# Modulation of Atmospheric Nonisothermality and Wind Shears on the Propagation of Seismic Tsunami-Excited Gravity Waves

## Abstract

**:**

## 1. Introduction

## 2. Modeling

#### 2.1. Mean-Field Properties

**Figure 1.**Altitude profiles of mean-field properties. (

**a**) Mass density ${\rho}_{0}$ (pink) and pressure ${p}_{0}$ (blue); (

**b**) density gradient $\mathrm{d}{\rho}_{0}/\mathrm{d}z$ (pink) and pressure gradient $\mathrm{d}{p}_{0}/\mathrm{d}z$ (blue); (

**c**) density scale height ${H}_{\rho}$ (blue) and pressure scale height ${H}_{p}$ (pink); (

**d**) density scale number ${k}_{\rho}$ (pink), pressure scale number ${k}_{p}$ (black) and temperature scale number ${k}_{T}$ (blue); (

**e**) temperature ${T}_{0}$ (blue) and sound speed C (pink); (

**f**) temperature gradient $\mathrm{d}{T}_{0}/\mathrm{d}z$; (

**g**) zonal (eastward) wind U (blue) and meridional (northward) wind V (pink); (

**h**) zonal wind gradient $\mathrm{d}U/\mathrm{d}z$ (blue) and meridional wind gradient $\mathrm{d}V/\mathrm{d}z$ (pink); in (e), a dashed line in red is given as a reference to show an ideal atmosphere, which is isothermal at all altitudes.

#### 2.2. Generalized Dispersion Relation

**Figure 2.**Vertical profiles of input parameters in Equation (11). (

**a**) Richardson number ${R}_{i}$ (blue) and ${R}_{I}$ (pink); (

**b**) ${k}_{gT}^{2}$ (black), ${k}_{g}^{2}$ (pink) and ${k}_{G}^{2}$ (blue); (

**c**) buoyancy frequencies ${\omega}_{B}$ (thin blue) and ${\omega}_{b}$ (dash blue) and cut-off frequencies ${\omega}_{A}$ (thin pink) and ${\omega}_{a}$ (dash pink); (

**d**) $\mathrm{cos}\theta $ (blue) and ${\omega}_{\mathbf{v}}$ (pink); (

**e**) the four periods, ${\tau}_{B}$ (thin blue), ${\tau}_{b}$ (dash blue), ${\tau}_{A}$ (thin pink) and ${\tau}_{a}$ (dash pink), corresponding to the four frequencies in the upper right panel.

## 3. Results

**Figure 3.**Imaginary vertical wavenumber, ${m}_{i}$ (1/10 km), of different tsunami-excited wave modes propagating in an atmosphere. Case 1: Hines’ locally-isothermal and shear-free model; Case 2: the extended Hines’ model under nonisothermal conditions; Case 3: inertio-acoustic-gravity waves under nonisothermal conditions; Case 4: acoustic-gravity waves under nonisothermal and wind shear conditions. In Cases 1–3, ${m}_{i}$-curves are superimposed upon each other (in blue); in Case 4, the ${m}_{i}$-band fluctuates upon those of Cases 1–3 (in pink). As a reference, a red straight line is shown in the figure to represent the result of ${m}_{i}$ for an ideal atmosphere, which is isothermal at all altitudes in response to the constant ${T}_{0}$ in Figure 1.

#### 3.1. Case 1: Hines’ Locally-Isothermal and Shear-Free Model

**Figure 4.**Squared real vertical wavenumber, ${m}_{r}^{2}$ (1/km${}^{2}$), of different tsunami-excited wave modes propagating in an atmosphere. Case 1: (

**a**) Hines’ locally-isothermal and shear-free model; Case 2: (

**b**) the extended Hines’ model under nonisothermal conditions; Case 3: (

**c**) inertio-acoustic-gravity waves under nonisothermal conditions; Case 4: (

**d**) acoustic-gravity waves under non-isothermal and wind shear conditions. Note that there exists a “quasi-straight line” of ${m}_{r}^{2}=0$ in every panel throughout all altitudes at ∼4 min in the tsunami period. This line separates the acoustic waveband of <4 min in wave periods from the gravity waveband of >4 min in wave periods. In (a), there are three straight lines in red, which are located at ${z}_{1}$∼ 12 km, ${z}_{2}$ ∼ 50 km and ${z}_{3}$ ∼ 90 km, respectively, to separate the space into three regions; in (b), there are three additional straight lines in blue, which are located at ${z}_{1}^{\prime}$∼ 4.5 km, ${z}_{2}^{\prime}$∼ 75 km and ${z}_{3}^{\prime}$∼ 110 km, respectively.

#### 3.2. Case 2: Extended Hines’ Model under Non-Isothermal Condition

#### 3.3. Case 3: Inertio-Acoustic-Gravity Waves under Nonisothermal Condition

#### 3.4. Case 4: Acoustic-Gravity Waves under Nonisothermal and Wind-Shear Conditions

#### 3.5. Case 5: IAG Waves under Nonisothermal and Wind Shear Conditions

**Figure 5.**Imaginary and squared real vertical wavenumbers, ${m}_{i}$ (1/10 km) and ${m}_{r}^{2}$ (1/km${}^{2}$), in Case 5 of IAG waves under non-isothermal and wind shear conditions. (

**a**) ${m}_{i}$-envelop; and (

**b**) ${m}_{r}^{2}$-envelop. Note that due to the negligible f-effect, (a) gives the pink band in Figure 3; while (b) has no difference from (d) in Figure 4.

**Figure 6.**Contours of the “damping factor”, β (or, alternatively, the error, $\mathcal{E}$) versus${T}_{ts}$ and z. (

**a**) special case with $\theta =0$; and (

**b**) generalized case with $\theta \ne 0$.

#### 3.6. Influence of Phase Speed ${V}_{ph}$

**Figure 7.**Dependence of ${m}_{i}$ and ${m}_{r}^{2}$ on phase speed ${V}_{ph}$ at a characteristic wave period of ${T}_{ts}=33.3$ min. (

**a**) ${m}_{r}^{2}$ in Case 1; (

**b**) ${m}_{r}^{2}$ in Case 2 (or 3); (

**c**) ${m}_{i}$ in Case 4 (or 5); and (

**d**) ${m}_{r}^{2}$ in Case 4 (or 5).

## 4. Summary and Discussion

## Acknowledgments

## Conflicts of Interest

## References

- Liu, A.Z.; Hocking, W.K.; Franke, S.J.; Thayaparan, T. Comparison of Na LiDAR and meteor radar wind measurements at starfire optical range, NM, USA. J. Atmos. Sol. Terr. Phys.
**2002**, 64, 31–40. [Google Scholar] [CrossRef] - Fritts, D.C.; Williams, B.P.; She, C.Y.; Vance, J.D.; Rapp, M.; Lübken, F.-J.; Müllemann, A.; Schmidlin, F.J.; Goldberg, R.A. Observations of extreme temperature and wind gradients near the summer mesopause during the MaCWAVE/MIDAS rocket campaign. Geophys. Res. Lett.
**2004**, 31, L24S06. [Google Scholar] [CrossRef] - Franke, S.J.; Chu, X.; Liu, A.Z.; Hocking, W.K. Comparison of meteor radar and Na Doppler LiDAR measurements of winds in the mesopause region above Maui, HI. J. Geophys. Res.
**2005**, 110, D09S02. [Google Scholar] - She, C.Y.; Williams, B.P.; Hoffmann, P.; Latteck, R.; Baumgarten, G.; Vance, J.D.; Fiedler, J.; Acott, P.; Fritts, D.C.; Luebken, F.-J. Observation of anti-correlation between sodium atoms and PMSE/NLC in summer mesopause at ALOMAR, Norway (69N, 12E). J. Atmos. Sol. Terr. Phys.
**2006**, 68, 93–101. [Google Scholar] [CrossRef] - She, C.Y.; Krueger, D.A.; Akmaev, R.; Schmidt, H.; Talaat, E.; Yee, S. Long-term variability in mesopause region temperatures over Fort Collins, Colorado (41
^{∘}N, 105^{∘}W) based on LiDAR observations from 1990 through 2007. J. Terr. Sol. Atmos. Phys.**2009**, 71, 1558–1564. [Google Scholar] [CrossRef] - Yue, J.; She, C.-Y.; Liu, H.-L. Large wind shears and stabilities in the mesopause region observed by Na wind-temperature LiDAR at midlatitude. J. Geophys. Res.
**2010**, 115, A10307. [Google Scholar] [CrossRef] - Hall, C.M.; Aso, T.; Tsutsumi, M. Atmospheric stability at 90 km, 78
^{∘}N, 16^{∘}E. Earth Planets Space**2007**, 59, 157–164. [Google Scholar] [CrossRef] - Liu, A.Z.; Swenson, G.R. A modeling study of O
_{2}and OH airglow perturbations induced by atmospheric gravity waves. J. Geophys. Res.**2003**, 108, 4151. [Google Scholar] [CrossRef] - Vargas, F.; Swenson, G.; Liu, A.; Gobbi, D. O(
^{1}S), OH, and O_{2}airglow layer perturbations due to AGWs and their implied effects on the atmosphere. J. Geophys. Res.**2007**, 112, D14102. [Google Scholar] [CrossRef] - Takahashi, H.; Onohara, A.; Shiokawa, K.; Vargas, F.; Gobbi, D. Atmospheric wave induced O
_{2}and OH airglow intensity variations: Effect of vertical wavelength and damping. Ann. Geophys.**2011**, 29, 631–637. [Google Scholar] [CrossRef] - Hines, C.O. Internal atmospheric gravity waves at ionospheric heights. Can. J. Phys.
**1960**, 38, 1441–1481. [Google Scholar] [CrossRef] - Hines, C.O. Atmospheric gravity waves: A new toy for the wave theorist. Radio Sci. J. Res.
**1965**, 69D, 375–380. [Google Scholar] [CrossRef] - Midgley, J.E.; Liemohn, H.B. Gravity waves in a realistic atmosphere. J. Geophys. Res.
**1966**, 71, 3729–3748. [Google Scholar] [CrossRef] - Volland, H. The upper atmosphere as a multiple refractive medium for neutral air motions. J. Atmos. Terr. Phys.
**1969**, 31, 491–514. [Google Scholar] [CrossRef] - Klostermeyer, J. Numerical calculation of gravity wave propagation in a realistic thermosphere. J. Atmos. Terr. Phys.
**1972**, 34, 765–774. [Google Scholar] [CrossRef] - Klostermeyer, J. Comparison between observed and numerically calculated atmospheric gravity waves in the F-region. J. Atmos. Terr. Phys.
**1972**, 34, 1393–1401. [Google Scholar] [CrossRef] - Klostermeyer, J. Influence of viscosity, thermal conduction, and ion drag on the propagation of atmospheric gravity waves in the thermosphere. Z. Geophys.
**1972**, 38, 881–890. [Google Scholar] - Yeh, K.C.; Liu, C.H. Acoustic-gravity waves in the upper atmosphere. Rev. Geophys. Space Sci.
**1974**, 12, 193–216. [Google Scholar] [CrossRef] - Hines, C.O.; Reddy, C.A. On the propagation of atmospheric gravity waves through regions of wind shear. J. Geophys. Res.
**1967**, 72, 1015–1034. [Google Scholar] [CrossRef] - Hines, C.O. Generalization of the Richardson criterion for the onset of atmospheric turbulence. Q. J. R. Meteorol. Soc.
**1971**, 97, 429–439. [Google Scholar] [CrossRef] - Stone, P.H. On non-geostrophic baroclinic stability. J. Atmos. Sci.
**1966**, 23, 390–400. [Google Scholar] [CrossRef] - Hines, C.O. Gravity waves in the atmosphere. Nature
**1972**, 239, 73–78. [Google Scholar] [CrossRef] - Peltier, W.R.; Hines, C.O. On the possible detection of tsunamis by a monitoring of the ionosphere. J. Geophys. Res.
**1976**, 81, 1995–2000. [Google Scholar] [CrossRef] - Einaudi, F.; Hines, C.O. WKB approximation in application to acoustic-gravity waves. Can. J. Phys.
**1970**, 48, 1458–1471. [Google Scholar] [CrossRef] - Francis, S.H. Acoustic-gravity modes and large-scale traveling ionospheric disturbances of a realistic, dissipative atmosphere. J. Geophys. Res.
**1973**, 78, 2278–2301. [Google Scholar] [CrossRef] - Gill, A.E. Atmosphere-Ocean Dynamics; International Geophysics Series; Academic Press: Orlando, FL, USA, 1982. [Google Scholar]
- Hickey, M.P.; Cole, K.D. A numerical model for gravity wave dissipation in the thermosphere. J. Atmos. Terr. Phys.
**1988**, 50, 689–697. [Google Scholar] [CrossRef] - Nappo, C.J. An Introduction to Atmospheric Gravity Waves; Academic Press: Waltham, MA, USA, 2002. [Google Scholar]
- Vadas, S.L. Horizontal and vertical propagation and dissipation of gravity waves in the thermosphere from lower atmospheric and thermospheric sources. J. Geophys. Res.
**2007**, 112, A06305. [Google Scholar] [CrossRef] - Lindzen, R.S.; Tung, K.-K. Banded convective activity and ducted gravity waves. Mon. Weather Rev.
**1976**, 104, 1602–1617. [Google Scholar] [CrossRef] - Hickey, M.P.; Walterscheid, R.L.; Taylor, M.J.; Ward, W.; Schubert, G.; Zhou, Q.; Garcia, F.; Kelley, M.C.; Shepherd, G.G. Numerical simulations of gravity waves imaged over Arecibo during the 10-day January 1993 campaign. J. Geophys. Res.
**1997**, 102, 11475–11489. [Google Scholar] [CrossRef] - Hickey, M.P.; Taylor, M.J.; Gardner, C.S.; Gibbons, C.R. Full-wave modeling of small-scale gravity waves using Airborne Lidar and Observations of the Hawaiian Airglow (ALOHA-93) O(
^{1}S) images and coincident Na wind/temperature LiDAR measurements. J. Geophys. Res.**1998**, 103, 6439–6453. [Google Scholar] [CrossRef] - Hickey, M.P.; Walterscheid, R.L.; Schubert, G. Gravity wave heating and cooling in Jupiter’s thermosphere. Icarus
**2000**, 148, 266–281. [Google Scholar] [CrossRef] - Hickey, M.P.; Schubert, G.; Walterscheid, R.L. Acoustic wave heating of the thermosphere. J. Geophys. Res.
**2001**, 106, 21543–21548. [Google Scholar] [CrossRef] - Liang, J.; Wan, W.; Yuan, H. Ducting of acoustic-gravity waves in a nonisothermal atmosphere around a spherical globe. J. Geophys. Res.
**1998**, 103, 11229–11234. [Google Scholar] [CrossRef] - Walterscheid, R.L.; Hickey, M.P. One-gas models with height-dependent mean molecular weight: Effects on gravity wave propagation. J. Geophys. Res.
**2001**, 106, 28831–28839. [Google Scholar] [CrossRef] - Schubert, G.; Hickey, M.P.; Walterscheid, R.L. Heating of Jupiter’s thermosphere by the dissipation of upward propagating acoustic waves. Icarus
**2003**, 163, 398–413. [Google Scholar] [CrossRef] - Schubert, G.; Hickey, M.P.; Walterscheid, R.L. Physical processes in acoustic wave heating of the thermosphere. J. Geophys. Res.
**2005**, 110. [Google Scholar] [CrossRef] - Kundu, P.K. Fluid Mechanics; Academic Press: San Diego, CA, USA, 1990. [Google Scholar]
- Sutherland, B.R. Internal Gravity Waves; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Miles, J. Richardson’s criterion for the stability of stratified shear flow. Phys. Fluids
**1986**, 29, 3470–3471. [Google Scholar] [CrossRef] - Galperin, B.; Sukoriansky, S.; Anderson, P.S. On the critical Richardson number in stably stratified turbulence. Atmos. Sci. Lett.
**2007**, 8, 65–69. [Google Scholar] [CrossRef] - Harris, I.; Priester, W. Time dependent structure of the upper atmosphere. J. Atmos. Sci.
**1962**, 19, 286–301. [Google Scholar] [CrossRef] - Pitteway, M.L.V.; Hines, C.O. The viscous damping of atmospheric gravity waves. Can. J. Phys.
**1963**, 41, 1935–1948. [Google Scholar] [CrossRef] - Volland, H. Full wave calculations of gravity wave propagation through the thermosphere. J. Geophys. Res.
**1969**, 74, 1786–1795. [Google Scholar] [CrossRef] - Picone, J.M.; Hedin, A.E.; Drob, D.P.; Aikin, A.C. NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues. J. Geophys. Res.
**2002**, 107, 1468. [Google Scholar] [CrossRef] - Hedin, A.E.; Fleming, E.L.; Manson, A.H.; Schmidlin, F.J.; Avery, S.K.; Clark, R.R.; Franke, S.J.; Fraser, G.J.; Tsuda, T.; Vial, F.; et al. Empirical wind model for the upper, middle and lower atmosphere. J. Atmos. Terr. Phys.
**1996**, 58, 1421–1447. [Google Scholar] [CrossRef] - Eckart, C. Hydrodynamics of Oceans and Atmospheres; Pergamon: New York, NY, USA, 1960. [Google Scholar]
- Eckermann, S.D. Influence of wave propagation on the Doppler spreading of atmospheric gravity waves. J. Atmos. Sci.
**1997**, 54, 2554–2573. [Google Scholar] [CrossRef] - Hickey, M.P.; Cole, K.D. A quartic dispersion equation for internal gravity waves in the thermosphere. J. Atmos. Terr. Phys.
**1987**, 49, 889–899. [Google Scholar] [CrossRef] - Hickey, M.P.; Schubert, G.; Walterscheid, R.L. Gravity-wave driven fluctuations in the O
_{2}atmospheric (0–1) nightglow from an extended, dissipative emission region. J. Geophys. Res.**1993**, 98, 13717–13729. [Google Scholar] [CrossRef] - Fagundes, P.R.; Takahashi, H.; Sahai, Y.; Gobbi, D. Observations of gravity waves from multispectral mesospheric nightglow emissions observed at 23
^{∘}S. J. Atm. Sol. Terr. Phys.**1995**, 57, 39–40. [Google Scholar] [CrossRef] - Azeem, S.M.I.; Sivjee, G.G. Multiyear observations of tidal oscillations in OH M(3,l) rotational temperatures at South Pole, Antarctica. J. Geophys. Res.
**2009**, 114, A06312. [Google Scholar] [CrossRef] - Landau, L.D.; Lifshitz, E.M. Fluid Mechanics; Pergamon: New York, NY, USA, 1959. [Google Scholar]
- Fritts, D.C.; Alexander, M.J. Gravity wave dynamics and effects in the middle atmosphere. Rev. Geophys.
**2003**, 41, 1003. [Google Scholar] [CrossRef] - Vadas, S.L.; Fritts, D.C. Thermospheric responses to gravity waves: Influences of increasing viscosity and thermal diffusivity. J. Geophys. Res.
**2005**, 110, D15103. [Google Scholar] [CrossRef] - Liu, X.; Xu, J.; Yue, J.; Vadas, S.L. Numerical modeling study of the momentum deposition of small amplitude gravity waves in the thermosphere. Ann. Geophys.
**2013**, 31, 1–14. [Google Scholar] [CrossRef] - Kaladze, T.D.; Pokhotelov, O.A.; Stenflo, L.; Shah, H.A.; Jandieri, G.V. Electromagnetic inertio-gravity waves in the ionospheric E-layer. Phys. Scr.
**2007**, 76, 343–348. [Google Scholar] [CrossRef] - Kaladze, T.D.; Pokhotelov, O.A.; Shah, H.A.; Khan, M.I.; Stenflo, L. Acoustic-gravity waves in the Earth’s ionosphere. J. Atm. Sol. Terr. Phys.
**2008**, 70, 1607–1616. [Google Scholar] [CrossRef] - Ma, J.Z.G.; Hickey, M.P.; Komjathy, A. Ionospheric electron density perturbations driven by seismic tsunami-excited gravity waves: Effect of dynamo electric field. J. Mar. Sci. Eng.
**2015**, 3, 1194–1226. [Google Scholar] [CrossRef] - Taylor, M.J.; Pautet, P.-D.; Medeiros, A.F.; Buriti, R.; Fechine, J.; Fritts, D.C.; Vadas, S.L.; Takahashi, H.; Säo Sabbas, F.T. Characteristics of mesospheric gravity waves near the magnetic equator, Brazil, during the SpreadFEx campaign. Ann. Geophys.
**2009**, 27, 461–472. [Google Scholar] [CrossRef] - Gossard, E.; Hooke, W. Waves in the Atmosphere; Elsevier: New York, NY, USA, 1975. [Google Scholar]
- Turner, J.S. Buoyancy Effects in Fluids; Cambridge University Press: Cambridge, UK, 1973. [Google Scholar]
- Schunk, R.W.; Navy, A.F. Ionosphere: Physics, Plasma Physics, and Chemistry, 2nd ed.; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Broutman, D.; Eckermann, S.D.; Drob, D.P. The Partial Reflection of Tsunami-Generated Gravity Waves. J. Atmos. Sci.
**2014**, 71, 3416–3426. [Google Scholar] [CrossRef] - Hickey, M.P. Atmospheric gravity waves and effects in the upper atmosphere associated with tsunamis. In The Tsunami Threat—Research and Technology; M.ãrner, N.-A., Ed.; In Tech: Rijeka, Croatia; Shanghai, China, 2011; pp. 667–690. [Google Scholar]
- Weinstock, J. Vertical turbulent diffusion in a stably stratified fluid. J. Atmos. Sci.
**1978**, 35, 1022–1027. [Google Scholar] [CrossRef] - Roper, R.G.; Brosnahan, J.W. Imaging Doppler interferometry and the measurement of atmospheric turbulence. Radio Sci.
**1997**, 32, 1137–1148. [Google Scholar] [CrossRef] - Hickey, M.P.; Schubert, G.; Walterscheid, R.L. Propagation of tsunami-driven gravity waves into the thermosphere and ionosphere. J. Geophys. Res.
**2009**, 114, A08304. [Google Scholar] [CrossRef] - Li, F.; Liu, A.Z.; Swenson, G.R. Characteristics of instabilities in the mesopause region over Maui, Hawaii. J. Geophys. Res.
**2005**, 110, D09S12. [Google Scholar] [CrossRef] - Li, F.; Liu, A.Z.; Swenson, G.R.; Hecht, J.H.; Robinson, W.A. Observations of gravity wave breakdown into ripples associated with dynamical instabilities. J. Geophys. Res.
**2005**, 110, D09S11. [Google Scholar] [CrossRef] - Godin, O.A.; Zabotin, N.A.; Bullett, T.W. Acoustic-gravity waves in the atmosphere generated by infragravity waves in the ocean. Earth Planets Space
**2015**, 67, 47. [Google Scholar] [CrossRef] - European Space Agency. Space Environment Information System 2015. Available online: https://www.spenvis.oma.be/help/background /atmosphere/models.html (accessed on 25 December 2015).

© 2016 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Ma, J.Z.G.
Modulation of Atmospheric Nonisothermality and Wind Shears on the Propagation of Seismic Tsunami-Excited Gravity Waves. *J. Mar. Sci. Eng.* **2016**, *4*, 4.
https://doi.org/10.3390/jmse4010004

**AMA Style**

Ma JZG.
Modulation of Atmospheric Nonisothermality and Wind Shears on the Propagation of Seismic Tsunami-Excited Gravity Waves. *Journal of Marine Science and Engineering*. 2016; 4(1):4.
https://doi.org/10.3390/jmse4010004

**Chicago/Turabian Style**

Ma, John Z. G.
2016. "Modulation of Atmospheric Nonisothermality and Wind Shears on the Propagation of Seismic Tsunami-Excited Gravity Waves" *Journal of Marine Science and Engineering* 4, no. 1: 4.
https://doi.org/10.3390/jmse4010004