Numerical and Experimental Study of Flow Field between the Main Hull and Demi-Hull of a Trimaran
Abstract
:1. Introduction
2. Numerical Method
2.1. Governing Equations
2.2. Turbulence Model and Free-Surface Treatment
2.3. Wave Damping
2.4. Boundary Conditions and Meshing
3. Experimental Evaluation
3.1. Experimental Model
3.2. Nonstandard Calibration for PIV System
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Toda, Y. Image based measurement around ship hull (Group Discussion 2). In Proceedings of the 25th ITTC-Volume III, Fukuoka, Japan, 14–20 September 2008. [Google Scholar]
- Zhang, Z.-R. Verification and validation for RANS simulation of KCS container ship without/with propeller. J. Hydrodyn. 2010, 22, 932–939. [Google Scholar] [CrossRef]
- Sadat-Hosseini, H.; Wu, P.-C.; Carrica, P.M.; Kim, H.; Toda, Y.; Stern, F. CFD verification and validation of added resistance and motions of KVLCC2 with fixed and free surge in short and long head waves. Ocean Eng. 2013, 59, 240–273. [Google Scholar] [CrossRef]
- Ahmed, Y.; Soares, C.G. Simulation of free surface flow around a VLCC hull using viscous and potential flow methods. Ocean Eng. 2009, 36, 691–696. [Google Scholar] [CrossRef]
- Choi, J.E.; Min, K.S.; Kim, J.H.; Lee, S.B.; Seo, H.W. Resistance and propulsion characteristics of various commercial ships based on CFD results. Ocean Eng. 2010, 37, 549–566. [Google Scholar] [CrossRef]
- He, W.; Castiglione, T.; Kandasamy, M.; Stern, M. Numerical analysis of the interference effects on resistance, sinkage and trim of a fast catamaran. J. Mar. Sci. Technol. 2015, 20, 292–308. [Google Scholar] [CrossRef]
- Ma, J.; Oberai, A.A.; Hyman, M.C.; Drew, D.A.; Lahey, R.T., Jr. Two-fluid modeling of bubbly flows around surface ships using a phenomenological subgrid air entrainment model. Comput. Fluids 2011, 52, 50–57. [Google Scholar] [CrossRef]
- Wan, D.; Shen, Z.; Ma, J. Numerical simulations of viscous flows around surface ship by level set method. J. Hydrodyn. 2010, 22, 271–277. [Google Scholar] [CrossRef]
- Wang, J.; Yu, H.; Zhang, Y.-F.; Cai, R. Numerical simulation of viscous wake field and resistance prediction around slow-full ships. J. Hydrodyn. 2010, 25, 648–654. [Google Scholar]
- Larsson, L.; Stern, F.; Visonneau, M. CFD in ship hydrodynamics—Results of the Gothenburg 2010 Workshop. In IV International Conference on Computational Methods in Marine Engineering; Selected Papers; Springer: Dordrecht, The Netherlands, 2013; pp. 237–259. [Google Scholar]
- Arslan, T.; Petterson, B.; Andersson, H.I. Investigation of the flow around two interacting ship-like sections. J. Fluids Eng. 2015, 137, 041205. [Google Scholar] [CrossRef]
- Wen, Q.; Kim, H.D.; Liu, Y.Z.; Kim, K.C. Dynamic structures of a submerged jet interacting with a free surface. Exp. Therm. Fluid Sci. 2014, 57, 396–406. [Google Scholar] [CrossRef]
- Gim, O. Assessment of flow characteristics around twin rudder with various gaps using PIV analysis in uniform flow. Ocean Eng. 2013, 66, 1–11. [Google Scholar] [CrossRef]
- Longo, J.; Shao, J.; Irvine, M.; Stern, F. Phase-averaged PIV for the nominal wake of a surface ship in regular head waves. J. Fluids Eng. 2007, 129, 524–540. [Google Scholar] [CrossRef]
- Han, K.; Huang, D. Wave making resistance calculation of trimaran. J. Harbin Eng. Univ. 2000, 1, 6–10. [Google Scholar]
- Huang, D.; Zhang, Y.; Deng, R.; Li, J. Numerical simulation of viscous flow around high speed monohull and trimaran ships. J. Harbin Eng. Univ. 2010, 6, 683–688. [Google Scholar]
- Wang, Z.; Lu, X.; Wang, W. Application of the nonlinear wave making numerical method in the high-speed trimaran side hull position optimization. J. Ship Mech. 2010, 8, 863–871. [Google Scholar]
- Wang, Z.; Lu, X.; Wang, W. Fast free-surface mesh generation for the calculation of trimaran wave making resistance. J. Harbin Eng. Univ. 2010, 4, 409–413. [Google Scholar]
- Wang, Z.; Lu, X.; Zhan, J. New development on the investigation of high speed trimaran hydrodynamics and hull form. J. Ship Mech. 2011, 7, 813–826. [Google Scholar]
- Pavkov, M.; Morabito, M. Experimental investigation of trimaran models in shallow water. J. Prod. Des. 2014, 30, 66–78. [Google Scholar] [CrossRef]
- Fang, M.C.; Chen, T.Y. A parametric study of wave loads on trimaran ships traveling in waves. Ocean Eng. 2008, 35, 749–762. [Google Scholar] [CrossRef]
- Hafez, K.A.; EI-Kot, A.A. Comparative investigation of the stagger variation influence on the hydrodynamic interference of high speed trimaran. Alex. Eng. J. 2012, 51, 153–169. [Google Scholar] [CrossRef] [Green Version]
- Wilcox, D.C. Turbulence Modeling for CFD; DOW Industries Inc.: La Canada, CA, USA, 1994. [Google Scholar]
- Weiss, J.M.; Smith, W.A. Preconditioning applied to variable and constant density flows. AIAA J. 1995, 33, 2050–2057. [Google Scholar] [CrossRef]
- Menter, F.R. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 1994, 32, 1598–1605. [Google Scholar] [CrossRef] [Green Version]
- Hirt, C.W.; Nichols, B.D. Volume of fluid (VOF) method for the dynamics of free boundary. J. Comput. Phys. 1981, 39, 201–225. [Google Scholar] [CrossRef]
- Choi, J.; Yoon, S.B. Numerical simulations using momentum source wave-maker applied to RANS equation model. Coast. Eng. 2009, 56, 1043–1060. [Google Scholar] [CrossRef]
- Luo, W.; Guo, C.; Wu, T.; Xu, P.; Su, Y. Experimental study on the wake fields of a ship attached with model ice based on stereo particle image velocimetry. Ocean Eng. 2018, 164, 661–671. [Google Scholar]
- Wang, L.; Martin, J.E.; Felli, M.; Carrica, P.M. Experiments and CFD for the propeller wake of a generic submarine operating near the surface. Ocean Eng. 2020, 206, 107304. [Google Scholar] [CrossRef]
- Wu, T.; Luo, W.; Jiang, D.; Deng, R.; Li, Y. Stereo Particle Image Velocimetry Measurements of the Wake Fields Behind a Panamax Bulker Ship Model Under the Ballast Condition. J. Mar. Sci. Eng. 2020, 8, 397. [Google Scholar] [CrossRef]
- Wang, L.; Guo, C.; Xu, P.; Su, Y. Analysis of the wake dynamics of a propeller operating before a rudder. Ocean Eng. 2019, 188, 106250. [Google Scholar] [CrossRef]
- Wang, L.; Guo, C.; Su, Y.; Wu, T. A numerical study on the correlation between the evolution of propeller trailing vortex wake and skew of propellers. Int. J. Nav. Archit. Ocean Eng. 2018, 10, 212–224. [Google Scholar] [CrossRef]
- Wu, T.; Deng, R.; Luo, W.; Sun, P.; Dai, S.; Li, Y. 3D-3C wake field measurement, reconstruction and spatial distribution of a Panamax Bulk using towed underwater 2D-3C SPIV. Appl. Ocean Res. 2020, 105, 102437. [Google Scholar] [CrossRef]
- Guo, C.; Wu, T.; Luo, W.; Chang, X.; Gong, J.; She, W. Experimental study on the wake fields of a Panamax Bulker based on stereo particle image velocimetry. Ocean Eng. 2018, 165, 91–106. [Google Scholar] [CrossRef]
- Wang, L.; Guo, C.; Su, Y.; Xu, P.; Wu, T. Numerical analysis of a propeller during heave motion in cavitating flow. Appl. Ocean Res. 2017, 66, 131–145. [Google Scholar] [CrossRef]
Parameter | Main Body | Demi-Body |
---|---|---|
Total length, Loa (m) | 3.115 | 1.167 |
Length between perpendiculars, Lpp (m) | 3.000 | 1.110 |
Breadth max. molded, B (m) | 0.231 | 0.040 |
Depth max. molded, D (m) | 0.204 | 0.150 |
Drought molded, T (m) | 0.112 | 0.058 |
Volume displacement molded, () | 0.0381 | 0.0012 |
Boundary Name | Boundary Condition |
---|---|
Velocity inlet | Low-amplitude volume-of-fluid (VOF) wave based on vapor VOF species, with a turbulence intensity of 0.01 |
Pressure outlet | Low-amplitude VOF wave based on vapor VOF species with hydrodynamic pressure |
Bottom/Top/Side1/Side2 | Same as inlet |
Ship | No-slip wall |
Face Mesh | Number of Meshes | Percentage |
---|---|---|
1.00 ≤ Face Validity | 2,458,838 | 100.000% |
0.95 ≤ Face Validity < 1.00 | 0 | 0.000% |
Volume mesh | Number of meshes | Percentage |
0.1 ≤ Volume Change ≤ 1 | 2,447,850 | 99.553% |
0.01 ≤ Volume Change ≤ 0.1 | 10,865 | 0.442% |
0.001 ≤ Volume Change ≤ 0.1 | 123 | 0.005% |
Speed (m/s) | Experimental Result (N) | Numerical Result (N) | Error (%) |
---|---|---|---|
1.380 | 5.242 | 5.302 | 1.14 |
1.841 | 9.161 | 9.228 | 0.73 |
2.147 | 11.990 | 12.017 | 0.23 |
2.454 | 16.757 | 16.852 | 0.57 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, C.; Guo, C.; Wang, C.; Wang, L.; Lin, J. Numerical and Experimental Study of Flow Field between the Main Hull and Demi-Hull of a Trimaran. J. Mar. Sci. Eng. 2020, 8, 975. https://doi.org/10.3390/jmse8120975
Sun C, Guo C, Wang C, Wang L, Lin J. Numerical and Experimental Study of Flow Field between the Main Hull and Demi-Hull of a Trimaran. Journal of Marine Science and Engineering. 2020; 8(12):975. https://doi.org/10.3390/jmse8120975
Chicago/Turabian StyleSun, Cong, Chunyu Guo, Chao Wang, Lianzhou Wang, and Jianfeng Lin. 2020. "Numerical and Experimental Study of Flow Field between the Main Hull and Demi-Hull of a Trimaran" Journal of Marine Science and Engineering 8, no. 12: 975. https://doi.org/10.3390/jmse8120975
APA StyleSun, C., Guo, C., Wang, C., Wang, L., & Lin, J. (2020). Numerical and Experimental Study of Flow Field between the Main Hull and Demi-Hull of a Trimaran. Journal of Marine Science and Engineering, 8(12), 975. https://doi.org/10.3390/jmse8120975