# Anti-Collision Assessment and Prediction Considering Material Corrosion on an Offshore Protective Device

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Model Description

## 3. Corrosion Measurement and Prediction

## 4. FE Simulation

#### 4.1. FE Model of the Protective Device

#### 4.2. FE Model of a Striking Ship

#### 4.3. Boundary Conditions

#### 4.4. Material Properties

## 5. Results and Discussion

#### 5.1. Anti-Collision Effect of Buffer Rubber

#### 5.2. Corrosion Effects on the Protective Device

#### 5.3. Prediction of Performance Degradation

## 6. Conclusions

## Acknowledgments

## Author Contributions

## Conflicts of Interest

## References

- Maureen, W.; Lisa, V.A.A.; Lorenzo, V.W. Corrosion-Related Accidents in Petroleum Refineries: Lessons Learned from Accidents in EU and OECD Countries; Publications Office of the European Union: Luxembourg, 2013. [Google Scholar]
- Velazquez, J.; Van Der Weide, J.; Hernandez, E.; Hernandez, H.H. Statistical modeling of pitting corrosion: Extrapolation of the maximum pit depth growth. Int. J. Electrochem. Sci.
**2014**, 9, 4129–4143. [Google Scholar] - Khan, F.; Howard, R. Statistical approach to inspection planning and integrity assessment. Insight-Non-Destr. Test. Cond. Monit.
**2007**, 49, 26–36. [Google Scholar] [CrossRef] - Roberge, P.R. Corrosion Engineering: Principles and Practice; McGraw-Hill Professional: New York, NY, USA, 2008. [Google Scholar]
- Bhandari, J.; Khan, F.; Abbassi, R.; Garaniya, V.; Ojeda, R. Modelling of pitting corrosion in marine and offshore steel structures—A technical review. J. Loss Prevent. Proc.
**2015**, 37, 39–62. [Google Scholar] [CrossRef] - Ramana, K.V.S.; Anita, T.; Mandal, S.; Kaliappan, S.; Shaikh, H.; Sivaprasad, P.V.; Dayal, R.K.; Khatak, H.S. Effect of different environmental parameters on pitting behavior of AISI type 316L stainless steel: Experimental studies and neural network modeling. Mater. Des.
**2009**, 30, 3770–3775. [Google Scholar] [CrossRef] - Younis, A.A.; EI-Sabbah, M.M.B.; Holze, R. The effect of chloride concentration and pH on pitting corrosion of AA7075 aluminum alloy coated with phenyltrimethoxysilane. J. Solid State Electrochem.
**2012**, 16, 1033–1040. [Google Scholar] [CrossRef] - Zakowski, K.; Narozny, M.; Szocinski, M.; Darowicki, K. Influence of water salinity on corrosion risk-the case of the southern Baltic Sea coast. Environ. Monit. Assess.
**2014**, 186, 4871–4879. [Google Scholar] [CrossRef] [PubMed] - Zamaletdinov, I.I. Pitting on passive metals. Prot. Met.
**2007**, 43, 470–475. [Google Scholar] [CrossRef] - Melchers, R.E. Pitting corrosion of mild steel in marine immersion environment-Part 2: Variability of maximum pit depth. Corrosion
**2004**, 60, 937–944. [Google Scholar] [CrossRef] - Li, H.; Yu, H.; Zhou, T.; Yin, B.; Yin, S.; Zhang, Y. Effect of tin on the corrosion behavior of sea-water corrosion-resisting steel. Mater. Des.
**2015**, 84, 1–9. [Google Scholar] [CrossRef] - Calabrese, L.; Proverbio, E.; Galtieri, G.; Borsellino, C. Effect of corrosion degradation on failure mechanisms of aluminium/steel clinched joints. Mater. Des.
**2015**, 87, 473–481. [Google Scholar] [CrossRef] - Chen, Y.; Zhang, H.; Zhang, J.; Li, X.; Zhou, J. Failure analysis of high strength pipeline with single and multiple corrosions. Mater. Des.
**2015**, 67, 552–557. [Google Scholar] [CrossRef] - Ahn, J.H.; Cheung, J.H.; Lee, W.H.; Oh, H.; Kim, I.T. Shear buckling experiments of web panel with pitting and through-thickness corrosion damage. J. Constr. Steel Res.
**2015**, 115, 290–302. [Google Scholar] [CrossRef] - Lu, G.; Yu, T. Energy Absorption of Structures and Materials; Woodhead Publishing: Cambridge, UK, 2003. [Google Scholar]
- Macduff, T. The Probability of Vessel Collisions. Ocean Ind.
**1974**, 9, 144–148. [Google Scholar] - Sha, Y.; Hao, H. Nonlinear finite element analysis of barge collision with a single bridge pier. Eng. Struct.
**2012**, 41, 63–76. [Google Scholar] [CrossRef] - Laura, P.A.A.; Nava, L.C. An economic device for protecting bridge piers against ship collisions. Ocean Eng.
**1981**, 8, 331–333. [Google Scholar] [CrossRef] - Wang, L.; Yang, L.; Huang, D.; Zhang, Z.; Chen, G. An impact dynamics analysis on a new crashworthy device against ship-bridge collision. Int. J. Impact Eng.
**2008**, 35, 895–904. [Google Scholar] [CrossRef] - Qiu, A.; Lin, W.; Ma, Y.; Zhao, C.; Tang, Y. Novel material and structural design for large-scale marine protective devices. Mater. Des.
**2015**, 68, 29–41. [Google Scholar] [CrossRef] - Qiu, A.; Fu, K.; Lin, W.; Zhao, C.; Tang, Y. Modelling low-speed drop-weight impact on composite laminates. Mater. Des.
**2014**, 60, 520–531. [Google Scholar] [CrossRef] - Qiu, A.; Tang, Y.; Zhao, C.; Lin, W. Numerical investigation of transverse tensile behaviors of marine composites under different strain rates. Adv. Mater. Res.
**2013**, 774–776, 944–948. [Google Scholar] [CrossRef] - Qiu, A.; Zhao, C.; Tang, Y.; Lin, W. Rapid predicting the impact behaviors of marine composite laminates. Mater. Sci. Forum
**2015**, 813, 19–27. [Google Scholar] [CrossRef] - ASTM International. Standard Practice for Exposing and Evaluating Metals and Alloys in Surface Seawater; ASTM G52-00; ASTM International: West Conshohocken, PA, USA, 2011. [Google Scholar]
- Standards China. Technical Specification for Corrosion Protection of Steel Structures for Sea Port Construction. Chinese Standard JTS-153-3-2007. 2007. Available online: http://www.chinasybook.com (accessed on 14 August 2017).
- Li, J.; Bao, G. Main girder protective shell construction of Yamen Bridge. J. Chongqing Jiaotong Univ.
**2003**, 22, 11–13. [Google Scholar] - Lu, G.; Wang, X. On the quasi-static piercing of square metal tubes. Int. J. Mech. Sci.
**2002**, 44, 1101–1115. [Google Scholar] [CrossRef] - Zhan, D.; Zhang, L.; Zhao, C.; Wu, J.; Zhang, S. Numerical simulation and visualization of immersed tube tunnel maneuvering and immersing. J. Wuhan Univ. Technol.
**2001**, 25, 16–20. [Google Scholar] - Johannes, V.I.; Green, M.A.; Brockley, C.A. The role of the rate of application of the tangential force in determining the static friction coefficient. Wear
**1973**, 24, 381–385. [Google Scholar] [CrossRef]

**Figure 1.**Sketch of protective device (

**a**) isometric view, (

**b**) top view and (

**c**) perspective view with a code of each cabin.

**Figure 2.**Typical images of corrosion states within the protective device of (

**a**) the spray zone, (

**b**) the tidal zone and (

**c**) the full immersion zone.

**Figure 5.**Initial stage of reaction force histories of the bridge pier with and without buffer rubber.

**Figure 7.**Deformation distribution in protective device during impact for original design, current corrosion state, and further corrosion state.

**Figure 9.**Prediction and verification of key impact factors (

**a**) ship stroke prediction and (

**b**) residual mass prediction considering corrosion effects.

Length (L) | Breadth (B) | Depth (H) | Draught (d) |
---|---|---|---|

47.95 m | 30.20 m | 7.50 m | various |

Corrosion Extent | Spray Zone | Tidal Zone | Full Immersion Zone |
---|---|---|---|

Coating spalling | ● | ● | ● |

Local corrosion | ● | ● | ● |

Bulking | ● | ● | ● |

Aquatic adhesion | ● | ● |

Design Thickness (mm) | Zone | Measuring Points | Average Value (mm) | Average Corrosion Rate ^{1} (mm/a) ^{2} | Minimal Value (mm) | Maximum Corrosion Rate ^{1} (mm/a) ^{2} |
---|---|---|---|---|---|---|

6.00 | Spray zone | 12 | 5.60 | 0.03 | 5.30 | 0.06 |

Tidal zone | 12 | 5.50 | 0.04 | 5.30 | 0.06 | |

Full immersion zone | 12 | 5.36 | 0.05 | 4.30 | 0.14 | |

8.00 | Spray zone | 113 | 7.50 | 0.04 | 6.90 | 0.09 |

Tidal zone | 69 | 7.32 | 0.06 | 5.10 | 0.24 | |

Full immersion zone | 101 | 7.30 | 0.06 | 5.10 | 0.24 | |

10.00 | Spray zone | 39 | 9.00 | 0.08 | 7.30 | 0.23 |

Tidal zone | 47 | 8.70 | 0.11 | 6.70 | 0.28 | |

Full immersion zone | 95 | 8.60 | 0.12 | 6.50 | 0.29 |

^{1}Corrosion rate [25] was calculated based on measurement data and service years, not considering the influence of the coating’s guarantee period;

^{2}mm/a is mm per annual.

**Table 4.**Average measured residual thickness of typical plates and stiffeners in the protective device.

Component Name | Design Thickness (mm) | Measured Thickness (mm) | ||
---|---|---|---|---|

Spray Zone | Tidal Zone | Full Immersion Zone | ||

Plates | ||||

Deck plate | 8.00 | 7.50 | --- | --- |

Tween deck plate | 8.00 | --- | 7.32 | --- |

Bottom plate | 8.00 | --- | --- | 7.30 |

External trunk plate | 8.00 | 7.50 | 7.32 | 7.30 |

Internal trunk plate | 8.00 | 7.50 | 7.32 | 7.30 |

Bulkhead | 10.00 | 9.00 | 8.70 | 8.60 |

Stiffeners | ||||

Deck longitudinal | $\mathrm{L}140\times 90\times 8$ | $\mathrm{L}140\times 90\times 7.5$ | --- | --- |

Tween deck longitudinal | $\mathrm{L}100\times 75\times 8$ | --- | $\mathrm{L}100\times 75\times 7.32$ | --- |

Bottom longitudinal | $\mathrm{L}150\times 100\times 10$ | --- | --- | $\mathrm{L}150\times 100\times 8.59$ |

Bulkhead stiffener | $\mathrm{L}80\times 50\times 6$ | $\mathrm{L}80\times 50\times 5.6$ | $\mathrm{L}80\times 50\times 5.5$ | $\mathrm{L}80\times 50\times 5.3$ |

1-Web beam | $\perp \frac{8\times 350}{12\times 150}$ | $\perp \frac{7.5\times 350}{11.2\times 150}$ | $\perp \frac{7.32\times 350}{11.0\times 150}$ | $\perp \frac{7.3\times 350}{10.9\times 150}$ |

2-Web beam | $\perp \frac{8\times 225}{12\times 125}$ | $\perp \frac{7.5\times 225}{11.2\times 125}$ | $\perp \frac{7.32\times 225}{11.0\times 125}$ | $\perp \frac{7.3\times 225}{10.9\times 125}$ |

Horizontal girder | $\perp \frac{8\times 350}{12\times 200}$ | $\perp \frac{7.5\times 350}{11.2\times 200}$ | $\perp \frac{7.32\times 350}{11.0\times 200}$ | $\perp \frac{7.3\times 350}{10.9\times 200}$ |

**Table 5.**Average 5-year predicted residual thickness of typical plates and stiffeners in the protective device.

Component Name | Design Thickness (mm) | Measured Thickness (mm) | ||
---|---|---|---|---|

Spray Zone | Tidal Zone | Full Immersion Zone | ||

Plates | ||||

Deck plate | 8.00 | 6.50 | --- | --- |

Tween deck plate | 8.00 | --- | 5.96 | --- |

Bottom plate | 8.00 | --- | --- | 5.90 |

External trunk plate | 8.00 | 6.50 | 5.96 | 5.90 |

Internal trunk plate | 8.00 | 6.50 | 5.96 | 5.90 |

Bulkhead | 10.00 | 7.00 | 6.10 | 5.80 |

Stiffeners | ||||

Deck longitudinal | $\mathrm{L}140\times 90\times 8$ | $\mathrm{L}140\times 90\times 6.5$ | --- | --- |

Tween deck longitudinal | $\mathrm{L}100\times 75\times 8$ | --- | $\mathrm{L}100\times 75\times 5.96$ | --- |

Bottom longitudinal | $\mathrm{L}150\times 100\times 10$ | --- | --- | $\mathrm{L}150\times 100\times 5.8$ |

Bulkhead stiffener | $\mathrm{L}80\times 50\times 6$ | $\mathrm{L}80\times 50\times 4.8$ | $\mathrm{L}80\times 50\times 4.5$ | $\mathrm{L}80\times 50\times 4.08$ |

1-Web beam | $\perp \frac{8\times 350}{12\times 150}$ | $\perp \frac{6.5\times 350}{9.8\times 150}$ | $\perp \frac{5.96\times 350}{8.9\times 150}$ | $\perp \frac{5.9\times 350}{8.8\times 150}$ |

2-Web beam | $\perp \frac{8\times 225}{12\times 125}$ | $\perp \frac{6.5\times 225}{9.8\times 125}$ | $\perp \frac{5.96\times 225}{8.9\times 125}$ | $\perp \frac{5.9\times 225}{8.8\times 125}$ |

Horizontal girder | $\perp \frac{8\times 350}{12\times 200}$ | $\perp \frac{6.5\times 350}{9.8\times 200}$ | $\perp \frac{5.96\times 350}{8.9\times 200}$ | $\perp \frac{5.9\times 350}{8.8\times 200}$ |

Principal Dimensions | Mass Matrix (Considering Attach Water) | ||||||
---|---|---|---|---|---|---|---|

Overall length (L) | 112 m | Load draught (d) | 7 m | M11 | 12,276 t | I11 | 447,841 t·m^{2} |

Modeled breadth (B) | 17 m | Block coefficient (C_{b}) | 0.8 | M22 | 23,100 t | I22 | 17,248,000 t·m^{2} |

Molded depth (H) | 9.2 m | Displacement | 11,000 t | M33 | 23,100 t | I33 | 17,248,000 t·m^{2} |

Ship Draught (m) | Protective Device Draught (m) | Stroking Velocity (m/s) | Impact Direction | Impact Location |
---|---|---|---|---|

7.00 | 6.66 | 5 | Transverse bridge direction | Transverse vertex |

Basic Parameters | Yield Stress (MPa) | Plastic Strain | ||
---|---|---|---|---|

Elasticity Modulus E (GPa) | Poisson Ratio | Density (kg·m^{−3}) | ||

210 | 0.3 | 7800 | 235 | 0 |

245 | 0.01 | |||

251 | 0.02 | |||

255 | 0.03 | |||

262 | 0.06 | |||

267 | 0.10 | |||

271 | 0.15 | |||

276 | 0.25 | |||

279 | 0.40 | |||

289 | 2.00 |

Standard Code | Stiffness Factor | Damping |
---|---|---|

SC500 | 250,000 | 250,000 |

Case No. | Feature | Maximum Impact Force Received by Bridge Pier (MN) | Maximum Internal Energy of Protective Device (kJ) | Maximum Ship Stroke (m) | Impact Duration (s) |
---|---|---|---|---|---|

1 | No buffer rubber | 26.79 | 148,371 | 8.69 | 3.23 |

2 | Buffer rubber present | 26.12 | 147,883 | 8.71 | 3.23 |

Feature | Maximum Impact Force Received by Bridge Pier (MN) | Maximum Internal Energy of Device (kJ) | Maximum Ship Stroke (m) | Impact Duration (s) | Mass of Protective Device (t) |
---|---|---|---|---|---|

Original design | 25.28 | 147,563 | 8.51 | 3.29 | 463.64 |

Current corrosion state | 26.62 | 147,883 | 8.69 | 3.23 | 413.85 |

Predicted further corrosion state | 28.98 | 146,698 | 8.81 | 3.17 | 327.06 |

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Qiu, A.; Han, X.; Qin, H.; Lin, W.; Tang, Y.
Anti-Collision Assessment and Prediction Considering Material Corrosion on an Offshore Protective Device. *J. Mar. Sci. Eng.* **2017**, *5*, 37.
https://doi.org/10.3390/jmse5030037

**AMA Style**

Qiu A, Han X, Qin H, Lin W, Tang Y.
Anti-Collision Assessment and Prediction Considering Material Corrosion on an Offshore Protective Device. *Journal of Marine Science and Engineering*. 2017; 5(3):37.
https://doi.org/10.3390/jmse5030037

**Chicago/Turabian Style**

Qiu, Ang, Xiangxi Han, Hongyu Qin, Wei Lin, and Youhong Tang.
2017. "Anti-Collision Assessment and Prediction Considering Material Corrosion on an Offshore Protective Device" *Journal of Marine Science and Engineering* 5, no. 3: 37.
https://doi.org/10.3390/jmse5030037