 2.884 | 0.015 | 0.085 | 3.621 | 0.009 | 0.046 |
2.582 | 0.170 | 0.270 | 2.087 | 0.045 | 0.055 | 3.402 | 0.008 | 0.092 |
2.321 | 0.265 | 0.342 | 2.731 | 0.064 | 0.098 | 3.194 | 0.011 | 0.126 |
2.059 | 0.354 | 0.434 | 2.524 | 0.093 | 0.166 | 2.981 | 0.015 | 0.142 |
1.798 | 0.442 | 0.581 | 2.436 | 0.193 | 0.238 | 2.825 | 0.077 | 0.196 |
1.537 | 0.572 | 0.690 | 2.334 | 0.225 | 0.259 | 2.619 | 0.155 | 0.234 |
1.276 | 0.684 | 0.794 | 2.263 | 0.262 | 0.278 | 2.417 | 0.229 | 0.275 |
1.031 | 0.791 | 0.892 | 2.169 | 0.287 | 0.289 | 2.219 | 0.299 | 0.375 |
0.791 | 0.894 | 0.958 | 2.077 | 0.320 | 0.343 | 2.012 | 0.346 | 0.446 |
0.571 | 0.988 | 0.999 | 1.968 | 0.351 | 0.386 | 1.855 | 0.420 | 0.551 |
0.325 | 1.000 | 1.000 | 1.863 | 0.386 | 0.428 | 1.648 | 0.523 | 0.631 |
- | - | - | 1.724 | 0.420 | 0.506 | 1.447 | 0.611 | 0.719 |
- | - | - | 1.598 | 0.492 | 0.566 | 1.241 | 0.672 | 0.770 |
- | - | - | 1.495 | 0.546 | 0.605 | 1.043 | 0.784 | 0.860 |
- | - | - | 1.370 | 0.591 | 0.655 | 0.883 | 0.854 | 0.939 |
- | - | - | 1.258 | 0.644 | 0.692 | 0.685 | 0.939 | 0.984 |
- | - | - | 1.161 | 0.692 | 0.710 | 0.502 | 0.999 | 0.999 |
- | - | - | 1.062 | 0.734 | 0.746 | - | - | - |
- | - | - | 0.931 | 0.776 | 0.795 | - | - | - |
- | - | - | 0.883 | 0.801 | 0.839 | - | - | - |
- | - | - | 0.764 | 0.833 | 0.881 | - | - | - |
Division | Clustering 1 | Clustering 2 | Clustering 3 | |||
---|---|---|---|---|---|---|
FIS-NC | Developed System | FIS-NC | Developed System | FIS-NC | Developed System | |
Give-way | 3.104 | 3.558 | 3.032 | 3.078 | 3.194 | 4.166 |
Stand-on | 2.059 | 2.321 | 2.041 | 2.077 | 2.012 | 2.318 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Namgung, H.; Kim, J.-S. Regional Collision Risk Prediction System at a Collision Area Considering Spatial Pattern. J. Mar. Sci. Eng. 2021, 9, 1365. https://doi.org/10.3390/jmse9121365
Namgung H, Kim J-S. Regional Collision Risk Prediction System at a Collision Area Considering Spatial Pattern. Journal of Marine Science and Engineering. 2021; 9(12):1365. https://doi.org/10.3390/jmse9121365
Chicago/Turabian StyleNamgung, Ho, and Joo-Sung Kim. 2021. "Regional Collision Risk Prediction System at a Collision Area Considering Spatial Pattern" Journal of Marine Science and Engineering 9, no. 12: 1365. https://doi.org/10.3390/jmse9121365
APA StyleNamgung, H., & Kim, J.-S. (2021). Regional Collision Risk Prediction System at a Collision Area Considering Spatial Pattern. Journal of Marine Science and Engineering, 9(12), 1365. https://doi.org/10.3390/jmse9121365