Nearshore Wave Transformation Domains from Video Imagery
Abstract
1. Introduction
2. Concepts
2.1. Timestack Characteristics
2.2. Timestack Pixel Intensity
3. Study Sites and Video Data
3.1. Ribeira d’Ilhas Beach
3.2. Tarquinio-Paraiso Beach
4. Methods
4.1. Timestack Pixel Intensity Statistics
4.2. Timestack Pixel Intensity Statistics—Not Barred Beach
4.3. Timestack Pixel Intensity Statistics—Barred Beach
4.4. Automated Algorithm
- Masking dry beach. The colour ratio Red:Green bands is computed from Timex profile. Following existing works [40], a value of Red:Green ratio of about 0.9 can be used to identify shoreline on coastal images. Here, a conservative value of 1.4 was used to filter out the emerged beach on profiles;
- Min–Max normalization of the Blue band . The pixel intensity statistical values of are transformed to the range 0–1.
- Smoothing data. are smoothed with a moving average window of 5% and 10% of the total Timestack space dimension, respectively. The window of is larger due to the fact that is generally more noise.
- Definition of numbers of breaking lines. The number of peaks on profile peaks are detected with the Matlab-built in function peakfinder in order to count the breaking lines (BB and/or BS). These point(s) represent also the boundary between outer and inner surf zones and , respectively.
- Identification of shoaling–surf zones boundary. The first breaking wave locations and/or (AB and/or AS) are recognized computing the first derivative of the profile, which returns the value of the slope of the signal. The locations AB and/or AS are found as the first derivative of exceeding the threshold value = 0.002 before BB and/or BS, respectively.
- Identification of surf–swash zone boundary. The location of (point C) is identified as the highest peak of after BS.
- Identification of swash zone landward limit. The location of (point D) is identified as the first local minima after D landward.
5. Results
5.1. Automated Detection Performance
5.2. Wave Transfomation Domains
6. Discussion
7. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Svendsen, I.A. Introduction to Nearshore Hydrodynamics; University of Delaware: Newark, DE, USA, 2005; ISBN 978-981-256-142-8. [Google Scholar]
- Davies, J.L. Geographical Variation in Coastal Development. Geogr. J. 2006, 139, 350. [Google Scholar]
- Boak, E.H.; Turner, I.L. Shoreline Definition and Detection: A Review. J. Coast. Res. 2005, 214, 688–703. [Google Scholar] [CrossRef]
- Davidson-Arnott, R. Wave-Dominated Coasts. In Treatise on Estuarine and Coastal Science; Elsevier Science Publishing Co Inc.: San Diego, CA, USA, 2012; Volume 3, pp. 73–116. ISBN 9780080878850. [Google Scholar]
- Van Rijn, L.C. Principles of Sediment Transport in Rivers, Estuaries and Coastal Seas; Aqua Publications: Amsterdam, The Netherlands, 1993. [Google Scholar]
- Elgar, S.; Guza, R.T. Shoaling gravity waves: Comparisons between field observations, linear theory, and a nonlinear model. J. Fluid Mech. 1985, 158, 47–70. [Google Scholar] [CrossRef]
- Gaughan, M.K.; Komar, P.D. The theory of wave propagation in water of gradually varying depth and the prediction of breaker type and height. J. Geophys. Res. 1975, 80, 2991–2996. [Google Scholar] [CrossRef]
- Kamphuis, J.W. Incipient wave breaking. Coast. Eng. 1991, 15, 185–203. [Google Scholar] [CrossRef]
- McCowan, J. On the highest wave of permanent type. Philos. Mag. J. Sci. 1894, 5, 351–358. [Google Scholar] [CrossRef]
- Masselink, G.; Kroon, A.; Davidson-Arnott, R.G.D. Morphodynamics of intertidal bars in wave-dominated coastal settings—A review. Geomorphology 2006, 73, 33–49. [Google Scholar] [CrossRef]
- Masselink, G. Simulating the effects of tides on beach morphodynamics. J. Coast. Res. 1993, SI 15, 180–197. [Google Scholar]
- Kroon, A.; Masselink, G. Morphodynamics of intertidal bar morphology on a macrotidal beach under low-energy wave conditions, North Lincolnshire, England. Mar. Geol. 2002, 190, 591–608. [Google Scholar] [CrossRef]
- Beach, R.A.; Sternberg, R.W. Suspended sediment transport in the surf zone: Response to incident wave and longshore current interaction. Mar. Geol. 1992, 108, 275–294. [Google Scholar] [CrossRef]
- Price, T.D.; Ruessink, B.G. Morphodynamic zone variability on a microtidal barred beach. Mar. Geol. 2008, 251, 98–109. [Google Scholar] [CrossRef]
- Raubenheimer, B.; Guza, R.T.; Elgar, S. Wave transformation across the inner surf zone. J. Geophys. Res. C Ocean. 1996, 101, 25589–25597. [Google Scholar] [CrossRef]
- Holman, R.A.; Stanley, J. The history and technical capabilities of Argus. Coast. Eng. 2007, 54, 477–491. [Google Scholar] [CrossRef]
- Andriolo, U.; Sánchez-García, E.; Taborda, R. Operational Use of Surfcam Online Streaming Images for Coastal Morphodynamic Studies. Remote Sens. 2019, 11, 78. [Google Scholar] [CrossRef]
- Booij, N.; Holthuijsen, L.H.; Ris, R.C. The “Swan” Wave Model for Shallow Water. In Proceedings of the 25th International Conference on Coastal Engineering, Orlando, FL, USA, 2–6 September 1996. [Google Scholar]
- Zijlema, M.; Stelling, G.; Smit, P. SWASH: An operational public domain code for simulating wave fields and rapidly varied flows in coastal waters. Coast. Eng. 2011, 58, 992–1012. [Google Scholar] [CrossRef]
- Lippmann, T.C.; Holman, R.A. Quantification of sand bar morphology: A video technique based on wave dissipation. J. Geophys. Res. 1989, 94, 995–1011. [Google Scholar] [CrossRef]
- Catalán, P.; Haller, M.C. Nonlinear Phase Speeds and Depth Inversions. Coast. Dyn. 2005, 2006, 1–14. [Google Scholar]
- Salmon, J.E.; Holthuijsen, L.H.; Zijlema, M.; van Vledder, G.P.; Pietrzak, J.D. Scaling depth-induced wave-breaking in two-dimensional spectral wave models. Ocean Model. 2015, 87, 30–47. [Google Scholar] [CrossRef]
- Camenen, B.; Larson, M. Predictive Formulas for Breaker Depth Index and Breaker Type. J. Coast. Res. 2007, 234, 1028–1041. [Google Scholar] [CrossRef]
- Yoo, J.; Fritz, H.; Haas, K. Depth Inversion in the Surf Zone with inclusion of wave nonlinearity using video-derived celerity. J. Waterw. 2010, 137, 95–106. [Google Scholar] [CrossRef]
- Almar, R.; Cienfuegos, R.; Catalán, P.A.; Michallet, H.; Castelle, B.; Bonneton, P.; Marieu, V. A new breaking wave height direct estimator from video imagery. Coast. Eng. 2012, 61, 42–48. [Google Scholar] [CrossRef]
- Catálan, P.A.; Haller, M.C. Remote sensing of breaking wave phase speeds with application to non-linear depth inversions. Coast. Eng. 2008, 55, 93–111. [Google Scholar] [CrossRef]
- Flores, A.R.; Catalán, P.A.; Haller, M.C.M. Incorporating Remotely-Sensed Roller Properties Into Set-Up Estimations for Random Wave Conditions. Coast. Dyn. 2013, 2013, 615–626. [Google Scholar]
- Vousdoukas, M.I.; Ferreira, P.M.; Almeida, L.P.; Dodet, G.; Psaros, F.; Andriolo, U.; Taborda, R.; Silva, A.N.; Ruano, A.; Ferreira, Ó.M. Performance of intertidal topography video monitoring of a meso-tidal reflective beach in South Portugal. Ocean Dyn. 2011, 61, 1521–1540. [Google Scholar] [CrossRef]
- Andriolo, U.; Almeida, L.P.; Almar, R. Coupling terrestrial LiDAR and video imagery to perform 3D intertidal beach topography. Coast. Eng. 2018, 140, 232–239. [Google Scholar] [CrossRef]
- Stockdon, H.F.; Holman, R.A.; Howd, P.A.; Sallenger, A.H. Empirical parameterization of setup, swash, and runup. Coast. Eng. 2006, 53, 573–588. [Google Scholar] [CrossRef]
- Antunes, C.; Taborda, R. Sea Level at Cascais Tide Gauge: Data, Analysis and Results. J. Coast. Res. 2009, 1, 218–222. [Google Scholar]
- Dodet, G.; Bertin, X.; Taborda, R. Wave climate variability in the North-East Atlantic Ocean over the last six decades. Ocean Model. 2010, 31, 120–131. [Google Scholar] [CrossRef]
- Sánchez-García, E.; Balaguer-Beser, A.; Pardo-Pascual, J.E. C-Pro: A coastal projector monitoring system using terrestrial photogrammetry with a geometric horizon constraint. ISPRS J. Photogramm. Remote Sens. 2017, 128, 255–273. [Google Scholar] [CrossRef]
- Taborda, R.; Silva, A. COSMOS: A lightweight coastal video monitoring system. Comput. Geosci. 2012, 49, 248–255. [Google Scholar] [CrossRef]
- Simarro, G.; Bryan, K.R.; Guedes, R.M.C.; Sancho, A.; Guillen, J.; Coco, G. On the use of variance images for runup and shoreline detection. Coast. Eng. 2015, 99, 136–147. [Google Scholar] [CrossRef]
- Aarninkhof, S.G.J.; Turner, I.L.; Dronkers, T.D.T.; Caljouw, M.; Nipius, L. A video-based technique for mapping intertidal beach bathymetry. Coast. Eng. 2003, 49, 275–289. [Google Scholar] [CrossRef]
- Aarninkhof, S.G.J.; Ruessink, B.G. Video observations and model predictions of depth-induced wave dissipation. IEEE Trans. Geosci. Remote Sens. 2004, 42, 2612–2622. [Google Scholar] [CrossRef]
- Angnuureng, D.B.; Almar, R.; Senechal, N.; Castelle, B.; Addo, K.A.; Marieu, V.; Ranasinghe, R. Shoreline resilience to individual storms and storm clusters on a meso-macrotidal barred beach. Geomorphology 2017, 290, 265–276. [Google Scholar] [CrossRef]
- Armaroli, C.; Ciavola, P. Dynamics of a nearshore bar system in the northern Adriatic: A video-based morphological classification. Geomorphology 2011, 126, 201–216. [Google Scholar] [CrossRef]
- Almar, R.; Ranasinghe, R.; Sénéchal, N.; Bonneton, P.; Roelvink, D.; Bryan, K.R.; Marieu, V.; Parisot, J.P. Video-Based Detection of Shorelines at Complex Meso–Macro Tidal Beaches. J. Coast. Res. 2012, 28, 1040–1048. [Google Scholar]
- Mendes, D.; Pinto, J.P.; Pires-Silva, A.A.; Fortunato, A.B. Infragravity wave energy changes on a dissipative barred beach: A numerical study. Coast. Eng. 2018, 140, 136–146. [Google Scholar] [CrossRef]
- Moura, T.; Baldock, T.E. Remote sensing of the correlation between breakpoint oscillations and infragravity waves in the surf and swash zone. J. Geophys. Res. Ocean. 2017, 122, 3106–3122. [Google Scholar] [CrossRef]
- Almar, R.; Almeida, P.; Blenkinsopp, C.; Catalan, P. Surf-Swash Interactions on a Low-Tide Terraced Beach. J. Coast. Res. 2016, 75, 348–353. [Google Scholar] [CrossRef]
- Almar, R.; Nicolae Lerma, A.; Castelle, B.; Scott, T. On the influence of reflection over a rhythmic swash zone on surf zone dynamics. Ocean Dyn. 2018, 68, 899–909. [Google Scholar] [CrossRef]
- Shand, T.D.; Bailey, D.G.; Shand, R.D. Automated Detection of Breaking Wave Height Using an Optical Technique. J. Coast. Res. 2012, 28, 671–682. [Google Scholar]
- Gal, Y.; Browne, M.; Lane, C. Automatic estimation of nearshore wave height from video timestacks. In Proceedings of the Proceedings—2011 International Conference on Digital Image Computing: Techniques and Applications, Noosa, QLD, Australia, 6–8 December 2011; pp. 364–369. [Google Scholar]
- Turner, I.L.; Whyte, D.; Ruessink, B.G.; Ranasinghe, R. Observations of rip spacing, persistence and mobility at a long, straight coastline. Mar. Geol. 2007, 236, 209–221. [Google Scholar] [CrossRef]
- Pitman, S.; Gallop, S.L.; Haigh, I.D.; Masselink, G.; Ranasinghe, R. Wave breaking patterns control rip current flow regimes and surfzone retention. Mar. Geol. 2016, 382, 176–190. [Google Scholar] [CrossRef]
- Gallop, S.L.; Bryan, K.R.; Coco, G.; Stephens, S.A. Storm-driven changes in rip channel patterns on an embayed beach. Geomorphology 2011, 127, 179–188. [Google Scholar] [CrossRef]
- Gallop, S.L.; Bryan, K.R.; Pitman, S.J.; Ranasinghe, R.; Sandwell, D.R.; Harrison, S.R. Rip current circulation and surf zone retention on a double barred beach. Mar. Geol. 2018, 405, 12–22. [Google Scholar] [CrossRef]
- Harley, M.D.; Andriolo, U.; Armaroli, C.; Ciavola, P. Shoreline rotation and response to nourishment of a gravel embayed beach using a low-cost video monitoring technique: San Michele-Sassi Neri, Central Italy. J. Coast. Conserv. 2014, 18, 551–565. [Google Scholar] [CrossRef]
- Angnuureng, D.B.; Almar, R.; Appeaning Addo, K.; Castelle, B.; Senechal, N.; Laryea, S.W.; Wiafe, G. Video Oberservation of Waves and Shoreline Change on the Microtidal James Town Beach in Ghana. J. Coast. Res. 2016, 75, 1022–1026. [Google Scholar] [CrossRef]
- Huisman, C.E.; Bryan, K.R.; Coco, G.; Ruessink, B.G. The use of video imagery to analyse groundwater and shoreline dynamics on a dissipative beach. Cont. Shelf Res. 2011, 31, 1728–1738. [Google Scholar] [CrossRef]
- Valentini, N.; Saponieri, A.; Molfetta, M.G.; Damiani, L. New algorithms for shoreline monitoring from coastal video systems. Earth Sci. Inform. 2017, 10, 495–506. [Google Scholar] [CrossRef]
- Senechal, N.; Coco, G.; Bryan, K.R.; Holman, R.A. Wave runup during extreme storm conditions. J. Geophys. Res. Ocean. 2011, 116, C07032. [Google Scholar] [CrossRef]
- Atkinson, A.L.; Power, H.E.; Moura, T.; Hammond, T.; Callaghan, D.P.; Baldock, T.E. Assessment of runup predictions by empirical models on non-truncated beaches on the south-east Australian coast. Coast. Eng. 2017, 119, 15–31. [Google Scholar] [CrossRef]
- Blenkinsopp, C.E.; Matias, A.; Howe, D.; Castelle, B.; Marieu, V.; Turner, I.L. Wave runup and overwash on a prototype-scale sand barrier. Coast. Eng. 2016, 113, 88–103. [Google Scholar] [CrossRef]
- Almar, R.; Blenkinsopp, C.; Almeida, L.P.; Catalán, P.A.; Bergsma, E.; Cienfuegos, R.; Viet, N.T. A new remote predictor of wave reflection based on runup asymmetry. Estuar. Coast. Shelf Sci. 2019, 217, 1–8. [Google Scholar] [CrossRef]
- Vousdoukas, M.I. Observations of wave run-up and groundwater seepage line motions on a reflective-to-intermediate, meso-tidal beach. Mar. Geol. 2014, 350, 52–70. [Google Scholar] [CrossRef]
- Guedes, R.M.C.; Bryan, K.R.; Coco, G.; Holman, R.A. The effects of tides on swash statistics on an intermediate beach. J. Geophys. Res. Ocean. 2011, 116, 1–13. [Google Scholar] [CrossRef]
- Vousdoukas, M.I.; Wziatek, D.; Almeida, L.P. Coastal vulnerability assessment based on video wave run-up observations at a mesotidal, steep-sloped beach. Ocean Dyn. 2012, 62, 123–137. [Google Scholar] [CrossRef]
- Almar, R.; Blenkinsopp, C.; Almeida, L.P.; Cienfuegos, R.; Catalán, P.A. Wave runup video motion detection using the Radon Transform. Coast. Eng. 2017, 130, 46–51. [Google Scholar] [CrossRef]
- Uunk, L.; Wijnberg, K.M.; Morelissen, R. Automated mapping of the intertidal beach bathymetry from video images. Coast. Eng. 2010, 57, 461–469. [Google Scholar] [CrossRef]
- Osorio, A.F.; Medina, R.; Gonzalez, M. An algorithm for the measurement of shoreline and intertidal beach profiles using video imagery: PSDM. Comput. Geosci. 2012, 46, 196–207. [Google Scholar] [CrossRef]
- Sobral, F.; Pereira, P.; Cavalcanti, P.; Guedes, R.; Calliari, L. Intertidal Bathymetry Estimation Using Video Images on a Dissipative Beach. J. Coast. Res. 2013, 165, 1439–1444. [Google Scholar] [CrossRef]
- Smit, M.W.J.; Aarninkhof, S.G.J.; Wijnberg, K.M.; González, M.; Kingston, K.S.; Southgate, H.N.; Ruessink, B.G.; Holman, R.A.; Siegle, E.; Davidson, M.; et al. The role of video imagery in predicting daily to monthly coastal evolution. Coast. Eng. 2007, 54, 539–553. [Google Scholar] [CrossRef]
- Hoonhout, B.M.; Radermacher, M.; Baart, F.; van der Maaten, L.J.P. An automated method for semantic classification of regions in coastal images. Coast. Eng. 2015, 105, 1–12. [Google Scholar] [CrossRef]
- Hoonhout, B.; Baart, F.; van Thiel de Vries, J. Intertidal beach classification in infrared images. J. Coast. Res. 2015, 70, 657–663. [Google Scholar] [CrossRef]
- Quartel, S.; Addink, E.A.; Ruessink, B.G. Object-oriented extraction of beach morphology from video images. Int. J. Appl. Earth Obs. Geoinf. 2006, 8, 256–269. [Google Scholar] [CrossRef]
- Rainey, K. Characterization of Sun Glitter Statistics in Ocean Video a NISE Funded Basic Research Project; Space and Naval Warfare Systems Center Pacific: San Diego, CA, USA, 2013. [Google Scholar]
- Revollo, N.V.; Delrieux, C.A.; Perillo, G.M.E. Automatic methodology for mapping of coastal zones in video sequences. Mar. Geol. 2016, 381, 87–101. [Google Scholar] [CrossRef]
- Holman, R.; Plant, N.; Holland, T. CBathy: A robust algorithm for estimating nearshore bathymetry. J. Geophys. Res. Ocean. 2013, 118, 2595–2609. [Google Scholar] [CrossRef]
- Almar, R.; Cienfuegos, R.; Catalán, P.; Birrien, F.; Castelle, B.; Michallet, H. Nearshore bathymetric inversion from video using a fully non-linear Boussinesq wave model. J. Coast. Res. 2011, 64, 3–7. [Google Scholar]
- Bergsma, E.W.J. Application of an Improved Video-Based Depth Inversion Technique to a Macrotidal Sandy Beach. Ph.D. Thesis, University of Plymouth, Plymouth, UK, 2017. [Google Scholar]
- Stockdon, H.F.; Holman, R.A. Estimation of wave phase speed and nearshore bathymetry from video imagery. J. Geophys. Res. Ocean. 2000, 105, 22015–22033. [Google Scholar] [CrossRef]
- Liu, H.; Arii, M.; Sato, S.; Tajima, Y. Long-Term Nearshore Bathymetry Evolution from Video Imagery: A Case Study in the Miyazaki Coast. Coast. Eng. Proc. 2012, 1, 60. [Google Scholar] [CrossRef]
- Tissier, M.; Almar, R.; Postacchini, M.; Castelle, B.; Bonneton, N.; Bretel, P. Field measurements of wave celerity in the surf zone, analysis of nonlinear and very low frequency processes. Eur. J. Mech. B/Fluids 2010, 1, 6–8. [Google Scholar]
- Postacchini, M.; Brocchini, M. A wave-by-wave analysis for the evaluation of the breaking-wave celerity. Appl. Ocean Res. 2014, 46, 15–27. [Google Scholar] [CrossRef]
Wave Domain Boundary | Breakpoints | ||
---|---|---|---|
shoaling- surf zone | - | ||
outer-inner surf zone | Bs | Bs | |
surf – swash zone | Swmin | - | |
swash zone-dry beach | Swmax | - |
Wave Domain Boundary | Breakpoints | ||
---|---|---|---|
shoaling- surf zone | - | B | |
outer-inner surf zone | BB | BB | |
shoaling- surf zone | S | S | |
outer-inner surf zone | BS | BS | |
surf – swash zone | Swmin | - | |
swash zone-dry beach | Swmax | - |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andriolo, U. Nearshore Wave Transformation Domains from Video Imagery. J. Mar. Sci. Eng. 2019, 7, 186. https://doi.org/10.3390/jmse7060186
Andriolo U. Nearshore Wave Transformation Domains from Video Imagery. Journal of Marine Science and Engineering. 2019; 7(6):186. https://doi.org/10.3390/jmse7060186
Chicago/Turabian StyleAndriolo, Umberto. 2019. "Nearshore Wave Transformation Domains from Video Imagery" Journal of Marine Science and Engineering 7, no. 6: 186. https://doi.org/10.3390/jmse7060186
APA StyleAndriolo, U. (2019). Nearshore Wave Transformation Domains from Video Imagery. Journal of Marine Science and Engineering, 7(6), 186. https://doi.org/10.3390/jmse7060186