The Evolution and Outcomes of a Collaborative Testbed for Predicting Coastal Threats
Abstract
:1. Introduction
2. SCOOP: A Launch Pad for Testbed Development
2.1. SCOOP Products and Accomplishments
2.1.1. Coastal Modeling
2.1.2. Data Stewardship
2.1.3. Computer Infrastructure
2.1.4. Community Engagement
2.2. Collaboration during SCOOP
3. Coastal Ocean Model Testbed (COMT): Concept and Goals
3.1. COMT: Phase 1
3.2. COMT: Phase 2
- (1)
- Estuarine Hypoxia Modeling in Chesapeake Bay
- (2)
- U.S. West Coast Physics and Ecosystems Modeling
- (3)
- Surge and Wave Modeling for Puerto Rico/U.S. Virgin Islands
- (4)
- Inter-Comparison of Hypoxia Models for the Northern Gulf of Mexico
- (5)
- COMT Cyberinfrastructure
3.3. COMT: A Collaboratorium
4. New Perspectives and Lessons Learned
5. Conclusions and Prognosis
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Liu, Y.; Kerkering, H.; Weisberg, R.H. Coastal Ocean Observing Systems; Academic Press: London, UK, 2015. [Google Scholar]
- Wright, L.D.; Nichols, C.R. Tomorrow’s Coasts: Complex and Impermanent, Coastal Research Library; Springer: Cham, Switzerland, 2019; Volume 27, p. 374. [Google Scholar]
- Nichols, C.R.; Weisberg, R.G.; van der Westhuysen, A.J. Coastal and Ocean Modeling Testbed Applications. In Ocean Waves Workshop; University of New Orleans: New Orleans, LA, USA, 2015. [Google Scholar]
- Wright, L.D.; Nichols, C.R.; Cosby, A.G.; Danchuk, S.; D’Elia, C.F.; Mendez, G.R. Trans-Disciplinary Collaboration to Enhance Coastal Resilience: Envisioning a National Community Modeling Initiative; Southeastern Universities Research Association: Washington, DC, USA, 2016; p. 30. [Google Scholar]
- Zhang, A.; Hess, K.W.; Aikman, F. User-Based skill assessment techniques for operational hydrodynamic forecast systems. J. Oper. Oceanogr. 2010, 3, 11–24. [Google Scholar] [CrossRef] [Green Version]
- Allen, G.; Bogden, P.; Luettich, R.A.J.; Seidel, E.; Twilley, R. Designing a Dynamic Data Driven Application System for Coastal and Environmental Modeling. In Grid-Based Problem-Solving Environments. IFIP The International Federation for Information Processing; In Gaffney, P.W., Pool, J.C.T., Eds.; Springer: Boston, MA, USA, 2007; Volume 239. [Google Scholar]
- Ocean.US. The Integrated Ocean Observing System (IOOS) Modeling and Analysis Workshop Report; Ocean.US Publication: Woods Hole, MA, USA, 2008; p. 21. [Google Scholar]
- Bogden, P.; Allen, G.; Stone, G.; Bintz, J.; Graber, H.; Graves, S.; Luettich, R.; Reed, D.; Sheng, P.; Wang, H.; et al. The Southeastern University Research Association Coastal Ocean Observing and Prediction Program: Integrating Marine Science and Information Technology. In Proceedings of the OCEANS 2005, Washington, DC, USA, 18–23 September 2005. [Google Scholar]
- MacLaren, J.; Allen, G.; Dekate, C.; Huang, D.; Hutanu, A.; Zhang, C. Shelter from the Storm: Building a Safe Archive in a Hostile World. In On the Move to Meaningful Internet Systems 2005: OTM 2005 Workshops. Lecture Notes in Computer Science; Meersman, R., Tari, Z., Herrero, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; Volume 3762. [Google Scholar]
- Zhang, C.; Dekate, C.; Allen, G.; Kelley, I.; MacLaren, J. An application portal for collaborative coastal modeling. Concurr. Comput. Pract. Exp. 2007, 19, 1571–1581. [Google Scholar] [CrossRef]
- Bender, L.C.; Guinasso, N.L.; Walpert, J.N.; Lee, L.L.; Martin, R.D.; Hetland, R.D.; Baum, S.K.; Howard, M.K. Development, Operation, and Results from the Texas Automated Buoy System. Gulf Mex. Sci. 2007, 25, 33–60. [Google Scholar] [CrossRef]
- Allen, G.; Bogden, P.; Kosar, T.; Kulshrestha, A.; Namala, G.; Tummala, S.; Seidel, E. Cyberinfrastructure for coastal hazard prediction. Ct Watch Quart. 2008, 4, 17–26. [Google Scholar]
- Bermudez, L.P.; Bogden, E.; Bridger, G.; Creager, D.; Forrest, J. Towards an Ocean Observing System of Systems. In Proceedings of the Oceans 2006, Boston, MA, USA, 18–21 September 2006. [Google Scholar]
- Conover, H.; Drewry, M.; Graves, S.; Keiser, K.; Maskey, M.; Smith, M.; Bogden, P.; Bermudez, L.; Bintz, J.; Conover, J.C. SCOOP Data Management: A Standards-Based Distributed Information System for Coastal Data Management. In Standard-Based Data and Information Systems for Earth Observations; Li, D., Ramapriyan, H.K., Eds.; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Fredericks, J.; Botts, M.; Bermudez, L.; Bosch, J.; Bogden, P.; Bridger, E.; Cook, T.; Delory, E.; Graybeal, J.; Haines, S.; et al. Integrating Quality Assurance and Quality Control into Open GeoSpatial Consortion Sensor Web Enablement. In Proceedings of the OceanObs’09: Sustained Ocean Observations and Information for Society, ESA Publication WPP-306, Venice, Italy, 21–25 September 2009. [Google Scholar]
- Maskey, M.; Conover, H.; Kaiser, K.; Bermudez, L.; Graves, S. OOSTethys/Oceans IE Service Registry Based on Catalog Servie for Web. In Geospatial Web Services: Advances in Information Interoperability; Zhao, P., Li, D., Eds.; Information Science Reference: Hershey, PA, USA, 2011. [Google Scholar]
- Bermudez, L. OGC Ocean Science Interoperability Experiment Phase II Report. In OGC® Engineering Report 09-156r2; Open Geospatial Consortium: Herndon, VA, USA, 2011; p. 56. [Google Scholar]
- Ramakrishnan, L.B.O.; Blanton, H.M.; Lander, R.A.; Luettich, D.A.J.; Reed, S.R. Thorpe, 2006. In Proceedings of the Real-time Storm Surge Ensemble Modeling in a Grid Environment, Second International Workshop on Grid Computing Environments (GCE), Workshop at SC, Tampa, FL, USA, 6 November 2006. [Google Scholar]
- Bogden, P.; Allen, G.; Stone, G.; MacLaren, J.; Creager, G.; Flournoy, L.; Zhao, W.; Graber, H.; Graves, S.; Conover, H.; et al. The SURA Coastal Ocean Observing and Prediction Program (SCOOP) Service-Oriented Architecture. In OCEANS 2006; Institute of Electrical and Electronics Engineers (IEEE): New York, NY, USA, 2006; pp. 1–6. [Google Scholar]
- Bintz, J.; Bogden, P.; Perrie, W.; Toulany, B.; Allen, G.; MacLaren, J. SCOOP: Enabling a Network of Ocean Observations for Mitigating Coastal Hazards. In Proceedings of the Coastal Society 20th International Conference, Pete Beach, FL, USA, 14–17 May 2006. [Google Scholar]
- Bogden, P.; Gale, T.; Allen, G.; MacLaren, J.; Almes, G.; Creager, G.; Bintz, J.; Wright, D.L.; Graber, H.; Williams, N.; et al. Architecture of a Community Infrastructure for Predicting and Analyzing Coastal Inundation. Mar. Technol. Soc. J. 2007, 41, 53–61. [Google Scholar] [CrossRef] [Green Version]
- Allen, G.; Bogden, P.; Creager, G.; Dekate, C.; Jesch, C.; Kaiser, H.; McLaren, J.; Perrie, W.; Stone, G.W.; Zhang, X. Towards an integrated GIS-based coastal forecast workflow. Concurr. Comput. Pract. Exp. 2008, 20, 1637–1651. [Google Scholar] [CrossRef]
- Tolman, H.L. WAVEWATCH III® Development Group. User Manual and System Documentation of WAVEWATCH III® version 4.18. In Technical Note 316; NOAA/NWS/NCEP/MMAB: Camp Springs, MD, USA, 2014; p. 282. [Google Scholar]
- Zhang, Y.; Baptista, A.M.; Myers, E.P. A cross-scale model for 3D baroclinic circulation in estuary–plume–shelf systems: I. Formulation and skill assessment. Cont. Shelf Res. 2004, 24, 2187–2214. [Google Scholar] [CrossRef]
- Booij, N.; Ris, R.C.; Holthuijsen, L. A third-generation wave model for coastal regions: 1 Model description and validation. J. Geophys. Res. Space Phys. 1999, 104, 7649–7666. [Google Scholar] [CrossRef] [Green Version]
- WAMDI Group. The WAM model—A third generation ocean wave prediction model. J. Phys. Oceanogr. 1988, 18, 1775–1810. [Google Scholar] [CrossRef] [Green Version]
- Johnson, B.H.; Kim, K.W.; Heath, R.E.; Hsieh, B.B.; Butler, H.L. Validation of Three? Dimensional Hydrodynamic Model of Chesapeake Bay. J. Hydraul. Eng. 1993, 119, 2–20. [Google Scholar] [CrossRef]
- Luettich, R.A.; Westerink, J.J.; Scheffner, N.W. ADCIRC: An Advanced Three-Dimensional Circulation Model for Shelves, Coasts, and Estuaries, Report I: Theory and Methodology of ADCIRC-2DDI and ADCIRC-3DL, Technical Report DRP-92-96; US Army Corps of Engineers: Washington, DC, USA, 1992.
- Benger, W.; Venkataraman, S.; Long, A.; Allen, G.; Beck, S.D.; Brodowicz, M.; MacLaren, J.; Seidel, E. Visualizing Katrina—Merging Computer Simulations with Observations. In Computer Vision; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2007; Volume 4699, pp. 340–350. [Google Scholar]
- Wilkinson, B. Grid Computing: Techniques and Applications. Chapman & Hall, CRC Computational Science; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Douglas, C.C.; Allen, G.; Efendiev, Y.; Qin, G. High Performance Computing Issues for Grid Based Dynamic Data-Driven Applications. In DCABES 2006; Xu, X., Wang, G., Eds.; Shanghai University Press: Shanghai, China, 2006. [Google Scholar]
- Akturk, I.; Wang, X.; Kosar, T. Metadata Management in PetaShare Distributed Storage Network. In Data Intensive Distributed Computing: Challenges and Solutions for Large-Scale Information Management; Kosar, T., Ed.; IGI Global: Hershey, PA, USA, 2012. [Google Scholar]
- Swail, V. Burnett, Wave measurements, needs and developments for the next decade. In Proceedings of the “OceanObs’09: Sustained Ocean Observations and Information for Society” Conference, Venice, Italy, 21–25 September 2009. [Google Scholar]
- Luettich, R.A.J.; Wright, L.D.; Signell, R.; Friedrichs, C.T.; Friedrichs, M.; Harding, J.; Fennel, K.; Howlett, E.; Graves, S.; Smith, E.; et al. Introduction to special section on The U.S. IOOS Coastal and Ocean Modeling Testbed. J. Geophys. Res. Oceans 2013, 118, 6319–6328. [Google Scholar] [CrossRef] [Green Version]
- Kerr, P.C.; Donahue, A.S.; Westerink, J.J.; Luettich, R.A.; Zheng, L.Y.; Weisberg, R.H.; Huang, Y.; Wang, H.V.; Teng, Y.; Forrest, D.R.; et al. U.S. IOOS coastal and ocean modeling testbed: Inter-model evaluation of tides, waves, and hurricane surge in the Gulf of Mexico. J. Geophys. Res. Oceans 2013, 118, 5129–5172. [Google Scholar] [CrossRef] [Green Version]
- Kennedy, A.B.; Gravois, U.; Zachry, B.C.; Westerink, J.J.; Hope, M.E.; Dietrich, J.; Powell, M.D.; Cox, A.T.; Luettich, R.A.; Dean, R.G. Origin of the Hurricane Ike forerunner surge. Geophys. Res. Lett. 2011, 38, 1–5. [Google Scholar] [CrossRef]
- Dietrich, J.; Zijlema, M.; Westerink, J.; Holthuijsen, L.; Dawson, C.; Jensen, R.; Smith, J.M.; Stelling, G.; Stone, G.W. Modeling hurricane waves and storm surge using integrally-coupled, scalable computations. Coast. Eng. 2011, 58, 45–65. [Google Scholar] [CrossRef]
- Glahn, B.; Taylor, A.; Kurkowski, N.; Shaffer, W.A. The roles of the SLOSH model in National Weather Service storm surge forecasting. Natl. Weather Dig. 2009, 33, 3–14. [Google Scholar]
- Luettich, R.A.J.; Wright, L.D.; Nichols, C.R.; Baltes, R.; Friedrichs, M.A.M.; Kurapov, A.; Van Der Westhuysen, A.; Fennel, K.; Howlett, E. A Test Bed for Coastal and Ocean Modeling. EOS 2017, 98. [Google Scholar] [CrossRef]
- Boynton, W.R.; Garber, J.H.; Summers, R.; Kemp, W.M. Inputs, Transformations, and Transport of Nitrogen and Phosphorus in Chesapeake Bay and Selected Tributaries. Estuaries 1995, 18, 285–314. [Google Scholar] [CrossRef]
- D’Elia, C.F.; Boynton, W.R.; Sanders, J.G. A watershed perspective on nutrient enrichment, science, and policy in the Patuxent River, Maryland: 1960–2000. Estuaries 2003, 26, 171–185. [Google Scholar] [CrossRef]
- Irby, I.D.; Friedrichs, M.A.M.; Friedrichs, C.T.; Bever, A.J.; Hood, R.R.; Lanerolle, L.W.J.; Li, M.; Linker, L.; Scully, M.E.; Sellner, K.; et al. Challenges associated with modeling low-oxygen waters in Chesapeake Bay: A multiple model comparison. Biogeosciences 2016, 13, 2011–2028. [Google Scholar] [CrossRef] [Green Version]
- Irby, I.D.; Friedrichs, M.A.M.; Da, F.; Hinson, K.E. The competing impacts of climate change and nutrient reductions on dissolved oxygen in Chesapeake Bay. Biogeosciences 2018, 15, 2649–2668. [Google Scholar] [CrossRef] [Green Version]
- Da, F.; Friedrichs, M.A.M.; St-Laurent, P. Impacts of Atmospheric Nitrogen Deposition and Coastal Nitrogen Fluxes on Oxygen Concentrations in Chesapeake Bay. J. Geophys. Res. Oceans 2018, 123, 5004–5025. [Google Scholar] [CrossRef] [Green Version]
- Ye, F.; Zhang, Y.J.; Wang, H.V.; Friedrichs, M.A.M.; Irby, I.D.; Alteljevich, E.; Valle-Levinson, A.; Wang, Z.; Huang, H.; Shen, J.; et al. A 3D unstructured-grid model for Chesapeake Bay: Importance of bathymetry. Ocean Model. 2018, 127, 16–39. [Google Scholar] [CrossRef] [Green Version]
- Kurapov, A.L.; Pelland, N.A.; Rudnick, D.L. Seasonal and interannual variability in along-slope oceanic properties off the US West Coast: Inferences from a high-resolution regional model. J. Geophys. Res. Oceans 2017, 122, 5237–5259. [Google Scholar] [CrossRef]
- Chao, Y.; Farrara, J.D.; Bjorkstedt, E.; Chai, F.; Chavez, F.; Rudnick, D.L.; Enright, W.; Fisher, J.L.; Peterson, W.T.; Welch, G.F.; et al. The origins of the anomalous warming in the California coastal ocean and San Francisco Bay during 2014–2016. J. Geophys. Res. Oceans 2017, 122, 7537–7557. [Google Scholar] [CrossRef] [Green Version]
- Yu, L.; Fennel, K.; Laurent, A.; Murrell, M.C.; Lehrter, J.C. Numerical analysis of the primary processes controlling oxygen dynamics on the Louisiana shelf. Biogeosciences 2015, 12, 2063–2076. [Google Scholar] [CrossRef] [Green Version]
- Moore, A.M.; Jacox, M.G.; Crawford, W.J.; Laughlin, B.; Edwards, C.A.; Fiechter, J. The impact of the ocean observing system on estimates of the California current circulation spanning three decades. Prog. Oceanogr. 2017, 156, 41–60. [Google Scholar] [CrossRef]
- Moore, A.; Arango, H.; Edwards, C.A. Reduced-Rank Array Modes of the California Current Observing System. J. Geophys. Res. Oceans 2018, 123, 452–465. [Google Scholar] [CrossRef] [Green Version]
- Fennel, K.; Laurent, A.; Hetland, R.; Justić, D.; Ko, D.S.; Lehrter, J.; Murrell, M.C.; Wang, L.; Yu, L.; Zhang, W. Effects of model physics on hypoxia simulations for the northern Gulf of Mexico: A model intercomparison. J. Geophys. Res. Oceans 2016, 121, 5731–5750. [Google Scholar] [CrossRef]
- Laurent, A.; Fennel, K.; Ko, D.S.; Lehrter, J. Climate Change Projected to Exacerbate Impacts of Coastal Eutrophication in the Northern Gulf of Mexico. J. Geophys. Res. Oceans 2018, 123, 3408–3426. [Google Scholar] [CrossRef]
- Mayer, B.A.; McKenna, B.; Crosby, A.; Knee, K. SCI-WMS: Python-Based Web Mapping Service for Visualizing Geospatial Data. In Machine Learning and Data Mining Approaches to Climate Science; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2015; pp. 127–135. [Google Scholar]
- Chu, P.Y.; Jacobs, G.A.; Cambazoğlu, M.K.; Linzell, R.S. Multi-Model Validation of Currents in the Chesapeake Bay Region in June 2010. Mar. Geod. 2012, 35, 399–428. [Google Scholar] [CrossRef]
- Loftis, J.D.; Mitchell, M.; Schatt, D.; Forrest, D.R.; Wang, H.V.; Mayfield, D.; Stiles, W.A. Validating an Operational Flood Forecast Model Using Citizen Science in Hampton Roads, VA, USA. J. Mar. Sci. Eng. 2019, 7, 242. [Google Scholar] [CrossRef] [Green Version]
- Mattern, J.P.; Edwards, C.A. Simple parameter estimation for complex models—Testing evolutionary techniques on 3-dimensional biogeochemical ocean models. J. Mar. Syst. 2017, 165, 139–152. [Google Scholar] [CrossRef]
- Nichols, C.R.; Raghukumar, K. Marine Environmental Characterization. Synth. Lect. Ocean Syst. Eng. 2020, 1, 1–103. [Google Scholar] [CrossRef]
- ONR. Understanding, modeling and prediction. In Proceedings of the US Navy Task Force Ocean: 2017 Summer Workshop Series, Office of Naval Research, Arlington, VA, USA, 6–7 September 2017. [Google Scholar]
- Signell, R.; Snowden, D. Advances in a Distributed Approach for Ocean Model Data Interoperability. J. Mar. Sci. Eng. 2014, 2, 194–208. [Google Scholar] [CrossRef] [Green Version]
- Subramanian, A.C.; Balmaseda, M.A.; Centurioni, L.; Chattopadhyay, R.; Cornuelle, B.D.; DeMott, C.; Flatau, M.; Fujii, Y.; Giglio, D.; Gille, S.T.; et al. Ocean Observations to Improve Our Understanding, Modeling, and Forecasting of Subseasonal-to-Seasonal Variability. Front. Mar. Sci. 2019, 6. [Google Scholar] [CrossRef] [Green Version]
- Wright, L.D.; Thom, B.G. Promoting Resilience of Tomorrow’s Impermanent Coasts. Coast. Karst Landf. 2018, 27, 341–353. [Google Scholar] [CrossRef]
- Nichols, C.R.; Wright, L.D.; Bainbridge, S.J.; Cosby, A.; Hénaff, A.; Loftis, J.D.; Cocquempot, L.; Katragadda, S.; Mendez, G.R.; Letortu, P.; et al. Collaborative Science to Enhance Coastal Resilience and Adaptation. Front. Mar. Sci. 2019, 6, 404. [Google Scholar] [CrossRef] [Green Version]
- Wright, L.D.; Nichols, C.; Cosby, A.G.; D’Elia, C. Collaboration to Enhance Coastal Resilience. Eos 2016, 97. [Google Scholar] [CrossRef]
- National Research Council. Fair Weather: Effective Partnerships in Weather and Climate Services; The National Academies Press: Washington, DC, USA, 2003. [Google Scholar]
- National Academies of Sciences, Engineering, and Medicine. Building and Measuring Community Resilience: Actions for Communities and the Gulf Research Program; The National Academies Press: Washington, DC, USA, 2019. [Google Scholar]
University | Government | Industry/NGO |
---|---|---|
Louisiana State University; Texas A & M University; University of Florida; University of South Florida; University of Alabama in Huntsville; University of North Carolina at Chapel Hill, and Virginia Institute of Marine Science of the College of William & Mary | Bedford Institute of Oceanography (CA); Office of Naval Research, and National Oceanic and Atmospheric Administration (NOAA) | Gulf of Maine Ocean Observing System; Gulf of Mexico Coastal Ocean Observing System, and the Southeastern Universities Research Association |
Funding support for SCOOP was provided by the Office of Naval Research, Award N00014-04-1-0721, and NOAA National Ocean Service, Award NA04NOS4730254. |
Acronym | Model Name | Description |
---|---|---|
ADCIRC | ADvanced CIRCulation | A finite element unstructured grid model. |
CH3D | Curvilinear-Grid Hydrodynamics 3D | A finite-difference three-dimensional model applicable to bays, estuaries, lakes, and rivers. |
EFDC | Environmental Fluid Dynamics Code | A linked three-dimensional, finite difference hydrodynamic and water quality model. |
FVCOM | Finite Volume Community Ocean Model | Unstructured-grid, finite-volume, 3-D coastal ocean circulation model |
HYCOM | Hybrid Coordinate Ocean Model | A general circulation model. |
NCOM | Navy Coastal Ocean Model | A high-resolution model adapted from the Princeton Ocean Model and the Sigma/Z-Level Model. |
ROMS | Regional Ocean Modeling System | Terrain-following ocean model. |
SELFE | Semi-implicit Eulerian–Lagrangian Finite Element | A finite-element model for cross-scale ocean modeling. |
SWAN | Simulating WAves Nearshore | A spectral wave model developed at the Delft University of Technology in the Netherlands. |
WWM | Wind Wave Model | A spectral wave model similar to SWAN but unstructured grid. |
WW3 | WaveWatch III® | A third-generation wave model developed at NOAA/National Center for Environmental Prediction (NCEP). |
University | Government | Industry/NGO |
---|---|---|
Dalhousie University; Louisiana State University; Oregon State University; Texas A & M University; University of California San Diego; University of California Santa Cruz; University of Florida; University of Maine; University of Maryland; University of Massachusetts-Dartmouth; University of North Carolina; University of Notre Dame; University of Puerto Rico; University of South Florida; University of Washington; Virginia Institute of Marine Science of the College of William & Mary; Woods Hole Oceanographic Institution | NOAA Coast Survey Development Laboratory, Environmental Modeling Center, National Hurricane Center, Naval Research Laboratory-Oceanography Division; U.S. Army Corps of Engineers—Coastal & Hydraulics Laboratory; U.S. Environmental Protection Agency-Gulf Ecology Division; U.S. Integrated Ocean Observing System | Delta Modeling Associates; Remote Sensing Solutions; RPS-Applied Science Associates; Southeastern Universities Research Association |
Partners: Southern California, Central and Northern California, Pacific Northwest, Mid-Atlantic, Gulf of Mexico, and Caribbean IOOS Regional Associations; IOOS Association; Chesapeake Bay Interpretive Buoy System; Environmental Protection Agency; National Environmental Satellite, Data, and Information Service; National Ocean Service; National Weather Service, and United States Geological Survey. | ||
Funding support for COMT was provided by NOAA’s National Ocean Service under Cooperative Agreement NA04NOS4730254, NA10NOS0120063, NA11NOS0120141, and NA13NOS0120139. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nichols, C.R.; Wright, L.D. The Evolution and Outcomes of a Collaborative Testbed for Predicting Coastal Threats. J. Mar. Sci. Eng. 2020, 8, 612. https://doi.org/10.3390/jmse8080612
Nichols CR, Wright LD. The Evolution and Outcomes of a Collaborative Testbed for Predicting Coastal Threats. Journal of Marine Science and Engineering. 2020; 8(8):612. https://doi.org/10.3390/jmse8080612
Chicago/Turabian StyleNichols, Charles Reid, and Lynn Donelson Wright. 2020. "The Evolution and Outcomes of a Collaborative Testbed for Predicting Coastal Threats" Journal of Marine Science and Engineering 8, no. 8: 612. https://doi.org/10.3390/jmse8080612
APA StyleNichols, C. R., & Wright, L. D. (2020). The Evolution and Outcomes of a Collaborative Testbed for Predicting Coastal Threats. Journal of Marine Science and Engineering, 8(8), 612. https://doi.org/10.3390/jmse8080612