Sensitivity of Offshore Tropical Cyclone Wave Simulations to Spatial Resolution in Wave Models
Abstract
:1. Introduction
2. Methods
2.1. Wave Models
2.2. Specification of Winds in Idealized Hurricanes
2.2.1. Idealized TC Wind Fields
2.2.2. Specification of Winds in the Historic Hurricane
2.3. Experimental Design
3. Results
3.1. Idealized Tropical Cyclone Wave Simulations
3.1.1. Comparison of Maximum Significant Wave Heights
3.1.2. Comparison of Spatial Distribution of Significant Wave Heights
3.1.3. Comparison of Half-Annulus Averaged Wave Energy
3.1.4. Comparison of Spatial Distribution of Mean Wavelength
3.1.5. Comparison of SWH at Virtual Buoys
3.2. Wave Simulations under the 1938 New England Hurricane
4. Conclusions and Discussion
- Wave model sensitivity to spatial resolution depends on storm characteristics. Waves generated under a small and fast moving storm (=25 km, =9 m/s in this study) appear to be most sensitive to a coarse resolution.
- Under a small and fast moving storm, using the spatial resolution can lead to underestimation of the maximum SWH by 6% in WW3(ST4) and 16% in SWAN(ST1). The local SWH in front of the storm near can be underestimated by as much as 17% in WW3 and 23% in SWAN.
- In all six idealized storms, the coarsest resolution of causes the largest errors in both SWH and MWL. In general, the sensitivity to model spatial resolution is larger in SWAN(ST1) than that in WW3(ST4).
- The errors due to spatial resolution are comparable to those due to different physics parameterizations in wave models, which are on the order of 5%∼10% (Liu et al. [18]).
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
(km) | (m/s) | WW3 | SWAN | WW3 | SWAN | WW3 | SWAN |
---|---|---|---|---|---|---|---|
25 | 3 | −10.5∼0% | −9.8∼−2.8% | −6.0∼−3.6% | −2.9∼−1.5% | −3.8∼−1.6% | −1.9∼−1.4% |
6 | −15.7∼−6.9% | −19.0∼−11.7% | −6.9∼−4.9% | −7.3∼−6.2% | −3.8∼−2.0% | −3.8∼−2.2% | |
9 | −17.4∼−8.7% | −22.9∼−16.6% | −5.4∼−4.7% | −8.9∼−7.9% | −2.8∼−1.4% | −4.2∼−2.8% | |
50 | 3 | −6.3∼−4.3% | −3.3∼−2.5% | −4.4∼−2.5% | −3.3∼−2.6% | −1.3∼−0.9% | −2.0∼−1.4% |
6 | −8.4∼−5.9% | −8.3∼−6.5% | −5.3∼−3.3% | −5.4∼−3.9% | −2.2∼−1.8% | −2.4∼−1.7% | |
9 | −6.9∼−5.8% | −11.1∼−9.4% | −3.9∼−2.4% | −7.3∼−5.3% | −1.2∼−0.9% | −3.2∼−1.9% |
References
- Barber, N.; Ursell, F. The generation and propagation of ocean waves and swell. I. Wave periods and velocities. Phil. Trans. R. Soc. Lond. A 1948, 240, 527–560. [Google Scholar] [CrossRef]
- Longuet-Higgins, M.; Stewart, R. Radiation stresses in water waves; a physical discussion, with applications. Deep Sea Res. Oceanogr. Abstr. 1964, 11, 529–562. [Google Scholar] [CrossRef]
- Dietrich, J.; Zijlema, M.; Westerink, J.; Holthuijsen, L.; Dawson, C.; Luettich, R.A.; Jensen, R.; Smith, J.; Stelling, G.; Stone, G. Modeling hurricane waves and storm surge using integrally-coupled, scalable computations. Coast. Eng. 2011, 58, 45–65. [Google Scholar] [CrossRef]
- Sun, Y.; Chen, C.; Beardsley, R.C.; Xu, Q.; Qi, J.; Lin, H. Impact of current-wave interaction on storm surge simulation: A case study for Hurricane Bob. J. Geophys. Res. Oceans 2013, 118, 2685–2701. [Google Scholar] [CrossRef] [Green Version]
- Feng, X.; Yin, B.; Yang, D. Development of an unstructured-grid wave-current coupled model and its application. Ocean Model. 2016, 104, 213–225. [Google Scholar] [CrossRef]
- Donelan, M.A.; Curcic, M.; Chen, S.S.; Magnusson, A.K. Modeling waves and wind stress. J. Geophys. Res. Oceans 2012, 117. [Google Scholar] [CrossRef] [Green Version]
- Reichl, B.G.; Hara, T.; Ginis, I. Sea state dependence of the wind stress over the ocean under hurricane winds. J. Geophys. Res. Oceans 2014, 119, 30–51. [Google Scholar] [CrossRef] [Green Version]
- Bunya, S.; Dietrich, J.C.; Westerink, J.J.; Ebersole, B.A.; Smith, J.M.; Atkinson, J.H.; Jensen, R.; Resio, D.T.; Luettich, R.A.; Dawson, C.; et al. A High-Resolution Coupled Riverine Flow, Tide, Wind, Wind Wave, and Storm Surge Model for Southern Louisiana and Mississippi. Part I: Model Development and Validation. Mon. Weather Rev. 2010, 138, 345–377. [Google Scholar] [CrossRef]
- Dietrich, J.C.; Bunya, S.; Westerink, J.J.; Ebersole, B.A.; Smith, J.M.; Atkinson, J.H.; Jensen, R.; Resio, D.T.; Luettich, R.A.; Dawson, C.; et al. A High-Resolution Coupled Riverine Flow, Tide, Wind, Wind Wave, and Storm Surge Model for Southern Louisiana and Mississippi. Part II: Synoptic Description and Analysis of Hurricanes Katrina and Rita. Mon. Weather Rev. 2010, 138, 378–404. [Google Scholar] [CrossRef]
- Fleming, J.G.; Fulcher, C.W.; Luettich, R.A.; Estrade, B.D.; Allen, G.D.; Winer, H.S. A Real Time Storm Surge Forecasting System Using ADCIRC. In Proceedings of the 10th International Conference on Estuarine and Coastal Modeling, Newport, RI, USA, 5 November 2007; pp. 893–912. [Google Scholar]
- Dresback, K.M.; Fleming, J.G.; Blanton, B.O.; Kaiser, C.; Gourley, J.J.; Tromble, E.M.; Luettich, R.A.; Kolar, R.L.; Hong, Y.; Cooten, S.V.; et al. Skill assessment of a real-time forecast system utilizing a coupled hydrologic and coastal hydrodynamic model during Hurricane Irene (2011). Cont. Shelf Res. 2013, 71, 78–94. [Google Scholar] [CrossRef]
- Kerr, P.C.; Martyr, R.C.; Donahue, A.S.; Hope, M.E.; Westerink, J.J.; Luettich, R.A.; Kennedy, A.B.; Dietrich, J.C.; Dawson, C.; Westerink, H.J. U.S. IOOS coastal and ocean modeling testbed: Evaluation of tide, wave, and hurricane surge response sensitivities to mesh resolution and friction in the Gulf of Mexico. J. Geophys. Res. Oceans 2013, 118, 4633–4661. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; He, H.; Song, J.; Hou, Y.; Li, F.; Xu, Y.; He, H.; Song, J.; Hou, Y.; Li, F. Observations and Modeling of Typhoon Waves in the South China Sea. J. Phys. Oceanogr. 2017, 47, 1307–1324. [Google Scholar] [CrossRef]
- Haiden, T.; Janousek, M.; Bidlot, J.; Ferranti, L.; Prates, F.; Vitart, F.; Bauer, P.; Richardson, D. Evaluation of ECMWF Forecasts, Including the 2016 Resolution Upgrade; European Centre for Medium-Range Weather Forecasts: Reading, UK, 2016. [Google Scholar]
- Chawla, A.; Tolman, H.L.; Gerald, V.; Spindler, D.; Spindler, T.; Alves, J.H.G.M.; Cao, D.; Hanson, J.L.; Devaliere, E.M. A Multigrid Wave Forecasting Model: A New Paradigm in Operational Wave Forecasting. Weather Forecast. 2013, 28, 1057–1078. [Google Scholar] [CrossRef]
- Shimura, T.; Mori, N.; Hemer, M.A. Projection of tropical cyclone-generated extreme wave climate based on CMIP5 multi-model ensemble in the Western North Pacific. Clim. Dyn. 2017, 49, 1449–1462. [Google Scholar] [CrossRef]
- Tolman, H.L.; Alves, J.H.G. Numerical modeling of wind waves generated by tropical cyclones using moving grids. Ocean Model. 2005, 9, 305–323. [Google Scholar] [CrossRef]
- Liu, Q.; Babanin, A.; Fan, Y.; Zieger, S.; Guan, C.; Moon, I.J. Numerical simulations of ocean surface waves under hurricane conditions: Assessment of existing model performance. Ocean Model. 2017, 118, 73–93. [Google Scholar] [CrossRef]
- The WAVEWATCH III® Development Group. User Manual and System Documentation of WAVEWATCH III® Version 5.16; Tech. Note 329; NOAA/NWS/NCEP/MMAB: College Park, MD, USA, 2016. [Google Scholar]
- The SWAN Team. SWAN Scientific and Technical Documentation (Cycle III Version 41.10A); Technology Note, Version 41.10; Delft University of Technology: Delft, The Netherlands, 2012. [Google Scholar]
- Fan, Y.; Ginis, I.; Hara, T.; Wright, C.W.; Walsh, E.J. Numerical Simulations and Observations of Surface Wave Fields under an Extreme Tropical Cyclone. J. Phys. Oceanogr. 2009, 39, 2097–2116. [Google Scholar] [CrossRef]
- Ardhuin, F.; Rogers, E.; Babanin, A.V.; Filipot, J.F.; Magne, R.; Roland, A.; van der Westhuysen, A.; Queffeulou, P.; Lefevre, J.M.; Aouf, L.; Collard, F. Semiempirical Dissipation Source Functions for Ocean Waves. Part I: Definition, Calibration, and Validation. J. Phys. Oceanogr. 2010, 40, 1917–1941. [Google Scholar] [CrossRef] [Green Version]
- Janssen, P. The Interaction of Ocean Waves and Wind; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Komen, G.J.; Hasselmann, S.; Hasselmann, K. On the Existence of a Fully Developed Wind-Sea Spectrum. J. Phys. Oceanogr. 1984, 14, 1271–1285. [Google Scholar] [CrossRef] [Green Version]
- Rogers, W.E.; Hwang, P.A.; Wang, D.W. Investigation of Wave Growth and Decay in the SWAN Model: Three Regional-Scale Applications. J. Phys. Oceanogr. 2003, 33, 366–389. [Google Scholar] [CrossRef]
- Hasselmann, K. On the spectral dissipation of ocean waves due to white capping. Bound. Layer Meteorol. 1974, 6, 107–127. [Google Scholar] [CrossRef]
- Wu, J. Wind-stress coefficients over sea surface from breeze to hurricane. J. Geophys. Res. Oceans 1982, 87, 9704–9706. [Google Scholar] [CrossRef]
- Huang, Y.; Weisberg, R.H.; Zheng, L.; Zijlema, M. Gulf of Mexico hurricane wave simulations using SWAN: Bulk formula-based drag coefficient sensitivity for Hurricane Ike. J. Geophys. Res. Oceans 2013, 118, 3916–3938. [Google Scholar] [CrossRef] [Green Version]
- Akbar, M.; Kanjanda, S.; Musinguzi, A. Effect of Bottom Friction, Wind Drag Coefficient, and Meteorological Forcing in Hindcast of Hurricane Rita Storm Surge Using SWAN + ADCIRC Model. J. Mar. Sci. Eng. 2017, 5, 38. [Google Scholar] [CrossRef]
- Holland, G.J. An Analytic Model of the Wind and Pressure Profiles in Hurricanes. Mon. Weather Rev. 1980, 108, 1212–1218. [Google Scholar] [CrossRef] [Green Version]
- Moon, I.J.; Ginis, I.; Hara, T.; Tolman, H.L.; Wright, C.W.; Walsh, E.J. Numerical Simulation of Sea Surface Directional Wave Spectra under Hurricane Wind Forcing. J. Phys. Oceanogr. 2003, 33, 1680–1706. [Google Scholar] [CrossRef]
- Pierce, C.H. The Meterological History of the New England Hurricane of Sept. 21, 1938. Mon. Weather Rev. 1939, 67, 237–285. [Google Scholar] [CrossRef]
- Landsea, C.W.; Hagen, A.; Bredemeyer, W.; Carrasco, C.; Glenn, D.A.; Santiago, A.; Strahan-Sakoskie, D.; Dickinson, M. A Reanalysis of the 1931-43 Atlantic Hurricane Database. J. Clim. 2014, 27, 6093–6118. [Google Scholar] [CrossRef]
- Knaff, J.A.; Zehr, R.M. Reexamination of Tropical Cyclone Wind-Pressure Relationships. Weather Forecast. 2007, 22, 71–88. [Google Scholar] [CrossRef]
- Vickery, P.J.; Skerlj, P.F.; Twisdale, L.A. Simulation of Hurricane Risk in the U.S. Using Empirical Track Model. J. Struct. Eng. 2000, 126, 1222–1237. [Google Scholar] [CrossRef]
- Tolman, H.L.; Chalikov, D. Source Terms in a Third-Generation Wind Wave Model. J. Phys. Oceanogr. 1996, 26, 2497–2518. [Google Scholar] [CrossRef] [Green Version]
- Cavaleri, L. Wave Modeling—Missing the Peaks. J. Phys. Oceanogr. 2009, 39, 2757–2778. [Google Scholar] [CrossRef]
- The WISE Group. Wave modelling - The state of the art. Prog. Oceanogr. 2007, 75, 603–674. [Google Scholar] [CrossRef] [Green Version]
Model Settings | WW3 | SWAN | |
---|---|---|---|
Numerics | Time Step* | 4 fractional time steps | 1 global time step |
Propagation Scheme | Third-order Ultimate Quickest (UQ) scheme | First Order, backward space, backward time (BSBT) scheme | |
Physics | ST4 (Ardhuin et al.) | ST1 (Komen) | |
, | |||
DIA (as default) |
TC Parameters | Idealized Storms | Hurricane 1938 |
---|---|---|
Radius of Maximum Wind () | 25 km (small), | 21∼72 km (32.5 km on average) |
50 km (large) | ||
Translation Speed () | 3 m/s (slow), | 5.6∼21.6 m/s (12 m/s on average) |
6 m/s (medium), | ||
9 m/s (fast) | ||
Maximum Winds () | 50 m/s | 31∼72 m/s (62 m/s on average) |
Spatial Resolution | WW3 | SWAN | |||
---|---|---|---|---|---|
300s | 237s | 118s | 30s | 300s | |
118s | 59s |
(km) | (m/s) | WW3 | SWAN | WW3 | SWAN | WW3 | SWAN |
---|---|---|---|---|---|---|---|
25 | 3 | 3.3% | 2.6% | 3.5% | 1.6% | 1.6% | 2.2% |
6 | 4.8% | 12.6% | 3.5% | 4.6% | 1.7% | 1.1% | |
9 | 6.0% | 15.7% | 2.3% | 6.3% | 0.4% | 1.9% | |
50 | 3 | 4.1% | 3.0% | 2.4% | 2.6% | 0.7% | 0.7% |
6 | 4.3% | 4.8% | 2.7% | 1.8% | 0.8% | 0.8% | |
9 | 3.2% | 6.8% | 1.1% | 2.1% | 0.1% | 0.4% |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Ginis, I.; Hara, T. Sensitivity of Offshore Tropical Cyclone Wave Simulations to Spatial Resolution in Wave Models. J. Mar. Sci. Eng. 2018, 6, 116. https://doi.org/10.3390/jmse6040116
Chen X, Ginis I, Hara T. Sensitivity of Offshore Tropical Cyclone Wave Simulations to Spatial Resolution in Wave Models. Journal of Marine Science and Engineering. 2018; 6(4):116. https://doi.org/10.3390/jmse6040116
Chicago/Turabian StyleChen, Xuanyu, Isaac Ginis, and Tetsu Hara. 2018. "Sensitivity of Offshore Tropical Cyclone Wave Simulations to Spatial Resolution in Wave Models" Journal of Marine Science and Engineering 6, no. 4: 116. https://doi.org/10.3390/jmse6040116
APA StyleChen, X., Ginis, I., & Hara, T. (2018). Sensitivity of Offshore Tropical Cyclone Wave Simulations to Spatial Resolution in Wave Models. Journal of Marine Science and Engineering, 6(4), 116. https://doi.org/10.3390/jmse6040116