Hydraulic Stability of the Armor Layer of Overtopped Breakwaters
Abstract
1. Introduction
2. Literature Review
2.1. Hydraulic Stability of the Armor Layer
2.2. Armor Damage Measurement
3. Experimental Methodology
4. Analysis of Hydraulic Stability Test Results
4.1. Damage to Double-Layer Armors
4.2. Damage in Single-Layer Armors
4.3. Armor Damage and Overtopping Events
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pullen, T.; Allsop, N.W.H.; Bruce, T.; Kortenhaus, A.; Schüttrumpf, H.; van der Meer, J.W. EurOtop. Wave Overtopping of Sea Defences and Related Structures: Assessment Manual. Available online: www.overtopping-manual.com (accessed on 20 October 2018).
- Kramer, M.; Burcharth, H.F. Stability of low-crested breakwaters in shallow water short crested waves. Proc. Coast. Struct. 2003, 137–149. [Google Scholar] [CrossRef]
- Burcharth, H.F.; Kramer, M.; Lamberti, A.; Zanuttigh, B. Structural stability of detached low crested breakwaters. Coast. Eng. 2006, 53, 381–394. [Google Scholar] [CrossRef]
- CIRIA/CUR/CETMEF. The Rock Manual. The Use of Rock in Hydraulic Engineering, 2nd ed.; CIRIA: London, UK, 2007; 1267p. [Google Scholar]
- Hudson, R.Y. Laboratory investigations on rubble mound breakwaters. J. Waterw. Harb. Div. ASCE 1959, 85, 93–121. [Google Scholar]
- Van der Meer, J.W. Rock Slopes and Gravel Beaches under Wave Attack. Ph.D Thesis, Delft Technical University, Delft, The Netherlands, 1988. [Google Scholar]
- Herrera, M.P.; Gómez-Martín, M.E.; Medina, J.R. Hydraulic stability of rock armors in breaking conditions. Coast. Eng. 2017, 127, 55–67. [Google Scholar] [CrossRef]
- Van der Meer, J.W.; Daemen, I.F.R. Stability and wave transmission at low-crested rubble mound structures. J. Waterw. Port Coast. Ocean Eng. 1994, 120, 1–19. [Google Scholar] [CrossRef]
- Vidal, C.; Losada, M.A.; Medina, R.; Mansard, E.P.D.; Gómez-Pina, G. A universal analysis for the stability of both low-crested and submerged breakwaters. In Proceedings of the 23rd Conference on Coastal Engineering, ASCE, Venice, Italy, 4–9 October 1992; pp. 1679–1692. [Google Scholar]
- Burger, G. Stability of low-crested breakwaters. Final Proceedings 1995. EU research project Rubble mound breakwater failure modes, MAST 2 contract MAS2-CT92-0042. Delft Hydraulic Report H1878/H2415. Coast. Eng. 2006, 53, 381–394. [Google Scholar]
- Vidal, C.; Medina, R.; Martín, F.L. A methodology to assess the armor stability of low-crested and submerged breakwaters. Coast. Struct. 1999, 2, 721–725. [Google Scholar]
- Vidal, C.; López, F.; Losada, I. Stability of low crested and submerged rubble mound breakwaters. Proc. Coast. Struct. 2007, 2, 939–950. [Google Scholar]
- Gómez-Martín, M.E.; Medina, J.R. Heterogeneous packing and hydraulic stability of cube and Cubipod armor units. J. Waterw. Port Coast. Ocean Eng. 2014, 140, 100–108. [Google Scholar] [CrossRef]
- Losada, M.A.; Desiré, J.M.; Alejo, L.M. Stability of blocks as breakwater armor units. J. Struct. Eng. 1986, 112, 2392–2401. [Google Scholar] [CrossRef]
- Vidal, C.; Losada, M.A.; Medina, R. Stability of mound breakwaters’ head and trunk. J. Waterw. Port Coast. Ocean Eng. 1991, 117, 570–587. [Google Scholar] [CrossRef]
- Gómez-Martín, M.E. Análisis de la Evolución de Averías en el Manto Principal de Diques en Talud Formado por Escolleras Cubos y Cubípodos. Ph.D. Thesis, Universitat Politècnica de València, Valencia, Spain, 2015. [Google Scholar]
- Mansard, E.P.D.; Funke, E.R. The measurement of incident and reflected spectra using a least squares method. In Proceedings of the 17th International Conference on Coastal Engineering, ASCE, Sydney, Australia, 23–28 March 1980; pp. 154–172. [Google Scholar]
- Figueres, M.; Medina, J.R. Estimation of incident and reflected waves using a fully non-linear wave model. In Proceedings of the 29th International Conference on Coastal Engineering, Lisbon, Portugal, 19–24 September 2004; pp. 594–603. [Google Scholar]
- Verhagen, H.J.; Van Vledder, G.; Eslami Arab, S. A practical method for design of coastal structures in shallow water. In Proceedings of the 31st International Conference on Coastal Engineering, Hamburg, Germany, 31 August–5 September 2008; Volume 4, pp. 2912–2922. [Google Scholar]
- Medina, J.R.; Hudspeth, R.T.; Fassardi, C. Breakwater Armor Damage due to wave groups. J. Waterw. Port Coast. Ocean Eng. 1994, 120, 179–198. [Google Scholar] [CrossRef]
Layer | M50 (g) | ρr (g/cm3) | Dn50 (cm) |
---|---|---|---|
Core | 0.86 | 2.72 | 0.68 |
Filter | 15.40 | 2.73 | 1.78 |
Rocks | 86.77 | 2.68 | 3.18 |
Cubes | 141.51 | 2.27 | 3.97 |
Cubipods | 121.25 | 2.22 | 3.79 |
Series | Armor Layer | hs (cm) | Irp | S0p | Hm0 (cm) | Tp (s) | Rc (cm) | Nt | Ntw |
---|---|---|---|---|---|---|---|---|---|
1 | Cubipods 1L | 20 | 3 | 0.049 | 8–24 | 1.02–1.76 | 12 | 17 | 17,000 |
2 | Cubipods 1L | 20 | 5 | 0.018 | 8–20 | 1.70–2.68 | 12 | 13 | 13,000 |
3 | Cubipods 1L | 25 | 3 | 0.049 | 8–24 | 1.02–1.76 | 7 | 17 | 17,000 |
4 | Cubipods 1L | 25 | 5 | 0.018 | 8–20 | 1.70–2.68 | 7 | 13 | 13,000 |
5 | Rocks 2L | 20 | 3 | 0.049 | 8–16 | 1.02–1.44 | 15 | 9 | 9000 |
6 | Rocks 2L | 20 | 5 | 0.018 | 8–13 | 1.70–2.08 | 15 | 6 | 6000 |
7 | Rocks 2L | 25 | 3 | 0.049 | 8–16 | 1.02–1.44 | 10 | 9 | 9000 |
8 | Rocks 2L | 25 | 5 | 0.018 | 8–13 | 1.70–2.08 | 10 | 6 | 6000 |
9 | Cubes 2L | 25 | 3 | 0.049 | 8–24 | 1.02–1.76 | 11 | 17 | 17,000 |
10 | Cubes 2L | 25 | 5 | 0.018 | 8–20 | 1.70–2.68 | 11 | 13 | 13,000 |
11 | Cubes 2L | 30 | 3 | 0.049 | 8–24 | 1.02–1.76 | 6 | 17 | 17,000 |
12 | Cubes 2L | 30 | 5 | 0.018 | 8–14 | 1.70–2.25 | 6 | 7 | 7000 |
Armor Layer | Sector | k1 (Equation (5)) | k2 (Equation (5)) | rMSE | r |
---|---|---|---|---|---|
Rocks 2L | Front slope | 0.633 | −0.056 | 0.095 | 0.949 |
Cubes 2L | Front slope | 0.137 | 0.621 | 0.253 | 0.861 |
Cubes 2L | Crest | 0.240 | 0.362 | 0.290 | 0.838 |
Cubes 2L | Rear slope | 0.255 | 0.113 | 0.461 | 0.716 |
Armor Layer | Sector | sop | Ns | |
---|---|---|---|---|
Rocks 2L | Front slope | 0.018–0.049 | 1.36–2.28 | 3.73–4.66 |
Cubes 2L | Front slope | 0.018–0.049 | 1.18–3.54 | 4.96–5.95 |
Cubes 2L | Crest | 0.018–0.049 | 1.37–3.54 | 4.96–5.95 |
Cubes 2L | Rear slope | 0.018–0.049 | 2.58–3.54 | 4.96–5.95 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Argente, G.; Gómez-Martín, M.E.; Medina, J.R. Hydraulic Stability of the Armor Layer of Overtopped Breakwaters. J. Mar. Sci. Eng. 2018, 6, 143. https://doi.org/10.3390/jmse6040143
Argente G, Gómez-Martín ME, Medina JR. Hydraulic Stability of the Armor Layer of Overtopped Breakwaters. Journal of Marine Science and Engineering. 2018; 6(4):143. https://doi.org/10.3390/jmse6040143
Chicago/Turabian StyleArgente, Gloria, M. Esther Gómez-Martín, and Josep R. Medina. 2018. "Hydraulic Stability of the Armor Layer of Overtopped Breakwaters" Journal of Marine Science and Engineering 6, no. 4: 143. https://doi.org/10.3390/jmse6040143
APA StyleArgente, G., Gómez-Martín, M. E., & Medina, J. R. (2018). Hydraulic Stability of the Armor Layer of Overtopped Breakwaters. Journal of Marine Science and Engineering, 6(4), 143. https://doi.org/10.3390/jmse6040143