Next Article in Journal
How Well Do AR5 Sea Surface-Height Model Projections Match Observational Rates of Sea-Level Rise at the Regional Scale?
Next Article in Special Issue
Construction of a Static Model for Power Generation of OTEC Plant Using Uehara Cycle Based on Experimental Data
Previous Article in Journal
Evaluation of Underwater Image Enhancement Algorithms under Different Environmental Conditions
Article Menu
Issue 1 (March) cover image

Export Article

Open AccessFeature PaperArticle
J. Mar. Sci. Eng. 2018, 6(1), 12; https://doi.org/10.3390/jmse6010012

An Evaluation of the Large-Scale Implementation of Ocean Thermal Energy Conversion (OTEC) Using an Ocean General Circulation Model with Low-Complexity Atmospheric Feedback Effects

1
International Pacific Research Center, University of Hawaii, Honolulu, HI 96822, USA
2
Department of Ocean and Resources Engineering, University of Hawaii, Honolulu, HI 96822, USA
3
Hawaii Natural Energy Institute, University of Hawaii, Honolulu, HI 96822, USA
*
Author to whom correspondence should be addressed.
Received: 26 October 2017 / Revised: 5 January 2018 / Accepted: 10 January 2018 / Published: 22 January 2018
(This article belongs to the Special Issue Ocean Thermal Energy Conversion)
Full-Text   |   PDF [18424 KB, uploaded 22 January 2018]   |  

Abstract

Previous investigations of the large-scale deployment of Ocean Thermal Energy Conversions (OTEC) systems are extended by allowing some atmospheric feedback in an ocean general circulation model. A modified ocean-atmosphere thermal boundary condition is used where relaxation corresponds to atmospheric longwave radiation to space, and an additional term expresses horizontal atmospheric transport. This produces lower steady-state OTEC power maxima (8 to 10.2 TW instead of 14.1 TW for global OTEC scenarios, and 7.2 to 9.3 TW instead of 11.9 TW for OTEC implementation within 100 km of coastlines). When power production peaks, power intensity remains practically unchanged, at 0.2 TW per Sverdrup of OTEC deep cold seawater, suggesting a similar degradation of the OTEC thermal resource. Large-scale environmental effects include surface cooling in low latitudes and warming elsewhere, with a net heat intake within the water column. These changes develop rapidly from the propagation of Kelvin and Rossby waves, and ocean current advection. Two deep circulation cells are generated in the Atlantic and Indo-Pacific basins. The Atlantic Meridional Overturning Circulation (AMOC) is reinforced while an AMOC-like feature appears in the North Pacific, with deep convective winter events at high latitudes. Transport between the Indo-Pacific and the Southern Ocean is strengthened, with impacts on the Atlantic via the Antarctic Circumpolar Current (ACC). View Full-Text
Keywords: Ocean Thermal Energy Conversion; OTEC; ocean general circulation model Ocean Thermal Energy Conversion; OTEC; ocean general circulation model
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).
SciFeed

Share & Cite This Article

MDPI and ACS Style

Jia, Y.; Nihous, G.C.; Rajagopalan, K. An Evaluation of the Large-Scale Implementation of Ocean Thermal Energy Conversion (OTEC) Using an Ocean General Circulation Model with Low-Complexity Atmospheric Feedback Effects. J. Mar. Sci. Eng. 2018, 6, 12.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
J. Mar. Sci. Eng. EISSN 2077-1312 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top