# Long-Term Performance of Mega-Nourishments: Role of Directional Wave Climate and Initial Geometry

^{1}

^{2}

^{3}

^{4}

^{5}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Methodology

#### 2.1. Morphology of the Zm and Prevailing Wave Conditions

#### 2.2. Model Description

#### 2.3. Model Settings

#### 2.4. Metrics for Mega-Nourishment Performance

## 3. Effect of Varying the Wave Angle

#### 3.1. Design and Validation of the Synthetic Wave Climate

#### 3.2. Sensitivity to the Frequency of High-Angle Waves

## 4. Effect of Varying the Mega-Nourishment Geometry

#### 4.1. Sensitivity to the Initial Asymmetry

#### 4.2. Sensitivity to the Initial Aspect Ratio

#### 4.3. Sensitivity to The Volume

## 5. Discussion

#### 5.1. Physical Processes Driving Mega-Nourishment Evolution

#### 5.1.1. Importance of High-Angle Waves

#### 5.1.2. Diffusivity and Feeding Asymmetry

#### 5.2. Design Recommendations

## 6. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## Appendix A. Design of the Synthetic Mega-Nourishment

**Figure A1.**Simplified Zandmotor bathymetry (SZM) obtained from measurements (17 January 2012) (

**a**) and synthetic mega-nourishment bathymetry (SMN) adjusted from a Gaussian-shape function (

**b**), both with the dry beach set to 2 m; and (

**c**,

**d**) their respective associated bed level perturbations.

**Figure A2.**The 50-year evolution of: (

**a**) diffusivity; (

**b**) feeding asymmetry; and (

**c**) displacement for the Zandmotor (blue lines), simplified Zandmotor (red lines) and synthetic mega-nourishment (yellow lines) predictions.

## References

- Stive, M.J.F.; de Schipper, M.A.; Luijendijk, A.P.; Aarninkhof, S.G.J.; van Gelder-Maas, C.; van Thiel de Vries, J.S.M.; de Vries, S.; Henriquez, M.; Marx, S.; Ranasinghe, R. A new alternative to saving our beaches from sea-level rise: The Sand Engine. Coast. Eng.
**2013**, 29, 1001–1008. [Google Scholar] [CrossRef] - Hamm, L.; Capobianco, M.; Dette, H.H.; Lechuga, A.; Spanhoff, R.; Stive, M.J.F. A summary of European experience with shore nourishment. Coast. Eng.
**2002**, 47, 237–264. [Google Scholar] [CrossRef] - de Schipper, M.A.; De Vries, S.; Ruessink, B.G.; De Zeeuw, R.C.; Rutten, J.; Van Gelder-Maas, C.; Stive, M.J.F. Initial spreading of a mega feeder nourishment: Observations of the Sand Engine pilot project. Coast. Eng.
**2016**, 111, 23–38. [Google Scholar] [CrossRef] [Green Version] - Luijendijk, A.P.; Ranasinghe, R.; de Schipper, M.A.; Huisman, B.A.; Swinkels, C.M.; Walstra, D.J.R.; Stive, M.J.F. The initial morphological response of the Sand Engine: A process-based modelling study. Coast. Eng.
**2017**, 119, 1–14. [Google Scholar] [CrossRef] [Green Version] - Rutten, J.; Ruessink, B.G.; Price, T.D. Observations on sandbar behaviour along a man-made curved coast. Earth Surf. Process. Landforms
**2018**, 43, 134–149. [Google Scholar] [CrossRef] [Green Version] - Lesser, G.R.; Roelvink, J.A.; van Kester, J.A.T.M.; Stelling, G.S. Development and validation of a three-dimensional morphological model. Coastal Eng.
**2004**, 51, 883–915. [Google Scholar] [CrossRef] - Ruggiero, P.; Buijsman, M.; Kaminsky, G.M.; Gelfenbaum, G. Modeling the effects of wave climate and sediment supply variability on large-scale shoreline change. Mar. Geol.
**2010**, 273, 127–140. [Google Scholar] [CrossRef] - Luijendijk, A.P.; de Schipper, M.A.; Ranasinghe, R. Morphodynamic Acceleration Techniques for Multi-Timescale Predictions of Complex Sandy Interventions. J. Mar. Sci. Eng.
**2019**, 7, 78. [Google Scholar] [CrossRef] [Green Version] - Falqués, A.; Garnier, R.; Ojeda, E.; Ribas, F.; Guillén, J. Q2D-morfo: A medium to long term model for beach morphodynamics. In River, Coastal and Estuarine Morphodynamics: RCEM 2007; Dohmen-Jansen, C.M., Hulscher, S.J.M.H., Eds.; Taylor and Francis Group: London, UK, 2008; Volume 1, pp. 71–78. [Google Scholar]
- van den Berg, N.; Falqués, A.; Ribas, F. Long-term evolution of nourished beaches under high angle wave conditions. J. Mar. Syst.
**2011**, 88, 102–112. [Google Scholar] [CrossRef] - Arriaga, J.; Rutten, J.; Ribas, F.; Ruessink, B.; Falqués, A. Modeling the longterm diffusion and feeding capability of a mega-nourishment. Coast. Eng.
**2017**, 121, 1–13. [Google Scholar] [CrossRef] [Green Version] - Tonnon, P.K.; Huisman, B.J.A.; Stam, G.N.; van Rijn, L.C. Numerical modelling of erosion rates, life span and maintenance volume of mega nourishments. Coast. Eng.
**2018**, 131, 51–69. [Google Scholar] [CrossRef] [Green Version] - Falqués, A.; Calvete, D. Large scale dynamics of sandy coastlines. Diffusivity and instability. J. Geophys. Res.
**2005**, 110. [Google Scholar] [CrossRef] [Green Version] - Idier, D.; Falqués, A.; Rohmer, J.; Arriaga, J. Self-organized kilometre-scale shoreline sandwave generation: Sensitivity to model and physical parameters. J. Geophys. Res.
**2017**, 122. [Google Scholar] [CrossRef] [Green Version] - Ashton, A.; Murray, A.B. High-angle wave instability and emergent shoreline shapes: 1. Modeling of sand waves, flying spits, and capes. J. Geophys. Res.
**2006**, 111, F04011. [Google Scholar] [CrossRef] [Green Version] - Kaergaard, K.; Fredsoe, J. Numerical modeling of shoreline undulations part 2: Varying wave climate and comparison with observations. Coastal Eng.
**2013**, 75, 77–90. [Google Scholar] [CrossRef] [Green Version] - Kaergaard, K.; Fredsoe, J. Numerical modeling of shoreline undulations part 1: Constant wave climate. Coastal Eng.
**2013**, 75, 64–76. [Google Scholar] [CrossRef] - Falqués, A. Wave driven alongshore sediment transport and stability of the Dutch coastline. Coast. Eng.
**2006**, 53, 243–254. [Google Scholar] [CrossRef] - Ashton, A.; Murray, A.B.; Arnault, O. Formation of coastline features by large-scale instabilities induced by high-angle waves. Nature
**2001**, 414, 296–300. [Google Scholar] [CrossRef] - Falqués, A.; Ribas, F.; Idier, D.; Arriaga, J. Formation mechanisms for self-organized kilometer-scale shoreline sand waves. J. Geophys. Res. Earth Surf.
**2017**, 122, 10.1002/2016JF003964. [Google Scholar] [CrossRef] [Green Version] - Portos, L. Effect of Sea Level Variations in the Long-Term Dynamics of the Zandmotor Meganourishment. Bachelor’s Thesis, Universitat Politècnica de Catalunya, Barcelona, Spain, 2020. [Google Scholar]
- van den Berg, N.; Falqués, A.; Ribas, F. Modelling large scale shoreline sand waves under oblique wave incidence. J. Geophys. Res.
**2012**, 117. [Google Scholar] [CrossRef] [Green Version] - Komar, P.D. Beach Processes and Sedimentation, 2nd ed.; Prentice Hall: Englewood Cliffs, NJ, USA, 1998. [Google Scholar]
- Battjes, J.A. Modeling of turbulence in the surfzone. Symp. Model. Tech.
**1975**, 2, 1050–1061. [Google Scholar] - Pelnard-Considère, R. Essai de theorie de l’Evolution des Formes de Rivage en Plages de Sable et de Galets. Journees L’Hydraulique
**1956**, 3, 289–298. [Google Scholar] - Falqués, A. On the diffusivity in coastline dynamics. Geophys. Res. Lett.
**2003**, 30, 2119. [Google Scholar] [CrossRef] - Ashton, A.; Murray, A.B. High-angle wave instability and emergent shoreline shapes: 2. Wave climate analysis and comparisons to nature. J. Geophys. Res.
**2006**, 111, F04012. [Google Scholar] [CrossRef] [Green Version] - Roelvink, J.A.; Reniers, A.J.H.M. A guide to modeling coastal morphology. In Advances in Coastal and Ocean Engineering; World Scientific: Singapore, 2011. [Google Scholar] [CrossRef]
- Walstra, D.J.R.; Hoekstra, R.; Tonnon, P.K.; Ruessink, B.G. Input reduction for long-term morphodynamic simulations in wave-dominated coastal settings. Coast. Eng.
**2013**, 77, 57–70. [Google Scholar] [CrossRef] - Benedet, L.; Dobrochinski, J.P.F.; Walstra, D.J.R.; Klein, A.H.F.; Ranasinghe, R. A morphological modeling study to compare different methods of wave climate schematization and evaluate strategies to reduce erosion losses from a beach nourishment project. Coast. Eng.
**2016**, 112, 69–86. [Google Scholar] [CrossRef] - Yu, J.; Slinn, D.N. Effects of wave-current interaction on rip currents. J. Geophys. Res.
**2003**, 108. [Google Scholar] [CrossRef]

**Figure 1.**Aerial pictures of the first concentrated mega-nourishment (ZM, The Netherlands), showing its morphological evolution in the initial six years. Pictures were taken in: (

**a**) July 2011 (shortly after construction); (

**b**) October 2011; (

**c**) January 2012; (

**d**) October 2012; (

**e**) October 2013; (

**f**) September 2014; (

**g**) May 2015; (

**h**) August 2016; and (

**i**) July 2017. Courtesy: Rijkswaterstaat, Joop van der Hout.

**Figure 2.**Sketch of the model simulations, where the y-axis would point into the southwestern direction if this was the real Zandmotor in the Dutch coast. The wave angle $\theta $ indicated has a positive sign and the shown mega-nourishment has a negative orientation. The areas defined to compute the feeding to adjacent beaches are marked with a dashed rectangle.

**Figure 3.**Schematic sketch of wave rose with the five different wave sectors. Sector V represents seaward-directed waves and therefore time periods without morphological changes. The horizontal and vertical line represent the mean coastline and the shore-normal, respectively.

**Figure 4.**Time-averaged shoreline RMSE in the first 30 years and the final 5 years (Years 25–30) for SWCs with a different number of directional sectors (

**a**); and the time evolution of the diffusivity (

**b**), feeding asymmetry (

**c**), and alongshore displacement (

**d**) for the RWC and SWCs with 4 or 64 sectors.

**Figure 5.**Probability of occurrence of each wave sectors for varying high-angle wave frequency, ${p}_{O}$, for: (

**a**) bimodal conditions assuming that both Sectors I and IV are modified proportionally; and (

**b**) unimodal conditions assuming that only the probability of occurrence of Sector I increases. Averaged diffusivity over the last five years of simulations as a function of high-angle wave frequency (

**c**). Shorelines after 50 years of evolution for the indicated simulations (

**d**).

**Figure 6.**Sensitivity of the long-term mega-nourishment evolution to the percentage of high-angle waves in a bimodal wave climate (Set 1 (

**a**,

**c**)) and in a unimodal wave climate (Set 2 (

**b**,

**d**)). Time evolution of: (

**a**,

**b**) the associated feeding asymmetry; and (

**c**,

**d**) the displacement during 50 years.

**Figure 7.**Sketch of the different initial mega-nourishment geometries, including variations on: (

**a**) the orientation or asymmetry; (

**b**) the shape factor; and (

**c**) the volume factor. Notice that the scaling of both axis is not the same.

**Figure 8.**Effect of the initial mega-nourishment orientation on: (

**a**) the final five-year diffusivity, as well as on the 50-year evolution of (

**b**) the FA and (

**c**) the displacement.

**Figure 9.**Effect of the initial mega-nourishment shape factor on: (

**a**) the final five-year diffusivity, as well as on the 50-year evolution of (

**b**) the FA and (

**c**) the displacement.

**Figure 10.**Effect of the initial mega-nourishment volume ratio on: (

**a**) the final five-year diffusivity, as well as on the 50-year evolution of (

**b**) the FA and (

**c**) the displacement.

**Table 1.**Sensitivity to the statistical method that synthesizes the RWC into four directional sectors, where H is the significant wave height, T is the peak wave period, and $\theta $ is the wave direction measured with respect to the shore normal. The frequency of occurrence of each sector is written between brackets. The last column shows the shoreline RMSE (with respect to RWC) at the end of the simulations (average over Years 25–30).

Sector I (33%) | Sector II (11%) | Sector III (27%) | Sector IV (29%) | Shoreline | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|

Method | H(m) | $\mathbf{\theta}$ (deg) | T (s) | H (m) | $\mathbf{\theta}$ (deg) | T (s) | H (m) | $\mathbf{\theta}$ (deg) | T (s) | H (m) | $\mathbf{\theta}$ (deg) | T (s) | RMSE (m) |

1 | 1.4 | −74.2 | 5.8 | 1.3 | −21.4 | 5.7 | 1.2 | 27.6 | 6.3 | 1.0 | 63.3 | 5.8 | 56 |

2 | 1.8 | −76.5 | 7.0 | 1.7 | −22.0 | 7.2 | 1.5 | 23.9 | 7.4 | 1.2 | 65.5 | 6.5 | 11 |

3 | 1.7 | −72.3 | 6.8 | 1.6 | −21.3 | 7.0 | 1.4 | 24.1 | 7.2 | 1.2 | 62.6 | 6.4 | 17 |

4 | 1.9 | −76.7 | 7.2 | 1.8 | −22.1 | 7.4 | 1.7 | 23.1 | 7.6 | 1.3 | 65.9 | 6.7 | 22 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Arriaga, J.; Ribas, F.; Falqués, A.; Rutten, J.; Ruessink, G.
Long-Term Performance of Mega-Nourishments: Role of Directional Wave Climate and Initial Geometry. *J. Mar. Sci. Eng.* **2020**, *8*, 965.
https://doi.org/10.3390/jmse8120965

**AMA Style**

Arriaga J, Ribas F, Falqués A, Rutten J, Ruessink G.
Long-Term Performance of Mega-Nourishments: Role of Directional Wave Climate and Initial Geometry. *Journal of Marine Science and Engineering*. 2020; 8(12):965.
https://doi.org/10.3390/jmse8120965

**Chicago/Turabian Style**

Arriaga, Jaime, Francesca Ribas, Albert Falqués, Jantien Rutten, and Gerben Ruessink.
2020. "Long-Term Performance of Mega-Nourishments: Role of Directional Wave Climate and Initial Geometry" *Journal of Marine Science and Engineering* 8, no. 12: 965.
https://doi.org/10.3390/jmse8120965