Case Study of Dam Overtopping from Waves Generated by Landslides Impinging Perpendicular to a Reservoir’s Longitudinal Axis
Abstract
:1. Introduction
2. Methodology
2.1. Experimental Set-up
2.2. Instrumentation
2.3. Test Program
3. Wave Types, Propagation, and Overtopping Process
3.1. Wave Types and Propagation
3.2. Wave Overtopping Process
4. Experimental Results
4.1. Overtopping Volume
4.2. Overtopping Volume Distribution
5. Discussion
5.1. Comparison with Other Studies
5.2. 3D Effects
5.3. Limitations and Potential Practical Application
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Notation
a (m) | wave amplitude; |
(m) | effective wave amplitude; |
(m) | slide width; |
(m) | reservoir width; |
(m) | dam crest width; |
(-) | overtopping volume parameter; |
F (-) | Froude number; |
f (m) | freeboard; |
g (m/s2) | gravitational acceleration; |
h (m) | still-water depth; |
(m) | landslide release height; |
H (m) | wave height; |
(m) | dam height; |
(m) | reservoir length; |
(m) | crest length; |
(m) | slide length; |
M (-) | relative slide mass; |
ms (kg) | slide mass; |
s (m) | slide thickness; |
S (-) | relative slide thickness; |
T (-) | wave type product; |
(m/s) | landslide speed; |
(m3) | slide volume; |
(m3) | overtopping volume; |
α (o) | slide ramp angle; |
β (o) | dam front face angle; |
ε (-) | relative wave amplitude; |
(kg/m3) | density of water; |
References
- Steven, N.W.; Simon, D. The 1963 landslide and flood at Vaiont reservoir Italy. A tsunami ball simulation. Ital. J. Geosci. 2011, 130, 16–26. [Google Scholar]
- Heller, V.; Hager, W.H.; Minor, H.-E. Landslide Generated Impulse Waves in Reservoirs: Basics and Computation; VAW-Mitteilung 211; ETH: Zürich, Switzerland, 2009. [Google Scholar]
- Wiegel, R.L. Laboratory studies of gravity waves generated by the movement of a submerged body. Trans. Am. Geophys. Union 1955, 36, 759–774. [Google Scholar] [CrossRef]
- Kamphuis, J.W.; Bowering, R.J. Impulse waves generated by landslides. Coast. Eng. Proc. 1970, 1, 35. [Google Scholar] [CrossRef]
- Watts, P. Water Waves Generated by Underwater Landslides. Ph.D. Thesis, California Institute of Technology, Pasadena, CA, USA, 1997. [Google Scholar]
- Synolakis, C. Generation of long waves in laboratory. J. Waterw. Port Coast. Ocean Eng. 1990, 116, 252–266. [Google Scholar] [CrossRef]
- Ataie-Ashtiani, B.; Nik-Khah, A. Impulsive waves caused by subaerial landslides. Environ. Fluid Mech. 2008, 8, 263–280. [Google Scholar] [CrossRef]
- Briggs, M.J.; Synolakis, C.E.; Harkins, G.S.; Green, D.R. Laboratory experiments of tsunami runup on a circular island. Pure Appl. Geophys. 1995, 144, 569–593. [Google Scholar] [CrossRef]
- Fritz, H.M.; Mohammed, F.; Yoo, J. Lituya Bay landslide impact generated mega-tsunami 50th anniversary. In Tsunami Science Four Years after the 2004 Indian Ocean Tsunami: Part II: Observation and Data Analysis; Cummins, P.R., Satake, K., Kong, L.S.L., Eds.; Pageoph Topical Volumes; Birkhäuser: Basel, Switzerland, 2009; pp. 153–175. [Google Scholar]
- Di Risio, M.; Sammarco, P. Analytical modeling of landslide-generated waves. J. Waterw. Port Coast. Ocean Eng. 2008, 134, 53–60. [Google Scholar] [CrossRef]
- Heller, V.; Spinneken, J. On the effect of the water body geometry on landslide–tsunamis: Physical insight from laboratory tests and 2D to 3D wave parameter transformation. Coast. Eng. 2015, 104, 113–134. [Google Scholar] [CrossRef]
- Romano, A.; Di Risio, M.; Bellotti, G.; Molfetta, M.G.; Damiani, L.; De Girolamo, P. Tsunamis generated by landslides at the coast of conical islands: Experimental benchmark dataset for mathematical model validation. Landslides 2016, 13, 1379–1393. [Google Scholar] [CrossRef]
- McFall, B.C.; Fritz, H.M. Physical modelling of tsunamis generated by three-dimensional deformable granular landslides on planar and conical island slopes. Proc. R. Soc. A Math. Phys. Eng. Sci. 2016, 472, 20160052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bellotti, G.; Romano, A. Wavenumber-frequency analysis of landslide-generated tsunamis at a conical island. Part II: EOF and modal analysis. Coast. Eng. 2017, 128, 84–91. [Google Scholar] [CrossRef]
- Di Risio, M.; Bellotti, G.; Panizzo, A.; De Girolamo, P. Three-dimensional experiments on landslide generated waves at a sloping coast. Coast. Eng. 2009, 56, 659–671. [Google Scholar] [CrossRef]
- Evers, F. Spatial Propagation of Landslide Generated Impulse Waves; VAW-Mitteilung 244; ETH: Zürich, Switzerland, 2017. [Google Scholar]
- Huber, L.E.; Evers, F.M.; Hager, W.H. Solitary wave overtopping at granular dams. J. Hydraul. Res. 2017, 55, 799–812. [Google Scholar] [CrossRef]
- Kobel, J.; Evers, F.M.; Hager, W.H. Impulse wave overtopping at rigid dam structures. J. Hydraul. Eng. 2017, 143, 04017002. [Google Scholar] [CrossRef]
- Müller, D.R. Auflaufen und Überschwappen von Impulswellen an Talsperren; VAW-Mitteilung 137; ETH: Zürich, Switzerland, 1995. [Google Scholar]
- Lindstrøm, E.K.; Pedersen, G.K.; Jensen, A.; Glimsdal, S. Experiments on slide generated waves in a 1:500 scale fjord model. Coast. Eng. 2014, 92, 12–23. [Google Scholar] [CrossRef]
- Fritz, H.M.; Hager, W.H.; Minor, H.-E. Landslide generated impulse waves. 1. Instantaneous flow fields. Exp. Fluids 2003, 35, 505–519. [Google Scholar] [CrossRef]
- Fritz, H.M.; Hager, W.H.; Minor, H.-E. Landslide generated impulse waves. 2. Hydrodynamic impact craters. Exp. Fluids 2003, 35, 520–532. [Google Scholar] [CrossRef]
- Mohammed, F.; Fritz, H.M. Physical modeling of tsunamis generated by three-dimensional deformable granular landslides: Landslide generated tsunamis. J. Geophys. Res. Oceans 2012, 117, C11015. [Google Scholar] [CrossRef]
- Zweifel, A. Impulswellen: Effekte der Rutschdichte und der Wassertiefe; VAW-Mitteilung 186; ETH: Zürich, Switzerland, 2010. [Google Scholar]
- Heller, V.; Spinneken, J. Improved landslide-tsunami prediction: Effects of block model parameters and slide model. J. Geophys. Res. Oceans 2013, 118, 1489–1507. [Google Scholar] [CrossRef] [Green Version]
- Sælevik, G.; Jensen, A.; Pedersen, G. Experimental investigation of impact generated tsunami; related to a potential rock slide, Western Norway. Coast. Eng. 2009, 56, 897–906. [Google Scholar] [CrossRef]
- Heller, V.; Hager, W.H. Wave types of landslide generated impulse waves. Ocean Eng. 2011, 38, 630–640. [Google Scholar] [CrossRef]
- Noda, E. Water waves generated by landslides. J. Waterw. Harb. Coast. Eng. Div. 1970, 96, 835–855. [Google Scholar]
Scale | β (V:H) | f (m) | WS (m3) | hO (m) |
---|---|---|---|---|
Model (1:190) | 1: 2.25 | 0.024, 0.032 | 0.072, 0.074, 0.149, 0.225 | 0.5, 1, 1.5, 2 |
1: 2 | 0.024, 0.032 | 0.072, 0.074, 0.149, 0.225 | 0.5, 1, 1.5, 2 | |
1: 1.5 | 0.024, 0.032 | 0.072, 0.074, 0.149, 0.225 | 0.5, 1, 1.5, 2 | |
Prototype | - | 4.5, 6 | 0.49, 0.51, 1.02, 1.54 (Mm3) | 95, 190, 285, 380 |
Slide Characteristics | Block Arrangement | |||
---|---|---|---|---|
2H Blocks | 2V Blocks | 4 Blocks | 6 Blocks | |
Slide length (m) | 0.50 | 1.08 | 1.08 | 1.66 |
Slide width (m) | 0.90 | 0.45 | 0.90 | 0.90 |
Shape ratio (-) | 0.56 | 2.40 | 1.20 | 1.84 |
Slide volume (m3) | 0.072 | 0.074 | 0.149 | 0.225 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tessema, N.N.; Sigtryggsdóttir, F.G.; Lia, L.; Kemal Jabir, A. Case Study of Dam Overtopping from Waves Generated by Landslides Impinging Perpendicular to a Reservoir’s Longitudinal Axis. J. Mar. Sci. Eng. 2019, 7, 221. https://doi.org/10.3390/jmse7070221
Tessema NN, Sigtryggsdóttir FG, Lia L, Kemal Jabir A. Case Study of Dam Overtopping from Waves Generated by Landslides Impinging Perpendicular to a Reservoir’s Longitudinal Axis. Journal of Marine Science and Engineering. 2019; 7(7):221. https://doi.org/10.3390/jmse7070221
Chicago/Turabian StyleTessema, Netsanet Nigatu, Fjóla G. Sigtryggsdóttir, Leif Lia, and Asie Kemal Jabir. 2019. "Case Study of Dam Overtopping from Waves Generated by Landslides Impinging Perpendicular to a Reservoir’s Longitudinal Axis" Journal of Marine Science and Engineering 7, no. 7: 221. https://doi.org/10.3390/jmse7070221
APA StyleTessema, N. N., Sigtryggsdóttir, F. G., Lia, L., & Kemal Jabir, A. (2019). Case Study of Dam Overtopping from Waves Generated by Landslides Impinging Perpendicular to a Reservoir’s Longitudinal Axis. Journal of Marine Science and Engineering, 7(7), 221. https://doi.org/10.3390/jmse7070221