1. Introduction
On 26 December 2004 at 01:01:09 UTC a submarine earthquake of magnitude
hit the west coast of Northern Sumatra, Indonesia [
1]. The main shock had its epicenter at 3.09° N and 94.26° E, and the fault line extended for 1200 km to 1300 km from Indonesia northward to the Andaman Islands. The generated tsunami waves caused disastrous destruction around the Indian Ocean, with approx. 220,000 casualties, and severe material losses [
2]. Run-up heights around the Indian Ocean reached maximal values of about 30
[
3], where the maximum run-up of waves is commonly defined as the shoreline elevation at maximum inundation above mean sea level (the subsequent or preceding retreat of water is called run-down).
In the light of this and other disastrous flooding events, major efforts have been established to improve the understanding of generation, propagation and run-up of what can be approximated as shallow water waves [
4]. These efforts can be roughly classified into three methodological categories: (a) experimental [
5,
6,
7]; (b) numerical/computational [
8,
9,
10,
11,
12]; and (c) theoretical [
13,
14].
In physical modeling the ability to generate a wave of a certain type determines quality and reliability of the experimental data. Even in the age of super computers, experiments are still valuable in research, as the data they produce does not result from any model simplifications and is vital for validation and calibration of numerical models. For over 40 years, the solitary wave paradigm has been assumed to yield a good model to study tsunami waves (see, e.g., [
4,
15,
16,
17]). However, the findings in [
18] demonstrated the shortcomings of this model to represent tsunami waves since temporal and spatial scales of solitary waves are significantly shorter than those of the prototype. Instead, the current state-of-the-art model (see [
14]) is the N-wave in its general form, e.g., elevation and depression are of different size.
Analogous to the improvement of the knowledge about wave types, the techniques to generate waves have evolved over the past decades. Very early experiments were carried out in 1844 by Scott Russell who used a sinking box to generate a solitary wave (see an investigation in [
19]). In the 1980s, Synolakis conducted experiments in a rectangular wave flume using a piston type wave generator [
20,
21]. Using this technique, a vertical rectangular wall (a piston) is hydraulically driven forward and backward to transfer momentum into the water column which imitates the depth-averaged particle velocity of a passing wave and finally to generate the wave. In this way one or more solitary waves are generated. By experimental means, and by employing linear and non-linear shallow water wave theory, Synolakis [
21] was able to predict the run-up of non-breaking solitary waves. A similar comparison between analytical, numerical and experimental data was conducted by Titov and Synolakis [
22] to show that the non-linear shallow water wave equations successfully reproduce experimental results or geophysical tsunamis with complicated small scale bathymetric features.
Another hydraulic approach is the wave generation with a vertically moveable bottom as used by Hammack [
23]. In that way it was intended to model a submarine earthquake. According to [
24] this technique is not suitable for modeling waves in the vicinity of a coast since a distinction between a generation section and a downstream section has to be made. A third approach to transfer momentum into a water body is to release an amount of water from above the water surface [
25]. Although a wave is generated, this dam break like mechanism has the disadvantage that significant turbulence is induced into the water. Furthermore, it is difficult to control the wave characteristics such as amplitude and period [
24]. Recently, a new technique to generate long waves has been developed at the Franzius-Institute for Hydraulic, Estuarine and Coastal Engineering in Hannover, Germany. Utilizing a pump-driven wave generator, precise control over the wave characteristics (wave length, amplitude and shape) can be maintained to high accuracy [
26]. In particular, different kinds of waves can be generated including single cycle sinusoidal waves, solitary waves and N-waves.
Flood research and forecasting are mainly carried out with the help of computer models that employ robust and accurate numerical techniques to solve equations suitable to describe geophysical fluid flow. Various state-of-the-art discretization techniques can be and are used for this purpose, such as finite difference, finite element and finite volume models (see, e.g., [
8,
9,
12,
22,
27]). Among these models, discontinuous Galerkin models (as described in, e.g., [
28,
29]) have recently become popular, because they combine numerical conservation properties with geometric flexibility, high-order accuracy and robustness on structured and unstructured grids. Furthermore, the communication between elements is local making them especially suitable for parallel and high performance computing (see Kelly and Giraldo [
30] for a study with a 3D model). Therefore, numerical modeling became a most valuable tool in tsunami science; particularly powerful once employed in combination with analytical and experimental methods.
While a number of analytical solutions are available [
31], the present study focuses on the important theoretical results in [
14], who applied the methodology originally developed by Synolakis [
21] for different wave shapes. Model calibration and validation calls for further realistic experimental data, in order to link numerical modeling with realistic fore- and hindcasting results.
In order to increase confidence in our physical and numerical models, and to test the applicability of the theoretical derivations, the authors investigate the agreement of experimental and numerical modeling results. The present study therefore provides measurements of shoreline motion using an innovative pump-driven wave generator (see [
24]), and may serve as a novel benchmark for leading depression sinusoidal waves. The produced data set is used to validate a numerical discontinuous Galerkin non-linear shallow water model concerning shoreline dynamics. With both, experiment and simulation, the authors reproduce the theoretical results for long periodic waves that were presented in [
14].
Our main research questions ask, whether run-up, calculated with the shallow water model, is capable of representing shoreline motion adequately in terms of theoretical understanding according to [
14,
21], and in terms of physical experiments as well as numerical methods, for a single cycle sinusoidal wave as a very basic representation of a tsunami. Once convinced that the numerical method adequately reproduces the theoretical expression, the authors investigate deviations of the experimental results from theory by running numerical simulations with perfect and imperfect initial conditions (as taken from “imperfect” experiments), assuming that impurities in the initial wave setup lead to contaminated run-up results. The overall aim is to showcase how comparative, intermethodological work contributes to the understanding of shoreline motion of long waves.
After summarizing the theoretical results of Madsen and Schäffer [
14] at the beginning of
Section 2, the experimental and numerical setup of this study is introduced and the novel design of the wave flume is described. Furthermore, the authors provide background of the one-dimensional discontinuous Galerkin non-linear shallow water model. Once convinced that the experimental data are useful and sufficiently accurate (
Section 3.1), the authors perform numerical simulations with analytically prescribed wave shapes to validate the numerical model in
Section 3.2 in terms of the theoretical expressions. The experimental data is then compared with analytical as well as numerical results in
Section 3.3. For further validation and in order to assess useful information on wave impact, maximum as well as minimum run-up and shoreline velocities are addressed in
Section 3.4. Finally, an evaluation of all results, conclusions and an outlook is given in
Section 4.
2. Methodology
The current study is based on the theoretical findings of Madsen and Schäffer [
14], who derived explicit formulae for long wave run-up on a plane beach generated by waves of different shapes. The goal of this study was to reproduce these functional relationships for sinusoidal waves (a) experimentally using a wave flume facility at the Leibniz Universität Hannover; and (b) by numerical simulations with a one-dimensional shallow water model. After summarizing the results of Madsen and Schäffer [
14] for periodic sinusoidal waves, the experimental setup and the numerical model used for this study are introduced in this section. At the end the boundary conditions (BC) are detailed, which the authors used to generate the waves in the experimental and the numerical model.
Figure 1.
Schematic cross section of the considered setup: A constant depth region is attached to a linearly sloping beach with angle , where γ is the beach slope. Also indicated are the wave gauges (WG) from the experimental setup.
Figure 1.
Schematic cross section of the considered setup: A constant depth region is attached to a linearly sloping beach with angle , where γ is the beach slope. Also indicated are the wave gauges (WG) from the experimental setup.
2.1. Theoretical Background
The explicit formulae for the run-up/run-down of incoming waves with fixed shape from Madsen and Schäffer [
14] are given for a one-dimensional bathymetry which consists of a constant depth offshore region of depth
attached to a linearly sloping beach with
γ being the constant beach slope (
cf. Figure 1). In the offshore region the waves are assumed to be solutions of the linearized shallow water equations while they obey the non-linear shallow water equations on the sloping beach. Effects of wave breaking and bottom dissipation are neglected in this theory.
Analytical solutions for the non-linear shallow water equation on a plane beach are already derived by Carrier and Greenspan [
13] by using a so-called hodograph transformation in which a new set of independent variables
and a velocity potential
are introduced. This leads to a linear differential equation in
ψ, for which one can derive exact solutions. In [
14] the independent variables are chosen in such a way, that
ρ becomes 0 at the shoreline and
λ is a modulated time. By letting
, the expressions for surface elevation
η and velocity
v in terms of
ρ,
λ and
ψ lead to explicit formulae for the evolution of run-up elevation
R and the associated run-up velocity
V. Furthermore, the theory of Carrier and Greenspan [
13] yields a theoretical breaking criterion, in which case the time derivative of
V and the space derivative of
η go to infinity. This corresponds to a discontinuity in these profiles.
Using some further approximations, Madsen and Schäffer [
14] finally arrive at the run-up expression for periodic sinusoidal waves. Let the coordinate system have its origin at the still water shoreline with the
x-axis being positive in the offshore direction (see
Figure 1). The
z-axis points upwards. The time series of the incoming wave at the beach toe
is prescribed by
where
is its surface elevation, Ω is the angular frequency,
is the offshore wave amplitude, and
is aphase shift. The run-up velocity and elevation are then
with
and
g being the gravitational constant. Further,
, and the time is parameterized through
λ,
i.e.,
This describes the temporal variation of and . One can also derive the maximum run-up, which occurs for . At this time and . Similar considerations can be made for the run-down and the extreme values of the velocity.
The maximum values of run-up/run-down elevation and velocity and the theoretical breaking criterion for periodic sinusoidal waves are conveniently given by introducing the non-linearity of a wave
and the surf similarity parameter. The latter was originally introduced by Battjes [
32] and is defined by
, where
is the incident wave height and
the deep water wavelength of small amplitude sinusoidal waves with period
. Thus,
relates the beach slope to the wave steepness. With these definitions one obtains for a given non-linearity the extreme values
only depending on the surf similarity parameter. The theoretical breaking criterion is met for
In this study it will be shown how these results were reproduced in the laboratory experiment, i.e., in a wave flume. Furthermore, they will be used later on to validate the numerical model regarding its treatment of inundation.
2.2. Physical Model
The dynamics of long sinusoidal waves approaching the sloping beach and their subsequent interaction during the run-up and run-down process was studied experimentally in a wave flume at the University of Hannover. The closed-circuit wave flume that was used to generate the sinusoidal waves including the experimental setup is already described in [
24,
26,
33,
34,
35]. In summary, the wave generation relies on electronically controlled high-capacity pipe pumps which allow for the acceleration and deceleration of a water volume. A control loop feedback system allows the generation of arbitrary wave shapes such as sinusoidal, solitary or N-waves over a large range of wave periods and lengths.
A major advantage of this wave generation method with active control loop is that wave lengths much longer than the available propagation distance of the wave flume can be generated. This feature is accomplished by intrinsic treatment of the seaward propagating re-reflections. These re-reflections would normally limit the effective wave length to be generated to one wave flume length or less. Through inverse pump response, it is possible to compensate for the re-reflected wave components and in principle, a “clean” wave generation is provided over the entire duration of the target surface elevation time series, similar to the active wave absorption technique used in laboratory wind wave generation.
However, a disadvantage of the wave generation is the development of spurious high frequency ripples (or “riding waves”) overlaid with the long wave. These are caused by the active control loop overshooting set reference values (or sometimes called
target values) during the generation process, and emanate from excess discharge into the wave flume at short times. In the sequence, this unintentional generation of shorter waves alongside of the long waves gave rise to additional effects occurring where the run-up and run-down took place. Most prominent, these riding waves arrived somewhat delayed with respect to the long wave, broke on the shallow beach and interfered with the targeted long wave run-up process. As will be shown later, some of the presented results are attributed to this fact; a wave generation improvement useful in future studies was yet recently reported by Goseberg
et al. [
36] or Bremm
et al. [
37] to circumvent such behavior.
Figure 2 shows a sketch of the facility used for the experiments. Pump station (a), propagation section (b), reservoir section (c), sloping beach (d), and the water storage basin (e) are depicted, respectively. Walls and horizontal bottom sections are made of plasterworks and floating screed and the width of the flume is 1.0 m. A 1 in 40 sloping beach (
i.e., beach angle of
) made of aluminum boards with small surface roughness was used to model the run-up. The effective length of the constant depth propagation section from pump station to the beach toe was 19.92 m. The undisturbed offshore water depth for this study was set to
= 0.3 m.
Figure 2.
Schematic drawing of the wave flume and its components with position indication of instrumentation. Adapted from [
38], with permission from © 2012 World Scientific Publishing Company Incorporated.
Figure 2.
Schematic drawing of the wave flume and its components with position indication of instrumentation. Adapted from [
38], with permission from © 2012 World Scientific Publishing Company Incorporated.
To control the generation of the waves, a pressure sensor was installed at the water inlet of the pump station. In the deep water region offshore of the beach, wave gauges (Delft Hydraulics) and velocity meters (Delft Hydraulics) completed the instrumentation during the experiments as shown in
Figure 2. The surface piercing wave gauges comprised two parallel electrodes. The immersion depth (surface elevation) was determined by measuring the electric resistance between both electrodes. The measurement accuracy was
. Wave gauges (WG) were located close to the pump (WG1, at
m), halfway of the flume bend (WG2, at
m) and at the beach toe (WG3, at
m). All instruments were carefully tested and calibrated prior to the experiments, and were subsequently set to zero before single experimental runs.
In addition, two high definition cameras (Basler, Pilot pi-1900-32-gc) captured the wave interaction process with a sampling frequency of 32
. Image processing techniques in the form of color space conversion, lens distortion correction, image rectification and projection shore-parallel, and image stitching were used in post processing on the two sets of images. The resulting processed images from the two cameras (whose field of view is indicated in
Figure 2) covered a length of 9.80 m with an original overlap of 0.5 m. The time span of image recording was adapted based on the wave period of the experimental run.
Stages of the image processing process are depicted in
Figure 3 which includes scene snapshots of each of the cameras and a final result after image processing routines. A manual processing was used as the amount of experimental runs was reasonable to work through. Adhesive tape spaced by 0.1 m was placed on the beach slope and from this, vectors of time and shoreline location along the center line of the flume were determined based on the derived images as shown in
Figure 3c. This approach minimized the influence of fluid boundary layers formed on the flume walls. Based on the outlined procedure, an accuracy for the manually processed shoreline location of
mm was estimated. For 50% of the experimental repetitions, PVC tracers with a diameter of 2 mm were used to increase the traceability of the wave front. The tracers’ density is very close to the density of water which results in small settling velocities and similarly small inertial forces were required to accelerate the tracer particles close to the wave front. It was assured through preliminary tests that the shoreline dynamics were not affected by the presence of the tracers. In particular, this method proved useful for the run-up motion whereas inaccuracies might have occurred due to the fuzzyness of the withdrawing shoreline during the run-down process, which has to be looked into in future studies.
Figure 3.
Stages of the image processing with raw data images and final result after image processing routines. (a) First camera scene; (b) Second camera scene; (c) Final stitched image for analysis.
Figure 3.
Stages of the image processing with raw data images and final result after image processing routines. (a) First camera scene; (b) Second camera scene; (c) Final stitched image for analysis.
Subsequently, the shoreline velocity was derived from the basic positional information along the center line of the flume based on
Here, is conveniently assigned to time and positively defined in the offshore direction, m denotes the distance between adjacent marker tapes, and and are the times where the shoreline crossed these tapes.
Due to irregular image acquisition measurement gaps occurred in the time series of shoreline location and shoreline velocity. These gaps were not considered in the analysis of the experimental data.
2.3. Scale Effects
The chosen length scale of the Froude-scaled physical model may cause scale effects at times when or at locations where the Reynolds and Weber numbers fall short of commonly accepted thresholds. For example, low Reynolds (
) numbers in the physical model result in laminar boundary layers which in turn reduce the effective roughness of the down-scaled model as shown in the context of landslide generated waves [
39]. In the following, the possible influence of such scale effects in the present experimental setup is briefly discussed. A more general treatise on scale effects can be found in Heller [
40].
The Reynolds number during the wave propagation over horizontal bottom, conveniently defined by wave celerity
, initial water depth
h, and kinematic viscosity
ν, yields
This value is non-critical with boundary layer turbulence fully developed and turbulence effects similar between prototype and scaled model. However, in the sequence of the wave propagation characteristic velocities and water depth decrease significantly during the wave run-up and run-down phase. Local water depth and run-up velocities are then characteristic quantities to define the Reynolds number on the sloping beach. These values eventually approach zero, and so does the corresponding Reynolds number. Schüttrumpf [
41] defined a critical threshold of
for overtopping experiments and this might be good guidance in the present case as well. As a direct result, viscous forces are likely to play a more dominant role compared with prototype conditions in the very shallow, phasing-out wave tongue region; Reynolds numbers fall short of the threshold for example for water depth smaller than 1 cm in combination with flow velocities smaller than 0.1 m
s
. This finding aligns well with the analogue requirement for scaled coastal models proposed by Le Méhauté [
42] who considered a minimal flow depth smaller than 2 cm and wave periods smaller than 0.35 s as critical. As a matter of fact, the scale effects related to very long wave run-up on gently sloped beaches have not been sufficiently addressed in the literature; experiments with varying model families at different length scales have not been compared until now. An occasional example of scale effect discussion in the context of impulsive wave run-up is a study by Fuchs and Hager [
43].
In addition to viscous forces, surface tension has theoretically the potential to bias the experimental results. While in the prototype scale waves are rarely transformed under the forces carried to the water surface by surface tension, the effect might gain significant influence in small scale models. Short waves, which regularly have to be investigated in laboratory studies, can reach the region of capillary waves when the model length scale of a hydraulic scale model is designed too small. Dingemann [
44] expressed the effectiveness of the surface tension in an increase of gravitational acceleration, but outlined that the influence of surface tension to wave action is dominant when, for example, capillary waves are investigated. The effect of surface tension is interpreted to be small for large Weber (
) numbers, indicating that driving forces dominate. The Weber number is defined as
where
ρ is the fluid density,
v and
l are the characteristic velocity and length scales, and
N
m
is the surface tension for 20
water. Using the equation above, the Weber number in the experiments reported herein was approximately
in the horizontal propagation section (applying the wave celerity
c as characteristic velocity and the fluid depth
h as length scale). This value, which is well above critical thresholds, also reflects the fact that the length of the long waves and capillary waves differ by orders of magnitude. In the wave tongue region earlier discussed in regard to the viscous effects, where fluid depth and velocity decrease to
cm and
m
s
, Weber numbers were however significantly reduced and yielded values as small as
. A comprehensive review of small scale models and the influence of the Weber number has been presented in Peakall and Warburton [
45]. They summarized various recommendations on the critical flow depth in small scale models reporting critical Weber numbers in the range of
. It is thus likely, that surface tension has a major influence on the wave tip formation during the run-up process, as the Weber number found for the experiments fell below this given threshold. Surface tension does not properly scale in physical models governed by Froude similitude. Therefore, the wave run-up of long waves measured is likely be underestimated to a certain extent since tensile forces along the wave front with small surface radii counteract the inertia forces from the run-up flow.
Summarized, in the constant depth region the flow should be realistically modeled in the wave flume. In the run-up process, however, certainly some inaccuracies arise compared to realistic tsunami conditions. However, these are probably negligible compared to inaccuracies in modeling the topography and other parametrization.
2.4. Numerical Model
The numerical simulations presented in this study were executed using a one-dimensional shallow water model. In this model the equations are solved in conservation form with fluid depth
h and discharge (momentum)
being the primary variables. They are discretized using the explicit Runge-Kutta discontinuous Galerkin (RKDG) finite element method [
46] with second-order accuracy. This scheme was chosen as a state-of-the-art discretization for hyperbolic conservation laws with source terms. The method is mass-conservative and preserves the steady state at rest (
i.e., it is well-balanced). A comprehensive presentation of the scheme including its validation with respect to the shallow water equations is given in Vater
et al. [
47].
An important part in the numerical scheme is the treatment of wetting and drying events. Here, the authors pursued a fixed grid approach where initially dry cells can be flooded and wet cells can dry out during the simulation. A cell can be either wet or dry, thus the wet/dry interface is only accurate up to one cell size. The wetting and drying treatment involves only one additional parameter, which is a wet/dry tolerance. Whenever the fluid depth
h is below this tolerance, the velocity is set to zero. In [
47] it was shown that the specific value of this parameter does not affect the stability of the scheme. It rather influences the accuracy of the wetting and drying computation. In the presented results, this tolerance was always set to
m.
The fixed grid approach implies that one does not get a continuous representation of the shoreline evolution. Instead, the scheme results in a discrete time series in which the shoreline jumps from one cell interface to the next, whenever one cell gets fully flooded and water penetrates into the next cell, or draining leads to the opposite process. Therefore, similarly to the data processing in the experiments these jumps were identified in the time series as points where the shoreline crossed a cell interface, and the space between the points was linearly interpolated. As the discrete solution led to some oscillations in the shoreline computation where the latter jumped back and forth in some situations only within a few time steps, all oscillations within a window of five time steps were removed in this time series. The shoreline velocity was then computed by a formula equivalent to Equation (
8). In this time series, also some oscillations were filtered out, which occurred within a window of two time steps.
For the discretization in time, Heun’s method was used, which is the second-order representative of a standard explicit Runge-Kutta total-variation diminishing (TVD) scheme [
48,
49]. Its stability is governed by a Courant–Friedrichs–Lewy (CFL) time step restriction [
50] with
, where
and
are the time step and grid cell size, respectively,
is the CFL number and
is the maximum speed at which information propagates. To obtain linear stability and positivity of the water depth in the RKDG method, the validity of
has to be ensured [
47,
51].
The gravitational constant was set to
throughout the computations. No parametrization of bottom friction was included in the model, since the theoretical results of Madsen and Schäffer [
14] also do not consider friction. However, some deviations compared to the experimental runs might be attributed to this fact. To obtain results, which are comparable to the experiments, the simulated domain was 33
long and spanned from the dry area of the sloping beach at
m to the first wave gauge (WG1) at
m. For the discretization the domain was devided into 330 uniform cells with a cell size of
. The time step size was fixed to
, which results in a CFL number of
. The (one-dimensional) bottom topography was given by
. The initial conditions for the numerical simulations were a fluid at rest, with
2.5. Boundary Conditions
In this study, long wave conditions in the vicinity of the shore in shallow water were approximated by sinusoidal waves with leading depression. The chosen boundary conditions (BC) were used throughout this study for the experimental and the numerical method equally. Experimentally, those waves were generated by the pump-driven wave generator, as outlined in Goseberg
et al. [
26] and in
Section 2.2 on the basis of ideal, analytical surface elevation time series of
where
is the wave height, and
T is the wave period. In the experiments only one period of a sinusoidal wave was modeled, which started after 10
. The initial delay was necessary, because the pipe pumps needed some initialization time. This means that the starting time was set to
and the stopping time to
. It is to be noted that the experimentally generated waves exhibit imperfections (
cf. Section 3.1) which are attributed to the tuning of the control loop as outlined in
Section 2.2.
In the numerical simulations, the incident wave was modeled through the right boundary condition. For validation against analytical expressions the fluid depth was prescribed by Equation (
12) with
. The velocity was then chosen such that the boundary data resulted in a single (simple) wave propagating to the left. In particular, it was set to
The starting time in Equation (
12) was set to
, since no initialization phase is needed for the numerical model. For the stopping time two different simulations were conducted for each wave shape. In one simulation the stopping time was after one period as in the experimental setup,
i.e.,
. In the other simulation the stopping time was set to infinity, which means that the incoming sinusoidal wave lasted until the end of the simulation. As will be shown in the results, the comparison between the respective two simulations revealed several deviations between the theory of periodic sinusoidal waves and the practical setup of a single period sinusoidal wave.
For comparison with the experiments the right boundary condition of fluid depth and velocity were set using the data from the time series at wave gauge WG1 of the experimentally measured data. The left boundary did not affect the numerical solution as it was in the dry part of the domain.
Table 1 summarizes the boundary conditions used in the current study. The wave characteristics were chosen to cover the significant range of surf similarity parameters
ξ. To investigate the run-up of long waves on a plane beach six leading depression, non-breaking, single period sinusoidal waves were selected. The wave period varied from 20 s to 100 s which correspond to laboratory wave lengths from 34.311 m to 71.55 m. The wave height varied from 2 cm to 4 cm. For brevity, wave identifiers (Wave-ID) were used throughout the paper to label the waves used; waves are labeled with a naming scheme “
Tx_Hy” where
T denotes the wave period in seconds,
H denotes the wave height in centimeter and
x and
y contain the actual quantity values. The long waves covered a range of surf similarity
ξ between
. In total 36 experimental runs were conducted, since each wave was reproduced six times. This procedure allowed quantification of the repeatability of the experiments. The data acquisition time for each experiment was 120 s.
Table 1.
Characteristics of sinusoidal waves used, surf similarity according to Equation (
5), naming scheme indicates period and wave height, respectively.
Table 1.
Characteristics of sinusoidal waves used, surf similarity according to Equation (5), naming scheme indicates period and wave height, respectively.
Wave-ID | Height | Period | Length | Non-linearity | Rel. Amplitude | Surf Similarity |
---|
| | | | | | |
---|
T20_H2 | 0.02 | 20.00 | 34.31 | 0.033 | 2.91 × 10 | 4.42 |
T30_H2 | 0.02 | 30.00 | 51.47 | 0.033 | 1.94 × 10 | 6.63 |
T44_H3 | 0.03 | 44.00 | 75.48 | 0.050 | 1.99 × 10 | 7.94 |
T58_H3 | 0.03 | 58.00 | 99.50 | 0.050 | 1.51 × 10 | 10.46 |
T77_H4 | 0.04 | 77.00 | 132.09 | 0.067 | 1.51 × 10 | 12.03 |
T100_H4 | 0.04 | 100.00 | 171.55 | 0.067 | 1.17 × 10 | 15.62 |
From now on the term “experimental BC” will be used to indicate that the numerical model was initialized with surface elevation and velocity of a single cycle sinusoidal wave as measured at WG1 in the experiments. Similarly, “analytical BC” indicates numerical runs using a perfect periodic sinusoidal wave.
4. Discussion and Conclusions
This study contributed to the answer of the basic research question, whether shallow water theory can explain and accurately model the run-up behavior of long waves on a plane beach. By conducting physical and numerical experiments and comparing them with analytical expressions derived from the underlying equations, the authors demonstrated the usefulness of such simultaneous experimentation.
A novel wave generator, based on hydraulic pumps that are capable of generating arbitrarily long waves (even exceeding the wave flume length) was used to generate wave periods of 20 to 100 s Combined with appropriate wave heights, surf similarity parameters between
were realized. Sinusoidal wave shapes were adopted from [
14], in order to obtain waves with corresponding analytical reference solutions. Due to the complex control problem for this type of wave generator in the current set-up, spurious over-riding small-scale waves were unavoidable. Scaling effects were also discussed and it could be concluded that the experimental scale imposes at most minor inaccuracies in the run-up area on the experimental results.
A Runge-Kutta discontinuous Galerkin method with a high fidelity wetting and drying scheme was applied to numerically solve the one-dimensional non-linear shallow water equations. Analytical (from [
14]) and experimentally generated wave shapes were used as inflow boundary conditions for the numerical experiments.
In order to compare analytical, numerical and experimental data, the wave similarity measured by the Brier score, maximum run-up and run-down height, as well as run-up/run-down velocities were utilized as quantitative metrics. In a first analysis, periodic and non-periodic clean sinusoidal waves were compared to rule out differences due to the single sinusoidal wave generation in the wave flume. On further analysis, significant differences in experimental and analytically expected values are observed. However, with the combination of analytical, numerical, and experimental data it could be demonstrated that spurious over-riding small-scale waves lead to the observed deviations between analytical expression and experimental values. The numerical model serves as a linking element between theoretical and measured results, and can therefore explain rigorously the influence of small-scale spurious pollution.
Future investigations could be directed to solve the following problems: Better feedback control systems could minimize the spurious over-riding waves and allow for a better resemblance of experimental and analytical wave shapes. More appropriate wave shapes, like N-waves or wave shapes, reconstructed from tide gauges, could be generated in order to obtain a better representation of tsunami wave characteristics. Finally, a true two-dimensional simulation could investigate geometrical features of the experiment, taking into consideration small-scale reflections and inhomogeneous meridional velocity and wave height distributions.