Liquid–Solid Flow Characteristics in Vertical Swirling Hydraulic Transportation with Tangential Jet Inlet
Abstract
:1. Introduction
2. Methodologies
2.1. Governing Equation of the Liquid and Solid Phase
2.2. Simulation Modeling
2.3. Model Validation
2.3.1. Grid Size Independence Tests
2.3.2. Comparison with the Experimental Data
3. Result and Discussion
3.1. Fluid Flow
3.1.1. Flow Velocity Distribution
3.1.2. Swirling Intensity
3.1.3. Vortex Structure
3.2. Load Particles
3.2.1. Pressure Distribution
3.2.2. Particle Transport Status
3.2.3. Drag Force and Kinetic Energy of Different Particles
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tang, D.S.; Yang, N.; Jin, X. Hydraulic lifting technique with vertical pipe for deep-sea coarse mineral particles. Min. Metall. Eng. 2013, 33, 1–8. [Google Scholar]
- Bai, X.N.; Gen, H.S.; Zhang, D.F.; Qin, H.B. Advances and applications of solid-liquid two-phase flow in pipeline hydrotransport. J. Hydrodyn. 2001, 16, 303–311. [Google Scholar]
- Hein, J. Cobalt-rich ferromanganese crusts: Global distribution, composition, origin and research activities. Int. Seabed Auth. 2003, 5, 36–89. [Google Scholar]
- Baker, E. Quantifying the global distribution of hydrothermal venting. In The 2nd Seabed Scientific Forum-Continental Margin and Ocean Ridge; SOA: Bhubaneswar, India, 2007. [Google Scholar]
- Durand, R.; Condolios, E. The Hydraulic Transportation of Coal and Solid Materials in Pipes; Collage of National Coal Board: London, UK, 1952; pp. 39–52. [Google Scholar]
- Xu, Z.L. A new model for interpretating the velocity distribution of a heterogeneous flow in horizontal pipe. Hydraul. Coal Min. Pipeline Transp. 1998, 4, 34–40. [Google Scholar]
- Asakura, K.; Asari, T.; Nakajima, I. Simulation of solid—liquid flows in a vertical pipe by a collision model. Powder Technol. 1997, 94, 201–206. [Google Scholar] [CrossRef]
- Xia, J.X.; Ni, J.R.; Mendoza, C. Hydraulic Lifting of Manganese Nodules Through a Riser. J. Offshore Mech. Arct. Eng. 2004, 126, 72–77. [Google Scholar] [CrossRef]
- Pinto, T.S.; Júnior, D.M.; Slatter, P.; Filho, L.D.S.L. Modelling the critical velocity for heterogeneous flow of mineral slurries. Int. J. Multiph. Flow 2014, 65, 31–37. [Google Scholar] [CrossRef]
- Li, H.; Tomita, Y. Characteristics of Swirling Flow in a Circular Pipe. J. Fluids Eng. 1994, 116, 370–373. [Google Scholar] [CrossRef]
- Li, H.; Tomita, Y. An Experimental Study of Swirling Flow Pneumatic Conveying System in a Horizontal Pipeline. J. Fluids Eng. 1996, 118, 526–530. [Google Scholar] [CrossRef]
- Fokeer, S.; Lowndes, I.; Kingman, S. An experimental investigation of pneumatic swirl flow induced by a three lobed helical pipe. Int. J. Heat Fluid Flow 2009, 30, 369–379. [Google Scholar] [CrossRef]
- Fokeer, S.; Lowndes, I.; Hargreaves, D. Numerical modelling of swirl flow induced by a three-lobed helical pipe. Chem. Eng. Process. Process. Intensif. 2010, 49, 536–546. [Google Scholar] [CrossRef]
- Zhou, J.-W.; Du, C.-L.; Liu, S.-Y.; Liu, Y. Comparison of three types of swirling generators in coarse particle pneumatic conveying using CFD-DEM simulation. Powder Technol. 2016, 301, 1309–1320. [Google Scholar] [CrossRef]
- Rinoshika, A. Self-excited pneumatic conveying of granular particles in various horizontal curved 90° bends. Exp. Therm. Fluid Sci. 2015, 63, 9–19. [Google Scholar] [CrossRef]
- Yan, F.; Luo, C.; Zhu, R.; Wang, Z. Experimental and numerical study of a horizontal-vertical gas-solid two-phase system with self-excited oscillatory flow. Adv. Powder Technol. 2019, 30, 843–853. [Google Scholar] [CrossRef]
- Yin, J.; Chen, Q.Y.; Zhu, R.; Tang, W.X.; Su, S.J.; Yan, F.; Wang, L.H. Enhancement of liquid-solid two-phase flow through a vertical swirling pipe. J. Appl. Fluids 2020, 13, 1501–1513. [Google Scholar]
- Zhong, W.-Q.; Zhang, Y.; Jin, B.-S.; Zhang, M.-Y. Discrete Element Method Simulation of Cylinder-Shaped Particle Flow in a Gas-Solid Fluidized Bed. Chem. Eng. Technol. 2009, 32, 386–391. [Google Scholar] [CrossRef]
- Tran-Cong, S.; Gay, M.; E Michaelides, E. Drag coefficients of irregularly shaped particles. Powder Technol. 2004, 139, 21–32. [Google Scholar] [CrossRef]
- Ren, B.; Zhong, W.Q.; Jiang, X.F.; Jin, B.S.; Yuan, Z.L. Numerical simulation of spouting of cylindroid particles in a spouted bed. Can. J. Chem. Eng. 2014, 92, 928–934. [Google Scholar] [CrossRef]
- Molaei, E.A.; Yu, A.; Zhou, Z. CFD-DEM modelling of mixing and segregation of binary mixtures of ellipsoidal particles in liquid fluidizations. J. Hydrodyn. 2019, 31, 1190–1203. [Google Scholar] [CrossRef]
- Hölzer, A.; Sommerfeld, M. New simple correlation formula for the drag coefficient of non-spherical particles. Powder Technol. 2008, 184, 361–365. [Google Scholar] [CrossRef]
- Shih, T.-H.; Liou, W.W.; Shabbir, A.; Yang, Z.; Zhu, J. A new k-ϵ eddy viscosity model for high reynolds number turbulent flows. Comput. Fluids 1995, 24, 227–238. [Google Scholar] [CrossRef]
- Ghaya, H.; Guizani, R.; Mhiri, H.; Bournot, P.; Iusti, T.D.C.-G. CFD Study of the Effect of Geometrical Shape of Separation Blades on the Rotor Performance of an Annular Centrifugal Extractor (ACE). J. Appl. Fluid Mech. 2019, 12, 1189–1202. [Google Scholar] [CrossRef]
- Zhou, F.; Hu, S.; Liu, Y.; Liu, C.; Xia, T. CFD–DEM simulation of the pneumatic conveying of fine particles through a horizontal slit. Particuology 2014, 16, 196–205. [Google Scholar] [CrossRef]
- Di Felice, R. The voidage function for fluid-particle interaction systems. Int. J. Multiph. Flow 1994, 20, 153–159. [Google Scholar] [CrossRef]
- Bagheri, G.; Bonadonna, C. On the drag of freely falling non-spherical particles. Powder Technol. 2016, 301, 526–544. [Google Scholar] [CrossRef] [Green Version]
- Hilton, J.; Mason, L.; Cleary, P. Dynamics of gas–solid fluidised beds with non-spherical particle geometry. Chem. Eng. Sci. 2010, 65, 1584–1596. [Google Scholar] [CrossRef]
- Zhou, Z.; Pinson, D.; Zou, R.; Yu, A. Discrete particle simulation of gas fluidization of ellipsoidal particles. Chem. Eng. Sci. 2011, 66, 6128–6145. [Google Scholar] [CrossRef]
- Rong, L.; Zhou, Z.; Yu, A. Lattice–Boltzmann simulation of fluid flow through packed beds of uniform ellipsoids. Powder Technol. 2015, 285, 146–156. [Google Scholar] [CrossRef]
- Tsuji, T.; Yabumoto, K.; Tanaka, T. Spontaneous structures in three-dimensional bubbling gas-fluidized bed by parallel DEM–CFD coupling simulation. Powder Technol. 2008, 184, 132–140. [Google Scholar] [CrossRef]
- Karimi, H.; Dehkordi, A.M. Prediction of equilibrium mixing state in binary particle spouted beds: Effects of solids density and diameter differences, gas velocity, and bed aspect ratio. Adv. Powder Technol. 2015, 26, 1371–1382. [Google Scholar] [CrossRef]
- Xiong, C.Q.; Zhang, M.Y.; Fan, Q.Y. Numerical simulation of external flow field around low drag car and its error analysis. Automot. Eng. 2012, 34, 36–45. [Google Scholar]
- Schlichting, H. Boundary Layer Theory, 7th ed.; Springer: Berlin/Heidelberg, Germany, 1979. [Google Scholar]
- Klancisar, M.; Schloen, T.; Hribersek, M.; Samec, N. Analysis of the Effect of the Swirl Flow Intensity on Combustion Characteristics in Liquid Fuel Powered Confined Swirling Flames. J. Appl. Fluid Mech. 2016, 9, 2359–2367. [Google Scholar] [CrossRef]
Working Condition | Velocity of Main Pipe (m/s) | Velocity of Tangential Inlet (m/s) | Code |
---|---|---|---|
Tangential flow accounts for 10% | 2.7 | 2.5 | TP10 |
Tangential flow accounts for 20% | 2.4 | 5 | TP20 |
Tangential flow accounts for 30% | 2.1 | 7.5 | TP30 |
No tangential flow | 3 | 0 | STP |
Particle Shape | DEM Model | Number of Filled Spheres | deq/mm | Φ |
---|---|---|---|---|
Sphere | | 1 | 20 | 1 |
Ellipsoid | | 5 | 20 | 0.9806 |
Cylinder | | 5 | 20 | 0.9123 |
Tetrahedron | | 10 | 20 | 0.9765 |
Phase | Item | Details | Index | Unit | Value |
---|---|---|---|---|---|
CFD | Materials | Fluid/water | Density | kg·m−3 | 1025 |
Viscosity | kg·m−1·s−1 | 1.003 × 10−3 | |||
Boundary conditions | Pressure outlet | Gauge pressure | Pa | 0 | |
Wall | Wall motion | Stationary wall | |||
Shear condition | No slip | ||||
DEM | Materials | Particle | Poisson’s ratio | - | 0.25 |
Shear modulus | Pa | 1 × 108 | |||
Density | kg·m−3 | 2040 | |||
Wall | Poisson’s ratio | - | 0.3 | ||
Shear modulus | Pa | 7 × 1010 | |||
Density | kg·m−3 | 7800 | |||
Interaction | Particle–particle | Coefficient of restitution | - | 0.525 | |
Coefficient of static friction | - | 0.642 | |||
Coefficient of rolling friction | 0.05 | ||||
Interaction contact model | Hertz–Mindlin (no slip) | ||||
Collision model | Soft-sphere contact model | ||||
Particle-wall | Coefficient of restitution | - | 0.525 | ||
Coefficient of static friction | - | 0.4 | |||
Coefficient of rolling friction | - | 0.05 | |||
Interaction contact model | Hertz–Mindlin (no slip) | ||||
Collision model | Soft-sphere contact model | ||||
Particle | Particle factory | Particle radius | mm | 20 | |
Factory type | Dynamic/unlimited number | ||||
Target mass | kg/s | 4 |
Grid | Number of Nodes | Number of Cells |
---|---|---|
Coarse grid | 80,944 | 111,994 |
Coarse-M grid | 130,792 | 178,891 |
Medium-C grid | 168,892 | 247,787 |
Medium-M grid | 289,511 | 374,012 |
Medium-F grid | 411,806 | 482,044 |
Fine-M grid | 501,334 | 599,798 |
Fine grid | 593,469 | 719,834 |
Case | TP10 | TP20 | TP30 |
---|---|---|---|
Equation |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, J.; Yin, J.; Yan, F.; Liu, P.; Wang, T.; Chen, C. Liquid–Solid Flow Characteristics in Vertical Swirling Hydraulic Transportation with Tangential Jet Inlet. J. Mar. Sci. Eng. 2021, 9, 1091. https://doi.org/10.3390/jmse9101091
Qi J, Yin J, Yan F, Liu P, Wang T, Chen C. Liquid–Solid Flow Characteristics in Vertical Swirling Hydraulic Transportation with Tangential Jet Inlet. Journal of Marine Science and Engineering. 2021; 9(10):1091. https://doi.org/10.3390/jmse9101091
Chicago/Turabian StyleQi, Jiyang, Jie Yin, Fei Yan, Ping Liu, Tieli Wang, and Chen Chen. 2021. "Liquid–Solid Flow Characteristics in Vertical Swirling Hydraulic Transportation with Tangential Jet Inlet" Journal of Marine Science and Engineering 9, no. 10: 1091. https://doi.org/10.3390/jmse9101091
APA StyleQi, J., Yin, J., Yan, F., Liu, P., Wang, T., & Chen, C. (2021). Liquid–Solid Flow Characteristics in Vertical Swirling Hydraulic Transportation with Tangential Jet Inlet. Journal of Marine Science and Engineering, 9(10), 1091. https://doi.org/10.3390/jmse9101091