# Buckling Analysis of an AUV Pressure Vessel with Sliding Stiffeners

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Analysis of the Unstiffened Shell

- The Von Mises simplified equation (see References [39,40,41,42]):$${p}_{cr}=\frac{Eh}{R}\frac{1}{{n}^{2}+\frac{1}{2}{\left(\frac{\pi R}{L}\right)}^{2}}\left[\frac{1}{{\left({n}^{2}{\left(\frac{L}{\pi R}\right)}^{2}+1\right)}^{2}}+\frac{{h}^{2}}{12{R}^{2}\left(1-{\nu}^{2}\right)}{\left({n}^{2}+{\left(\frac{\pi R}{L}\right)}^{2}\right)}^{2}\right]$$
- The Von Mises complete equation (see Reference [39]):$${p}_{cr}=\frac{\frac{1}{12}\left[{\left({n}^{2}+{\left(\frac{\pi R}{L}\right)}^{2}\right)}^{2}-2{\mu}_{1}{n}^{2}+{\mu}_{2}\right]\left(\frac{E}{1-{\nu}^{2}}\right){\left(\frac{h}{R}\right)}^{3}+\frac{Eh}{R}{\left({\left(\frac{nL}{\pi R}\right)}^{2}+1\right)}^{-2}}{\left({n}^{2}-1+\frac{1}{2}{\left(\frac{\pi R}{L}\right)}^{2}\right)}$$$${\mu}_{1}=1+\frac{\rho}{2}\left(3+\nu +\left(1-{\nu}^{2}\right)\rho \right)\phantom{\rule{0ex}{0ex}}{\mu}_{2}=1+\rho \left(1+\nu \right)-{\rho}^{2}\left[\nu \left(1+2\nu \right)+\left(1-{\nu}^{2}\right)\left(1-\rho \nu \right)\left(1+\frac{\left(1+\nu \right)}{\left(1-\nu \right)}\rho \right)\right]\phantom{\rule{0ex}{0ex}}\rho =\frac{1}{1+{\left(\frac{nL}{\pi R}\right)}^{2}}$$
- The Tokugawa equation (see Reference [39]):$${p}_{cr}=\frac{\frac{1}{12}\left[{\left({n}^{2}+{\left(\frac{\pi R}{L}\right)}^{2}\right)}^{2}-\frac{{n}^{4}\left(2{n}^{2}-1\right)}{{\left({n}^{2}+{\left(\frac{\pi R}{L}\right)}^{2}\right)}^{2}}\right]\left(\frac{E}{1-{\nu}^{2}}\right){\left(\frac{h}{R}\right)}^{3}+\frac{Eh}{R}{\left({\left(\frac{nL}{\pi R}\right)}^{2}+1\right)}^{-2}}{\left({n}^{2}-1+\frac{1}{2}{\left(\frac{\pi R}{L}\right)}^{2}\right)}$$
- The U.S. Experimental Model Basin (DTMB) equation (see Reference [39]):$${p}_{cr}=\frac{2.42E}{{\left(1-{\nu}^{2}\right)}^{3/4}}{\left(\frac{h}{2R}\right)}^{5/2}{\left(\frac{L}{2R}-0.45{\left(\frac{h}{2R}\right)}^{1/2}\right)}^{-1}$$
- The Kendrick equation (see Reference [30], page 19):$${p}_{cr}=\frac{Eh}{R}\frac{\left[{\left({\left(\frac{nL}{\pi R}\right)}^{2}+1\right)}^{-2}+\frac{{h}^{2}}{12{R}^{2}\left(1-{\nu}^{2}\right)}{\left({n}^{2}-1+{\left(\frac{\pi R}{L}\right)}^{2}\right)}^{2}\right]}{\left[{n}^{2}-1+\frac{1}{2}{\left(\frac{\pi R}{L}\right)}^{2}\right]}$$$${\varphi}_{cr}=\frac{{p}_{cr}\left(1-{\nu}^{2}\right)}{E}\frac{R}{h}$$$$\lambda =\frac{L}{R}$$$$\xi =\frac{1}{12}{\left(\frac{h}{R}\right)}^{2}$$$$Z=\frac{{L}^{2}}{Rh}\sqrt{1-{\nu}^{2}}$$

- The shell is subjected to a uniform hydrostatic pressure, i.e., both lateral pressure and axial load are considered.
- The material of the shell is homogeneous, isotropic, and has a linear-elastic behavior.
- The formulas are valid for shells whose length is shorter than the critical length (L
_{cr}) given by (see, e.g., Reference [39]):$$\frac{{L}_{cr}}{R}=\left(\frac{16\pi \sqrt{3}}{27}\sqrt[4]{1-{\nu}^{2}}\right)\sqrt{R/h}$$ - The boundary conditions are those of a simply supported shell at both ends, which means (see, e.g., Hoff and Soong [43]):$$w={w}_{,xx}=u={N}_{x\theta}=0,\text{}\mathrm{at}\text{}x=0\text{}and\phantom{\rule{0ex}{0ex}}w={w}_{,xx}={N}_{x}={N}_{x\theta}=0,\text{}\mathrm{at}\text{}x=L\phantom{\rule{0ex}{0ex}}{N}_{x0}={\sigma}_{x0}h=-pR/2,\text{}\mathrm{at}\text{}x=L\text{}(\mathrm{pre}-\mathrm{buckling}\text{}\mathrm{state})$$

- (i)
- The most conservative value for the critical buckling pressure is the one given by the Von Mises complete equation (Equation (2)), which provides a result very close to Kendrick’s equation (Equation (5)).
- (ii)
- The least conservative value for the critical buckling pressure is the one given by the Von Mises simplified equation (Equation (1)).

## 3. Analysis of the Conventional Stiffened Shell

_{B}, which is the total length of the AUV shell), and ${P}_{c5}$ represents the externally applied pressure that makes the stress measured in the circumferential direction, at the mid surface of the plating and midway between stiffeners, reach the yield stress (${\sigma}_{y}$) of the material, and is given by the expression (see MacKay [30], page 23):

- ${R}_{f}={R}_{o}-h-{h}_{f}$ = $R-\left(h/2\right)-{h}_{f}$ (radius to the extreme fiber of frame flange),
- ${A}_{f}={h}_{f}{h}_{w}$ (cross-sectional area of frame).

## 4. Analysis of the Shell with Sliding Stiffeners

## 5. Geometrically Nonlinear Analysis of the Shell Considering Small Imperfections

## 6. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Mohseni, K. Pulsatile vortex generators for low-speed maneuvering of small underwater vehicles. Ocean Eng.
**2006**, 33, 2209–2223. [Google Scholar] [CrossRef] - Gafurov, S.A.; Klochkov, E.V. Autonomous Unmanned Underwater Vehicles Development Tendencies. In Proceedings of the Procedia Engineering; Elsevier: Amsterdam, The Netherlands, 2015; Volume 106, pp. 141–148. [Google Scholar]
- McEwen, R.; Thomas, H.; Weber, D.; Psota, F. Performance of an AUV navigation system at Arctic latitudes. IEEE J. Ocean. Eng.
**2005**, 30, 443–454. [Google Scholar] [CrossRef] - Maki, T.; Ura, T.; Sakamaki, T. AUV navigation around jacket structures II: Map based path-planning and guidance. J. Mar. Sci. Technol.
**2012**, 17, 523–531. [Google Scholar] [CrossRef] - Moschler, J.; Zhou, Y.R.; Baras, J.S.; Joh, J. A systems engineering approach to collaborative coordination of UAS in the NAS with safety guarantees. In Proceedings of the 2014 Integrated Communications, Navigation and Surveillance Conference (ICNS) Conference Proceedings, Herndon, VA, USA, 8–10 April 2014; pp. U1-1–U1-12. [Google Scholar]
- Bovio, E.; Cecchi, D.; Baralli, F. Autonomous underwater vehicles for scientific and naval operations. Annu. Rev. Control
**2006**, 30, 117–130. [Google Scholar] [CrossRef] - Smith, C.S. Design of submersible pressure hulls in composite materials. Mar. Struct.
**1991**, 4, 141–182. [Google Scholar] [CrossRef] - Graham, D. Composite pressure hulls for deep ocean submersibles. Compos. Struct.
**1995**, 32, 331–343. [Google Scholar] [CrossRef] - Do, H.C. Nonlinear buckling analysis of a cylindrical shell structures. J. Mech. Eng. Res. Dev.
**2019**, 42, 74–80. [Google Scholar] [CrossRef] - Meschini, A.; Ridolfi, A.; Gelli, J.; Pagliai, M.; Rindi, A. Pressure Hull Design Methods for Unmanned Underwater Vehicles. J. Mar. Sci. Eng.
**2019**, 7, 382. [Google Scholar] [CrossRef] [Green Version] - Beis, A. A Finite Element Analysis of the Nps Autonomous Underwater Vehicle (AUV) Hull Intended to Operate in Deep Waters; Naval Postgraduate School: Monterey, CA, USA, 2001; NPS-ME-01-005. [Google Scholar]
- Koiter, W.T. A Translation of the Stability of Elastic Equilibrium; Technical Report; Air Force Flight Dynamics Laboratory: Dayton, OH, USA, 1970. [Google Scholar]
- Simitses, G.J.; Hodges, D.H. Fundamentals of Structural Stability; Butterworth-Heinemann: Oxford, UK, 2006; ISBN 978-0-7506-7875-9. [Google Scholar]
- Reis, A.J.; Walker, A.C. Local buckling strength of ring stiffened cylindrical shells under external pressure. Appl. Ocean Res.
**1983**, 5, 56–62. [Google Scholar] [CrossRef] - Nguyen, H.L.T.; Elishakoff, I.; Nguyen, V.T. Buckling under the external pressure of cylindrical shells with variable thickness. Int. J. Solids Struct.
**2009**, 46, 4163–4168. [Google Scholar] [CrossRef] [Green Version] - Yang, L.; Chen, Z.; Chen, F.; Guo, W.; Cao, G. Buckling of cylindrical shells with general axisymmetric thickness imperfections under external pressure. Eur. J. Mech. A/Solids
**2013**, 38, 90–99. [Google Scholar] [CrossRef] - Godoy, L.A.; Jaca, R.C.; Sosa, E.M.; Flores, F.G. A penalty approach to obtain lower bound buckling loads for imperfection-sensitive shells. Thin-Walled Struct.
**2015**, 95, 183–195. [Google Scholar] [CrossRef] - Liguori, F.S.; Madeo, A.; Magisano, D.; Leonetti, L.; Garcea, G. Post-buckling optimisation strategy of imperfection sensitive composite shells using Koiter method and Monte Carlo simulation. Compos. Struct.
**2018**, 192, 654–670. [Google Scholar] [CrossRef] - Groh, R.M.J.; Avitabile, D.; Pirrera, A. Generalised path-following for well-behaved nonlinear structures. Comput. Methods Appl. Mech. Eng.
**2018**, 331, 394–426. [Google Scholar] [CrossRef] - Liang, K.; Ruess, M.; Abdalla, M. The Koiter-Newton approach using von Ka’rma´n kinematics for buckling analyses of imperfection sensitive structures. Comput. Methods Appl. Mech. Eng.
**2014**, 279, 440–468. [Google Scholar] [CrossRef] - Wunderlich, W.; Albertin, U. Analysis and load carrying behaviour of imperfection sensitive shells. Int. J. Numer. Methods Eng.
**2000**, 47, 255–273. [Google Scholar] [CrossRef] - Garcea, G.; Liguori, F.S.; Leonetti, L.; Magisano, D.; Madeo, A. Accurate and efficient a posteriori account of geometrical imperfections in Koiter finite element analysis. Int. J. Numer. Methods Eng.
**2017**, 112, 1154–1174. [Google Scholar] [CrossRef] - Arani, A.G.; Loghman, A.; Barzoki, A.A.M.; Kolahchi, R. Elastic Buckling Analysis of Ring and Stringer-stiffened Cylindrical Shells under General Pressure and Axial Compression via the Ritz Method. J. Solid Mech.
**2010**, 2, 332–347. [Google Scholar] - Singer, J.; Baruch, M.; Harari, O. On the stability of eccentrically stiffened cylindrical shells under axial compression. Int. J. Solids Struct.
**1967**, 3, 445–470. [Google Scholar] [CrossRef] - Bai, X.; Xu, W.; Ren, H.; Li, J. Analysis of the influence of stiffness reduction on the load carrying capacity of ring-stiffened cylindrical shell. Ocean Eng.
**2017**, 135, 52–62. [Google Scholar] [CrossRef] - Cho, S.R.; Do, Q.T.; Shin, H.K. Residual strength of damaged ring-stiffened cylinders subjected to external hydrostatic pressure. Mar. Struct.
**2017**, 56, 186–205. [Google Scholar] [CrossRef] - Cho, S.R.; Muttaqie, T.; Do, Q.T.; Kim, S.; Kim, S.M.; Han, D.H. Experimental investigations on the failure modes of ring-stiffened cylinders under external hydrostatic pressure. Int. J. Nav. Archit. Ocean Eng.
**2018**, 10, 711–729. [Google Scholar] [CrossRef] - Almeida, J.H.S.; Bittrich, L.; Jansen, E.; Tita, V.; Spickenheuer, A. Buckling optimization of composite cylinders for axial compression: A design methodology considering a variable-axial fiber layout. Compos. Struct.
**2019**, 222, 110928. [Google Scholar] [CrossRef] - Radha, P.; Rajagopalan, K. Ultimate strength of submarine pressure hulls with failure governed by inelastic buckling. Thin-Walled Struct.
**2006**, 44, 309–313. [Google Scholar] [CrossRef] - MacKay, J.R. Structural Analysis and Design of Pressure Hulls: The State of the Art and Future Trends; Defense R&D Canada-Atlantic: Ottawa, ON, Canada, 2007. [Google Scholar]
- MacKay, J.R.; Smith, M.J.; van Keulen, F.; Bosman, T.N.; Pegg, N.G. Experimental investigation of the strength and stability of submarine pressure hulls with and without artificial corrosion damage. Mar. Struct.
**2010**, 23, 339–359. [Google Scholar] [CrossRef] - MacKay, J.R.; Van Keulen, F.; Smith, M.J. Quantifying the accuracy of numerical collapse predictions for the design of submarine pressure hulls. Thin-Walled Struct.
**2011**, 49, 145–156. [Google Scholar] [CrossRef] - MacKay, J.R.; Van Keulen, F. Partial safety factor approach to the design of submarine pressure hulls using nonlinear finite element analysis. Finite Elem. Anal. Des.
**2013**, 65, 1–16. [Google Scholar] [CrossRef] - Ross, C.T.F.; Humphries, M. The buckling of corrugated circular cylinders under uniform external pressure. Thin-Walled Struct.
**1993**, 17, 259–271. [Google Scholar] [CrossRef] - Zhang, J.; Zhang, S.; Cui, W.; Zhao, X.; Tang, W.; Wang, F. Buckling of circumferentially corrugated cylindrical shells under uniform external pressure. Ships Offshore Struct.
**2019**, 14, 879–889. [Google Scholar] [CrossRef] - Griffiths, G. Technology and Applications of Autonomous Underwater Vehicles, 1st ed.; CRC Press: Boca Raton, FL, USA, 2002; ISBN 9780415301541. [Google Scholar]
- Xiang, Y.; Wang, C.M.; Lim, C.W.; Kitipornchai, S. Buckling of intermediate ring supported cylindrical shells under axial compression. Thin-Walled Struct.
**2005**, 43, 427–443. [Google Scholar] [CrossRef] - de Barros, E.A.; Dantas, J.L.D.; Freire, L.O.; Stoeterau, R.L. An AUV project applied to studies on manoeuvrability of underwater vehicles. In Further Advances in Unmanned Marine Vehicles; Institution of Engineering and Technology: Stevenage, UK, 2012; pp. 69–90. ISBN 9781849194808. [Google Scholar]
- Windenburg, D.F.; Trilling, C. Collapse by instability of thin cylindrical shells under external pressure. Appl. Mech.
**1934**, 819–825. [Google Scholar] - Donnell, L.H. Beams, plates and shells. In Engineering Societies Monographs, 1st ed.; McGraw-Hill Inc.: New York, NY, USA, 1976; ISBN 9780070175938. [Google Scholar]
- Timoshenko, S.P.; Gere, J.M. Theory of Elastic Stability, 2nd ed.; McGraw-Hill Book Company: New York, NY, USA, 1961. [Google Scholar]
- Allen, H.G.; Bulson, P.S. Background to Buckling; McGraw-Hill Book Co: New York, NY, USA, 1980; ISBN 0-07-084100-4. [Google Scholar]
- Hoff, N.J.; Soong, T.C. Buckling of circular cylindrical shells in axial compression. Int. J. Mech. Sci.
**1965**, 7, 489–520. [Google Scholar] [CrossRef] - Galambos, T.V. Guide to Stability Design Criteria for Metal Structures, 5th ed.; John Wiley: New York, NY, USA, 1998; ISBN 9780471127420. [Google Scholar]
- Kendrick, S. Externally Pressurized Vessels. In The Stress Analysis of Pressure Vessels and Pressure Vessel Components; Pergamon Press: Oxford, UK, 1970; pp. 405–511. ISBN 9780080067292. [Google Scholar]
- Kendrick, S. Ring-stiffened cylinders under external pressure. In Shell Structures: Stability and Strength; Elsevier Applied Science: London, UK, 1985; pp. 57–95. ISBN 978-0853343431. [Google Scholar]
- Lunchick, M.E. Plastic General-Instability Pressure of Ring-Stiffened Cylindrical Shells; David Taylor Model Basin Report 1392: Bethesda, MD, USA, 1963. [Google Scholar]

**Figure 10.**Schematic view of the internal structure of the autonomous underwater vehicle (AUV) and its sliding stiffeners: (

**a**) overall structural arrangement; (

**b**) ring stiffener detail.

**Figure 11.**Geometries considered in the analyses: (

**a**) four conventional stiffeners rigidly attached to the shell (Section 3), (

**b**) shell with sliding stiffeners regularly spaced along the shell.

**Figure 16.**Most refined mesh used for the shell with sliding stiffeners: front view of the stiffening members.

**Figure 17.**Critical pressures obtained by the finite element method for the three alternative shell designs.

**Figure 18.**Maximum shell imperfections at the mid-section: (

**a**) 5% and (

**b**) 10% of the shell thickness.

**Figure 19.**Critical buckling pressure for the perfect shell (linear bifurcation analysis) and geometrically nonlinear analysis curves for shells with imperfections.

Equation | ${\mathit{\varphi}}_{\mathit{c}\mathit{r}}$ | ${\mathit{p}}_{\mathit{c}\mathit{r}}\text{}\left(\mathbf{MPa}\right)$ |
---|---|---|

(1) Von Mises (simplified) | 1.7182 × 10^{−3} | 8.86 |

(2) Von Mises (complete) | 1.4212 × 10^{−3} | 7.33 |

(3) Tokugawa | 1.5173 × 10^{−3} | 7.82 |

(4) DTMB | 1.6372 × 10^{−3} | 8.44 |

(5) Kendrick | 1.4355 × 10^{−3} | 7.40 |

Mean Value: | 1.5459 × 10^{−3} | 7.97 |

Parameter | Value |
---|---|

L_{B} (length between bulkhead supports) | 840 mm |

L_{f} (length between stiffeners) | 168 mm |

L = L_{f} − h_{w} (unsupported length) | 161.65 mm |

h_{w} (stiffeners’ thickness) | 6.35 mm |

h_{f} (stiffeners’ height) | 6.35 mm |

N (number of ring stiffeners) | 4 |

**Table 3.**Calculated critical pressures for the conventional stiffened shell using analytical formulations.

$\mathbf{Equation}\text{}\mathbf{to}\text{}\mathbf{Estimate}\text{}{\mathit{p}}_{\mathit{s}}$ | ${\mathit{p}}_{\mathit{s}}\text{}\left(\mathbf{MPa}\right)$ | ${\mathit{p}}_{\mathit{c}\mathit{r}}\text{}\left(\mathbf{MPa}\right)$ |
---|---|---|

(1) Von Mises (simplified) | 8.86 | 12.31 |

(2) Von Mises (complete) | 7.33 | 10.78 |

(3) Tokugawa | 7.82 | 11.27 |

(4) DTMB | 8.44 | 11.89 |

(5) Kendrick | 7.40 | 10.85 |

Mean Value: | 7.97 | 11.42 |

Eigenmode | Buckling Pressure (MPa) | ||
---|---|---|---|

Unstiffened Shell | Conventional Stiffened Shell | Sliding Stiffeners | |

1º | 9.093 | 11.295 | 12.853 |

2º | 15.852 | 19.273 | 19.651 |

3º | 19.474 | 22.979 | 27.728 |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Siqueira Nóbrega de Freitas, A.; Alfonso Alvarez, A.; Ramos, R., Jr.; de Barros, E.A.
Buckling Analysis of an AUV Pressure Vessel with Sliding Stiffeners. *J. Mar. Sci. Eng.* **2020**, *8*, 515.
https://doi.org/10.3390/jmse8070515

**AMA Style**

Siqueira Nóbrega de Freitas A, Alfonso Alvarez A, Ramos R Jr., de Barros EA.
Buckling Analysis of an AUV Pressure Vessel with Sliding Stiffeners. *Journal of Marine Science and Engineering*. 2020; 8(7):515.
https://doi.org/10.3390/jmse8070515

**Chicago/Turabian Style**

Siqueira Nóbrega de Freitas, Artur, Alexander Alfonso Alvarez, Roberto Ramos, Jr., and Ettore Apolonio de Barros.
2020. "Buckling Analysis of an AUV Pressure Vessel with Sliding Stiffeners" *Journal of Marine Science and Engineering* 8, no. 7: 515.
https://doi.org/10.3390/jmse8070515