Game Theory for Unmanned Vehicle Path Planning in the Marine Domain: State of the Art and New Possibilities
Abstract
:1. Introduction
2. Game Theoretic Background
2.1. Game Theory
2.2. Rationality of the Players
2.3. Path Planning Games in Marine Domain
3. Pursuit–Evasion Games
4. Coverage and Search Planning Games
5. Rendezvous Games
6. Coordination Games
7. Patrolling Games
8. Opportunities and Way Ahead
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AUV | Autonomous Underwater Vehicle |
UUV | Unmanned Underwater Vehicle |
BSI | Bilateral symmetric interaction |
KKT | Karush–Kuhn–Tucker |
CARE | Cooperative Autonomy for Resilience and Efficiency |
ROC | Receiver Operator Characteristic |
References
- Haywood, R.; Spivak, R. Maritime Piracy; Routledge: London, UK, 2013. [Google Scholar]
- IMO. Piracy Monthly Report; Technical Report; International Maritime Organization: London, UK, 2021. [Google Scholar]
- Bowden, A.; Hurlburt, K.; Aloyo, E.; Marts, C.; Lee, A. The Economic Cost of Maritime Piracy; Technical Report; One Earth Future Foundation, Oceans Beyond Piracy Project: Broomfield, CO, USA, 2010. [Google Scholar]
- González-García, J.; Gómez-Espinosa, A.; Cuan-Urquizo, E.; García-Valdovinos, L.G.; Salgado-Jiménez, T.; Cabello, J.A.E. Autonomous underwater vehicles: Localization, navigation, and communication for collaborative missions. Appl. Sci. 2020, 10, 1256. [Google Scholar] [CrossRef] [Green Version]
- Panda, M.; Das, B.; Subudhi, B.; Pati, B.B. A comprehensive review of path planning algorithms for autonomous underwater vehicles. Int. J. Autom. Comput. 2020, 17, 321–352. [Google Scholar] [CrossRef] [Green Version]
- Lermusiaux, P.F.J.; Lolla, T.; Haley, P.J., Jr.; Yigit, K.; Ueckermann, M.P.; Sondergaard, T.; Leslie, W.G. Science of Autonomy: Time-Optimal Path Planning and Adaptive Sampling for Swarms of Ocean Vehicles. In Springer Handbook of Ocean Engineering: Autonomous Ocean Vehicles, Subsystems and Control; Curtin, T., Ed.; Springer: Cham, Switzerland, 2016; Chapter 21; pp. 481–498. [Google Scholar] [CrossRef]
- Lermusiaux, P.F.J.; Subramani, D.N.; Lin, J.; Kulkarni, C.S.; Gupta, A.; Dutt, A.; Lolla, T.; Haley, P.J., Jr.; Ali, W.H.; Mirabito, C.; et al. A Future for Intelligent Autonomous Ocean Observing Systems. J. Mar. Res. 2017, 75, 765–813. [Google Scholar] [CrossRef]
- Peters, H. Game Theory: A Multi-Leveled Approach; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Shoham, Y.; Leyton-Brown, K. Multiagent Systems: Algorithmic, Game-Theoretic, and Logical Foundations; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
- Başar, T.; Zaccour, G. Handbook of Dynamic Game Theory; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Li, D.F. Decision and Game Theory in Management with Intuitionistic Fuzzy Sets; Springer: Berlin/Heidelberg, Germany, 2014; Volume 308. [Google Scholar]
- McKelvey, R.D.; Palfrey, T.R. Quantal response equilibria for normal form games. Games Econ. Behav. 1995, 10, 6–38. [Google Scholar] [CrossRef]
- McKelvey, R.D.; Palfrey, T.R. Quantal response equilibria for extensive form games. Exp. Econ. 1998, 1, 9–41. [Google Scholar] [CrossRef]
- Wright, J.R.; Leyton-Brown, K. Beyond equilibrium: Predicting human behavior in normal-form games. In Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence, Atlanta, GA, USA, 11–15 July 2010. [Google Scholar]
- Camerer, C.F. Behavioral Game Theory: Experiments in Strategic Interaction; Princeton University Press: Princeton, NJ, USA, 2011. [Google Scholar]
- Isaacs, R. Differential Games: A Mathematical Theory with Applications to Warfare and Pursuit, Control and Optimization; Courier Corporation: Washington, DC, USA, 1999. [Google Scholar]
- Lolla, T.; Ueckermann, M.P.; Yiğit, K.; Haley, P.J., Jr.; Lermusiaux, P.F.J. Path planning in time dependent flow fields using level set methods. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Saint Paul, MN, USA, 14–18 May 2012; pp. 166–173. [Google Scholar] [CrossRef]
- Lolla, T.; Lermusiaux, P.F.J.; Ueckermann, M.P.; Haley, P.J., Jr. Time-Optimal Path Planning in Dynamic Flows using Level Set Equations: Theory and Schemes. Ocean Dyn. 2014, 64, 1373–1397. [Google Scholar] [CrossRef] [Green Version]
- Lolla, T.; Haley, P.J., Jr.; Lermusiaux, P.F.J. Time-Optimal Path Planning in Dynamic Flows using Level Set Equations: Realistic Applications. Ocean Dyn. 2014, 64, 1399–1417. [Google Scholar] [CrossRef]
- Subramani, D.N.; Haley, P.J., Jr.; Lermusiaux, P.F.J. Energy-optimal Path Planning in the Coastal Ocean. J. Geophys. Res. Ocean. 2017, 122, 3981–4003. [Google Scholar] [CrossRef]
- Kulkarni, C.S.; Lermusiaux, P.F.J. Three-dimensional Time-Optimal Path Planning in the Ocean. Ocean Model. 2020, 152, 101644. [Google Scholar] [CrossRef]
- Mannarini, G.; Subramani, D.N.; Lermusiaux, P.F.J.; Pinardi, N. Graph-Search and Differential Equations for Time-Optimal Vessel Route Planning in Dynamic Ocean Waves. IEEE Trans. Intell. Transp. Syst. 2020, 21, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Subramani, D.N.; Lermusiaux, P.F.J.; Haley, P.J., Jr.; Mirabito, C.; Jana, S.; Kulkarni, C.S.; Girard, A.; Wickman, D.; Edwards, J.; Smith, J. Time-Optimal Path Planning: Real-Time Sea Exercises. In Proceedings of the Oceans’17 MTS/IEEE Conference, Aberdeen, UK, 19–22 June 2017. [Google Scholar] [CrossRef]
- Sun, W.; Tsiotras, P.; Lolla, T.; Subramani, D.N.; Lermusiaux, P.F.J. Pursuit-Evasion Games in Dynamic Flow Fields via Reachability Set Analysis. In Proceedings of the 2017 American Control Conference (ACC), Seattle, WA, USA, 24–26 May 2017; pp. 4595–4600. [Google Scholar] [CrossRef] [Green Version]
- Kakalis, N.M.; Ventikos, Y. Robotic swarm concept for efficient oil spill confrontation. J. Hazard. Mater. 2008, 154, 880–887. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Heidarsson, H.; Sukhatme, G.S.; Kumar, V. Cooperative control of autonomous surface vehicles for oil skimming and cleanup. In Proceedings of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 2374–2379. [Google Scholar]
- Abreu, N.; Matos, A. Minehunting mission planning for autonomous underwater systems using evolutionary algorithms. Unmanned Syst. 2014, 2, 323–349. [Google Scholar] [CrossRef]
- Bryson, A.E.; Ho, Y.C. Applied Optimal Control: Optimization, Estimation, and Control; Routledge: London, UK, 2018. [Google Scholar]
- Mirabito, C.; Subramani, D.N.; Lolla, T.; Haley, P.J., Jr.; Jain, A.; Lermusiaux, P.F.J.; Li, C.; Yue, D.K.P.; Liu, Y.; Hover, F.S.; et al. Autonomy for Surface Ship Interception. In Proceedings of the Oceans’17 MTS/IEEE Conference, Aberdeen, UK, 19–22 June 2017. [Google Scholar] [CrossRef]
- Bellingham, J.G.; Zhang, Y.; Godin, M.A. Autonomous Ocean Sampling Network-II (Aosn-II): Integration and Demonstration of Observation and Modeling; Technical Report; Monterey Bay Aquarium Research Institute: Moss Landing CA, USA, 2009. [Google Scholar]
- Lolla, T.; Haley, P.J., Jr.; Lermusiaux, P.F.J. Path planning in multiscale ocean flows: Coordination and dynamic obstacles. Ocean Model. 2015, 94, 46–66. [Google Scholar] [CrossRef]
- Tambe, M.; Jiang, A.X.; An, B.; Jain, M. Computational game theory for security: Progress and challenges. In Proceedings of the AAAI Spring Symposium on Applied Computational Game Theory, Stanford, CA, USA, 24–26 March 2014. [Google Scholar]
- Sun, W.; Tsiotras, P.; Lolla, T.; Subramani, D.N.; Lermusiaux, P.F. Multiple-pursuer/one-evader pursuit–evasion game in dynamic flowfields. J. Guid. Control Dyn. 2017, 40, 1627–1637. [Google Scholar] [CrossRef]
- Yiğit, K. Path Planning Methods for Autonomous Underwater Vehicles. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2011. [Google Scholar]
- Lolla, T.; Lermusiaux, P.F.J.; Ueckermann, M.P. Modified Level Set Approaches for the Planning of Time-Optimal Paths for Swarms of Ocean Vehicles; MSEAS Report; Department of Mechanical Engineering, Massachusetts Institute of Technology: Cambridge, MA, USA, 2014. [Google Scholar]
- Blackwell, D. An analog of the minimax theorem for vector payoffs. Pac. J. Math. 1956, 6, 1–8. [Google Scholar] [CrossRef]
- Mannor, S.; Shimkin, N. A geometric approach to multi-criterion reinforcement learning. J. Mach. Learn. Res. 2004, 5, 325–360. [Google Scholar]
- Akinbulire, T.; Schwartz, H.; Falcon, R.; Abielmona, R. A reinforcement learning approach to tackle illegal, unreported and unregulated fishing. In Proceedings of the 2017 IEEE Symposium Series on Computational Intelligence (SSCI), Honolulu, HI, USA, 27 November–1 December 2017; pp. 1–8. [Google Scholar]
- Jouffe, L. Fuzzy inference system learning by reinforcement methods. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 1998, 28, 338–355. [Google Scholar] [CrossRef]
- Schwartz, H.M. Multi-Agent Machine Learning: A Reinforcement Approach; John Wiley & Sons: Hoboken, NJ, USA, 2014. [Google Scholar]
- Quigley, K.J.; Gabriel, S.A.; Azarm, S. Multiagent Unmanned Vehicle Trajectories With Rolling-Horizon Games. Mil. Oper. Res. 2020, 25, 43–61. [Google Scholar]
- Dzieńkowski, B.J.; Strode, C.; Markowska-Kaczmar, U. Employing game theory and computational intelligence to find the optimal strategy of an Autonomous Underwater Vehicle against a submarine. In Proceedings of the 2016 Federated Conference on Computer Science and Information Systems (FedCSIS), Gdansk, Poland, 11–14 September 2016; pp. 31–40. [Google Scholar]
- Liu, L.; Zhang, L.; Zhang, S.; Cao, S. Multi-UUV cooperative dynamic maneuver decision-making algorithm using intuitionistic fuzzy game theory. Complexity 2020, 2020, 2815258. [Google Scholar] [CrossRef]
- Bonyadi, M.R.; Michalewicz, Z. Particle swarm optimization for single objective continuous space problems: A review. Evol. Comput. 2017, 25, 1–54. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, S.; Zhang, L.; Pan, G.; Bai, C. Multi-AUV dynamic maneuver decision-making based on intuistionistic fuzzy counter-game and fractional particle swarm optimization. Fractals 2021, 2140039. [Google Scholar] [CrossRef]
- Pires, E.S.; Machado, J.T.; de Moura Oliveira, P.; Cunha, J.B.; Mendes, L. Particle swarm optimization with fractional-order velocity. Nonlinear Dyn. 2010, 61, 295–301. [Google Scholar] [CrossRef] [Green Version]
- Fu, H.; Wu, G.C.; Yang, G.; Huang, L.L. Fractional calculus with exponential memory. Chaos Interdiscip. J. Nonlinear Sci. 2021, 31, 031103. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Gupta, S.; Hare, J. Game-theoretic cooperative coverage using autonomous vehicles. In Proceedings of the 2014 Oceans-St. John’s, St. John’s, NL, Canada, 14–19 September 2014; pp. 1–6. [Google Scholar]
- Song, J.; Gupta, S. Care: Cooperative autonomy for resilience and efficiency of robot teams for complete coverage of unknown environments under robot failures. Auton. Robot. 2020, 44, 647–671. [Google Scholar] [CrossRef] [Green Version]
- Monderer, D.; Shapley, L.S. Potential games. Games Econ. Behav. 1996, 14, 124–143. [Google Scholar] [CrossRef]
- Baylog, J.G.; Wettergren, T.A. Multiple pass collaborative search in the presence of false alarms. In Proceedings of the Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XX, Baltimore, MD, USA, 20–24 April 2015; International Society for Optics and Photonics: Washington, DC, USA, 2015; Volume 9454, p. 94541G. [Google Scholar]
- Baylog, J.G.; Wettergren, T.A. A search game for optimizing information collection in UUV mission planning. In Proceedings of the OCEANS 2015-MTS/IEEE Washington, Washington, DC, USA, 19–22 October 2015; pp. 1–8. [Google Scholar]
- Baylog, J.G.; Wettergren, T.A. Online determination of the potential benefit of path adaptation in undersea search. IEEE J. Ocean. Eng. 2013, 39, 165–178. [Google Scholar] [CrossRef]
- Kay, S. Fundamentals of Statistical Signal Processing: Detection theory; Fundamentals of Statistical Si, Prentice-Hall PTR: Hoboken, NJ, USA, 1998. [Google Scholar]
- Baylog, J.G.; Wettergren, T.A. A ROC-Based approach for developing optimal strategies in UUV search planning. IEEE J. Ocean. Eng. 2017, 43, 843–855. [Google Scholar] [CrossRef]
- Baylog, J.G.; Wettergren, T.A. Extended search games for UUV mission planning. In Proceedings of the Oceans 2017-Anchorage, Anchorage, AK, USA, 18–21 September 2017; pp. 1–9. [Google Scholar]
- Baylog, J.G.; Wettergren, T.A. Risk-based scheduling of multiple search passes for UUVs. In Proceedings of the Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XXI, Baltimore, MD, USA, 18–21 April 2016; International Society for Optics and Photonics: Washington, DC, USA, 2016; Volume 9823, p. 98231V. [Google Scholar]
- Baylog, J.G.; Wettergren, T.A. Leveraging ROC adjustments for optimizing UUV risk-based search planning. In Proceedings of the Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XXII, Anaheim, CA, USA, 10–12 April 2017; International Society for Optics and Photonics: Washington, DC, USA, 2017; Volume 10182, p. 101820O. [Google Scholar]
- Subramani, D.N.; Wei, Q.J.; Lermusiaux, P.F. Stochastic time-optimal path-planning in uncertain, strong, and dynamic flows. Comput. Methods Appl. Mech. Eng. 2018, 333, 218–237. [Google Scholar] [CrossRef]
- Subramani, D.N.; Lermusiaux, P.F. Risk-optimal path planning in stochastic dynamic environments. Comput. Methods Appl. Mech. Eng. 2019, 353, 391–415. [Google Scholar] [CrossRef]
- Subramani, D.N.; Lermusiaux, P.F. Energy-optimal path planning by stochastic dynamically orthogonal level-set optimization. Ocean Model. 2016, 100, 57–77. [Google Scholar] [CrossRef] [Green Version]
- Lisowski, J.; Mohamed-Seghir, M. Comparison of computational intelligence methods based on fuzzy sets and game theory in the synthesis of safe ship control based on information from a radar ARPA system. Remote Sens. 2019, 11, 82. [Google Scholar] [CrossRef] [Green Version]
- Rahmes, M.; Reed, T.; Nugent, K.; Pickering, C.; Yates, H. Mine Drift Prediction Tactical Decision Aid. In Proceedings of the International Conference on Game Theory at Stony Brooks, New York, NY, USA, 17–21 July 2016; Stony Brooks Center for Game Theory: New York, NY, USA, 2016. [Google Scholar]
- Qi, X.; Xiang, P.; Cai, Z. Three-dimensional consensus control based on learning game theory for multiple underactuated underwater vehicles. Ocean Eng. 2019, 188, 106201. [Google Scholar] [CrossRef]
- Caiti, A.; Fabbri, T.; Fenucci, D.; Munafò, A. Potential games and AUVs cooperation: First results from the THESAURUS project. In Proceedings of the 2013 MTS/IEEE OCEANS-Bergen, Bergen, Norway, 10–13 June 2013; pp. 1–6. [Google Scholar]
- Caiti, A.; Calabro, V.; Dini, G.; Lo Duca, A.; Munafo, A. Secure cooperation of autonomous mobile sensors using an underwater acoustic network. Sensors 2012, 12, 1967–1989. [Google Scholar] [CrossRef] [Green Version]
- Caiti, A.; Calabro, V.; Di Corato, F.; Meucci, D.; Munafo, A. Cooperative distributed algorithm for AUV teams: A minimum entropy approach. In Proceedings of the 2013 MTS/IEEE OCEANS-Bergen, Bergen, Norway, 10–13 June 2013; pp. 1–6. [Google Scholar]
- Nardi, S.; Della Santina, C.; Meucci, D.; Pallottino, L. Coordination of unmanned marine vehicles for asymmetric threats protection. In Proceedings of the OCEANS 2015-Genova, Genova, Italy, 18–21 May 2015; pp. 1–7. [Google Scholar]
- Zhu, M.; Martínez, S. Distributed coverage games for energy-aware mobile sensor networks. SIAM J. Control Optim. 2013, 51, 1–27. [Google Scholar] [CrossRef]
- Nardi, S.; Fabbri, T.; Caiti, A.; Pallottino, L. A game theoretic approach for antagonistic-task coordination of underwater autonomous robots in asymmetric threats scenarios. In Proceedings of the OCEANS 2016 MTS/IEEE Monterey, Monterey, CA, USA 19–23 September 2016; pp. 1–9. [Google Scholar]
- Goto, T.; Hatanaka, T.; Fujita, M. Payoff-based inhomogeneous partially irrational play for potential game theoretic cooperative control: Convergence analysis. In Proceedings of the 2012 American Control Conference (ACC 2012), Montreal, Canada, 27–29 June 2012; pp. 2380–2387. [Google Scholar]
- Fabiani, F.; Fenucci, D.; Fabbri, T.; Caiti, A. A distributed, passivity-based control of autonomous mobile sensors in an underwater acoustic network. IFAC-PapersOnLine 2016, 49, 367–372. [Google Scholar] [CrossRef]
- Duindam, V.; Macchelli, A.; Stramigioli, S.; Bruyninckx, H. Modeling and Control of Complex Physical Systems: The Port-Hamiltonian Approach; Springer Science & Business Media: Cham, Switzerland, 2009. [Google Scholar]
- Fabiani, F.; Fenucci, D.; Fabbri, T.; Caiti, A. A passivity-based framework for coordinated distributed control of auv teams: Guaranteeing stability in presence of range communication constraints. In Proceedings of the OCEANS 2016 MTS/IEEE Monterey, Shanghai, China, 19–22 September 2016; pp. 1–5. [Google Scholar]
- Fabiani, F.; Fenucci, D.; Caiti, A. A distributed passivity approach to AUV teams control in cooperating potential games. Ocean Eng. 2018, 157, 152–163. [Google Scholar] [CrossRef]
- Ui, T. A Shapley value representation of potential games. Games Econ. Behav. 2000, 31, 121–135. [Google Scholar] [CrossRef] [Green Version]
- Fabiani, F.; Caiti, A. Nash equilibrium seeking in potential games with double-integrator agents. In Proceedings of the 2019 18th European Control Conference (ECC 2019), Naples, Italy, 25–28 June 2019; pp. 548–553. [Google Scholar]
- Van Der Schaft, A. Port-Hamiltonian systems: An introductory survey. In Proceedings of the International Congress of Mathematicians, Madrid, Spain, 22–30 August 2006; European Mathematical Society: Zürich, Switzerland, 2006; Volume 3, pp. 1339–1365. [Google Scholar]
- Qi, X. Coordinated control for multiple underactuated underwater vehicles with time delay in game theory frame. In Proceedings of the 2017 36th Chinese Control Conference (CCC 2017), Da lian, China, 26–28 July 2017; pp. 8419–8424. [Google Scholar]
- Qi, X.; Xiang, P. Coordinated path following control of multiple underactuated underwater vehicles. In Proceedings of the 2018 37th Chinese Control Conference (CCC 2018), Wuhan, China, 25–27 July 2018; pp. 6633–6638. [Google Scholar]
- Qi, X.; Cai, Z.J. Cooperative Pursuit Control for Multiple Underactuated Underwater Vehicles with Time Delay in Three-Dimensional Space. Robotica 2021, 39, 1101–1115. [Google Scholar] [CrossRef]
- Jakob, M.; Vanek, O.; Bošanskỳ, B.; Hrstka, O.; Pechoucek, M. Adversarial Modeling and Reasoning in the Maritime Domain Year 2 Report; Technical Report; Czech Technical University in Prague: Prague, Czech Republic, 2010. [Google Scholar]
- Vanek, O.; Jakob, M.; Lisỳ, V.; Bosanskỳ, B.; Pechoucek, M. Iterative game-theoretic route selection for hostile area transit and patrolling. In Proceedings of the 10th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2011), Taipei, Taiwan, 2–6 May 2011; pp. 1273–1274. [Google Scholar]
- Bošanskỳ, B.; Lisỳ, V.; Jakob, M.; Pechoucek, M. Computing time-dependent policies for patrolling games with mobile targets. In Proceedings of the 10th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2011), Taipei, Taiwan, 2–6 May 2011. [Google Scholar]
- Jakob, M.; Vanĕk, O.; Pĕchouček, M. Using agents to improve international maritime transport security. IEEE Intell. Syst. 2011, 26, 90–96. [Google Scholar] [CrossRef]
- Vaněk, O.; Jakob, M.; Hrstka, O.; Pěchouček, M. Using multi-agent simulation to improve the security of maritime transit. In Proceedings of the International Workshop on Multi-Agent Systems and Agent-Based Simulation, Taipei, Taiwan, 2–6 May 2011; Springer: Cham, Switzerland, 2011; pp. 44–58. [Google Scholar]
- Jakob, M.; Vanek, O.; Hrstka, O.; Pechoucek, M. Agents vs. pirates: Multi-agent simulation and optimization to fight maritime piracy. In Proceedings of the 11th International Conference on Autonomous Agents and Multiagent Systems, Valencia, Spain, 4–8 June 2012; pp. 37–44. [Google Scholar]
- Shieh, E.A.; An, B.; Yang, R.; Tambe, M.; Baldwin, C.; DiRenzo, J.; Maule, B.; Meyer, G. PROTECT: An application of computational game theory for the security of the ports of the United States. In Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence, Toronto, ON, Canada, 22–26 July 2012. [Google Scholar]
- Shieh, E.; An, B.; Yang, R.; Tambe, M.; Baldwin, C.; DiRenzo, J.; Maule, B.; Meyer, G. Protect: A deployed game theoretic system to protect the ports of the united states. In Proceedings of the 11th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2012)-Volume 1, Valencia, Spain, 4–8 June 2012; International Foundation for Autonomous Agents and Multiagent Systems: Richland, SC, USA, 2012; pp. 13–20. [Google Scholar]
- An, B.; Ordóñez, F.; Tambe, M.; Shieh, E.; Yang, R.; Baldwin, C.; DiRenzo, J., III; Moretti, K.; Maule, B.; Meyer, G. A deployed quantal response-based patrol planning system for the US Coast Guard. Interfaces 2013, 43, 400–420. [Google Scholar] [CrossRef] [Green Version]
- Shieh, E.; An, B.; Yang, R.; Tambe, M.; Baldwin, C.; DiRenzo, J.; Maule, B.; Meyer, G.; Moretti, K. Protect in the ports of Boston, New York and beyond: Experiences in deploying Stackelberg security games with quantal response. In Handbook of Computational Approaches to Counterterrorism; Springer: New York, NY, USA, 2013; pp. 441–463. [Google Scholar]
- Fang, F.; Jiang, A.X.; Tambe, M. Protecting moving targets with multiple mobile resources. J. Artif. Intell. Res. 2013, 48, 583–634. [Google Scholar] [CrossRef] [Green Version]
- Haskell, W.; Kar, D.; Fang, F.; Tambe, M.; Cheung, S.; Denicola, E. Robust protection of fisheries with compass. In Proceedings of the Twenty-Sixth IAAI Conference, Québec City, QC, Canada, 29–31 July 2014. [Google Scholar]
- Fang, F.; Stone, P.; Tambe, M. When security games go green: Designing defender strategies to prevent poaching and illegal fishing. In Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI-15), Buenos Aires, Argentina, 15–25 August 2015. [Google Scholar]
- Yin, Y.; An, B. Protecting coral reef ecosystems via efficient patrols. In Artificial Intelligence and Conservation; Cambridge University Press: Cambridge, UK, 2019; p. 103. [Google Scholar]
- Yin, Y.; An, B. Efficient Resource Allocation for Protecting Coral Reef Ecosystems. In Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-16), New York, NY, USA, 9–15 July 2016; pp. 531–537. [Google Scholar]
- Jain, M.; Korzhyk, D.; Vaněk, O.; Conitzer, V.; Pěchouček, M.; Tambe, M. A double oracle algorithm for zero-sum security games on graphs. In Proceedings of the 10th International Conference on Autonomous Agents and Multiagent Systems-Volume 1, Taipei, Taiwan, 2–6 May 2011; pp. 327–334. [Google Scholar]
- McMahan, H.B.; Gordon, G.J.; Blum, A. Planning in the presence of cost functions controlled by an adversary. In Proceedings of the 20th International Conference on Machine Learning (ICML-03), Washington, DC, USA, 1–24 August 2003; pp. 536–543. [Google Scholar]
- Oliva, G.; Setola, R.; Tesei, M. A Stackelberg Game-Theoretical Approach to Maritime Counter-Piracy. IEEE Syst. J. 2018, 13, 982–993. [Google Scholar] [CrossRef]
- De Simio, F.; Tesei, M.; Setola, R. Game Theoretical Approach for Dynamic Active Patrolling in a Counter-Piracy Framework. In Recent Advances in Computational Intelligence in Defense and Security; Springer: Cham, Switzerland, 2016; pp. 423–444. [Google Scholar]
- Solis, C.U.; Clempner, J.B.; Poznyak, A.S. Handling a Kullback-Leibler divergence random walk for scheduling effective patrol strategies in Stackelberg security games. Kybernetika 2019, 55, 618–640. [Google Scholar] [CrossRef] [Green Version]
- Antipin, A.S. An extraproximal method for solving equilibrium programming problems and games. Zhurnal Vychislitel’noi Mat. I Mat. Fiz. 2005, 45, 1969–1990. [Google Scholar]
- Kar, D.; Nguyen, T.H.; Fang, F.; Brown, M.; Sinha, A.; Tambe, M.; Jiang, A.X. Trends and applications in Stackelberg security games. In Handbook of Dynamic Game Theory; Springer: Cham, Switzerland, 2017; pp. 1–47. [Google Scholar]
- Sinha, A.; Fang, F.; An, B.; Kiekintveld, C.; Tambe, M. Stackelberg Security Games: Looking Beyond a Decade of Success. In Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18), Stockholm, Sweden, 13–19 July 2018; International Joint Conferences on Artificial Intelligence Organization: Stockholm, Sweden, 2018; pp. 5494–5501. [Google Scholar]
- Xu, L.; Gholami, S.; McCarthy, S.; Dilkina, B.; Plumptre, A.; Tambe, M.; Singh, R.; Nsubuga, M.; Mabonga, J.; Driciru, M.; et al. Stay ahead of Poachers: Illegal wildlife poaching prediction and patrol planning under uncertainty with field test evaluations (Short Version). In Proceedings of the 2020 IEEE 36th International Conference on Data Engineering (ICDE), Dallas, TX, USA, 20–24 April 2020; pp. 1898–1901. [Google Scholar]
- Blocki, J.; Christin, N.; Datta, A.; Procaccia, A.D.; Sinha, A. Audit games. In Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence (IJCAI-13), Beijing, China, 3–9 August 2013. [Google Scholar]
- Blocki, J.; Christin, N.; Datta, A.; Procaccia, A.; Sinha, A. Audit games with multiple defender resources. In Proceedings of the AAAI Conference on Artificial Intelligence, Austin, TX, USA, 25–30 January 2015; Volume 29. [Google Scholar]
- Kukreja, N.; Halfond, W.G.; Tambe, M. Randomizing regression tests using game theory. In Proceedings of the 2013 28th IEEE/ACM International Conference on Automated Software Engineering (ASE), Silicon Valley, CA, USA, 11–15 November 2013; pp. 616–621. [Google Scholar]
- Ferris, D.L.; Subramani, D.N.; Kulkarni, C.S.; Haley, P.J.; Lermusiaux, P.F.J. Time-Optimal Multi-Waypoint Mission Planning in Dynamic Environments. In Proceedings of the OCEANS Conference 2018, Charleston, SC, USA, 22–25 October 2018. [Google Scholar] [CrossRef]
- Cococcioni, M.; Pappalardo, M.; Sergeyev, Y.D. Lexicographic multi-objective linear programming using grossone methodology: Theory and algorithm. Appl. Math. Comput. 2018, 318, 298–311. [Google Scholar] [CrossRef] [Green Version]
- Cococcioni, M.; Cudazzo, A.; Pappalardo, M.; Sergeyev, Y.D. Solving the lexicographic multi-objective mixed-integer linear programming problem using branch-and-bound and grossone methodology. Commun. Nonlinear Sci. Numer. Simul. 2020, 84, 105177. [Google Scholar] [CrossRef]
- Cococcioni, M.; Fiaschi, L. The Big-M method with the numerical infinite M. Optim. Lett. 2021, 15, 2455–2468. [Google Scholar] [CrossRef]
- Lai, L.; Fiaschi, L.; Cococcioni, M.; Deb, K. Solving Mixed Pareto-Lexicographic Multi-Objective Optimization Problems: The Case of Priority Levels. IEEE Trans. Evol. Comput. 2021, 25, 971–985. [Google Scholar] [CrossRef]
- Lai, L.; Fiaschi, L.; Cococcioni, M.; Deb, K. Handling Priority Levels in Mixed Pareto-Lexicographic Many-Objective Optimization Problems. In Proceedings of the 11th Edition of International Conference Series on Evolutionary Multi-Criterion Optimization (EMO2021), Shenzhen, China, 28–31 March 2021; pp. 362–374. [Google Scholar]
- Lai, L.; Fiaschi, L.; Cococcioni, M. Solving mixed Pareto-Lexicographic multi-objective optimization problems: The case of priority chains. Swarm Evol. Comput. 2020, 55, 100687. [Google Scholar] [CrossRef]
- Cococcioni, M.; Fiaschi, L.; Lambertini, L. Non-Archimedean zero-sum games. J. Comput. Appl. Math. 2021, 393, 113483. [Google Scholar] [CrossRef]
- Fiaschi, L.; Cococcioni, M. Non-Archimedean Game Theory. Appl. Math. Comput. 2020, 409, 125356. [Google Scholar]
Solving Approach | Papers |
---|---|
Set-level theory | [24,33] |
Reinforcement learning | [38,40] |
Rolling horizons and mixed complementarity problems | [41] |
Neural network | [42] |
Particle swarm and intuitionistic fuzzy theory | [43,45] |
Solving Approach | Papers |
---|---|
Potential fields | [48,49] |
Information theory and ROC analysis | [51,52,55,56] |
Solving Approach | Papers |
---|---|
Level set theory | [18,19,21,29,59,60,61] |
Linear programming | [62,63] |
Potential fields, bargaining mechanism | [64] |
Solving Approach | Papers |
---|---|
Level set theory | [31] |
Potential fields | [65,72,74,75,77] |
Search trees, mechanism design | [65] |
Distributed inhomogeneous synchronous learning | [68,70] |
Passivity theory | [72,74,75,77] |
Solving Approach | Papers |
---|---|
Leader–follower model | all |
Quantal response | [88,89,90,91,93] |
Transition graphs | [95] |
Compact strategies | [92,95] |
Linear Programming | [92,95] |
Dynamic scenario | [99] |
Bayesian analysis | [100] |
Extraproximal method, Markov chains | [101] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cococcioni, M.; Fiaschi, L.; Lermusiaux, P.F.J. Game Theory for Unmanned Vehicle Path Planning in the Marine Domain: State of the Art and New Possibilities. J. Mar. Sci. Eng. 2021, 9, 1175. https://doi.org/10.3390/jmse9111175
Cococcioni M, Fiaschi L, Lermusiaux PFJ. Game Theory for Unmanned Vehicle Path Planning in the Marine Domain: State of the Art and New Possibilities. Journal of Marine Science and Engineering. 2021; 9(11):1175. https://doi.org/10.3390/jmse9111175
Chicago/Turabian StyleCococcioni, Marco, Lorenzo Fiaschi, and Pierre F. J. Lermusiaux. 2021. "Game Theory for Unmanned Vehicle Path Planning in the Marine Domain: State of the Art and New Possibilities" Journal of Marine Science and Engineering 9, no. 11: 1175. https://doi.org/10.3390/jmse9111175
APA StyleCococcioni, M., Fiaschi, L., & Lermusiaux, P. F. J. (2021). Game Theory for Unmanned Vehicle Path Planning in the Marine Domain: State of the Art and New Possibilities. Journal of Marine Science and Engineering, 9(11), 1175. https://doi.org/10.3390/jmse9111175