Next Article in Journal
Seiching Induced by Bichromatic and Monochromatic Wave Conditions: Experimental and Numerical Analysis in a Large Wave Flume
Next Article in Special Issue
Numerical Simulation and Uncertainty Analysis of an Axial-Flow Waterjet Pump
Previous Article in Journal
Modelling Hydrodynamic Impacts of Sea-Level Rise on Wave-Dominated Australian Estuaries with Differing Geomorphology
Previous Article in Special Issue
The Effect of Propeller Scaling Methodology on the Performance Prediction
Article Menu
Issue 2 (June) cover image

Export Article

Open AccessArticle
J. Mar. Sci. Eng. 2018, 6(2), 67;

Boundary Element Modelling Aspects for the Hydro-Elastic Analysis of Flexible Marine Propellers

Maritime & Transport Technology Department, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
Author to whom correspondence should be addressed.
Received: 10 April 2018 / Revised: 30 May 2018 / Accepted: 1 June 2018 / Published: 5 June 2018
(This article belongs to the Special Issue Marine Propulsors)
Full-Text   |   PDF [995 KB, uploaded 5 June 2018]   |  


Boundary element methods (BEM) have been used for propeller hydrodynamic calculations since the 1990s. More recently, these methods are being used in combination with finite element methods (FEM) in order to calculate flexible propeller fluid–structure interaction (FSI) response. The main advantage of using BEM for flexible propeller FSI calculations is the relatively low computational demand in comparison with higher fidelity methods. However, the BEM modelling of flexible propellers is not straightforward and requires several important modelling decisions. The consequences of such modelling choices depend significantly on propeller structural behaviour and flow condition. The two dimensionless quantities that characterise structural behaviour and flow condition are the structural frequency ratio (the ratio between the lowest excitation frequency and the fundamental wet blade natural frequency) and the reduced frequency. For both, general expressions have been derived for (flexible) marine propellers. This work shows that these expressions can be effectively used to estimate the dry and wet fundamental blade frequencies and the structural frequency ratio. This last parameter and the reduced frequency of vibrating blade flows is independent of the geometrical blade scale as shown in this work. Regarding the BEM-FEM coupled analyses, it is shown that a quasi-static FEM modelling does not suffice, particularly due to the fluid-added mass and hydrodynamic damping contributions that are not negligible. It is demonstrated that approximating the hydro-elastic blade response by using closed form expressions for the fluid added mass and hydrodynamic damping terms provides reasonable results, since the structural response of flexible propellers is stiffness dominated, meaning that the importance of modelling errors in fluid added mass and hydrodynamic damping is small. Finally, it is shown that the significance of recalculating the hydrodynamic influence coefficients is relatively small. This fact might be utilized, possibly in combination with the use of the closed form expressions for fluid added mass and hydrodynamic damping contributions, to significantly reduce the computation time of flexible propeller FSI calculations. View Full-Text
Keywords: flexible (composite) propellers; BEM modelling; fluid–structure interaction flexible (composite) propellers; BEM modelling; fluid–structure interaction

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).

Share & Cite This Article

MDPI and ACS Style

Maljaars, P.; Kaminski, M.; den Besten, H. Boundary Element Modelling Aspects for the Hydro-Elastic Analysis of Flexible Marine Propellers. J. Mar. Sci. Eng. 2018, 6, 67.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics



[Return to top]
J. Mar. Sci. Eng. EISSN 2077-1312 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top