A Transfer-Learning-Based STL–LSTM Framework for Significant Wave Height Forecasting
Abstract
1. Introduction
2. Model and Methodologies
2.1. STL Decomposition
2.2. Long Short-Term Memory (LSTM) Transfer Learning Strategy
2.3. Sliding-Window Strategy for SWH Forecasting
- (i)
- STL decomposition in a moving window. For each current time point, a segment of SWH data covering the previous 4320 time steps is extracted and decomposed by STL into trend, seasonal and remainder components.
- (ii)
- Continuous prediction using the transfer-learning LSTM. The decomposed sub-series within the window are fed into the pre-trained stacked LSTM backbone, and only the parameters of fully connected layer are fine-tuned on the current window to adapt to the latest sea-state conditions. The model then performs one-step or multi-step prediction for each component, and the predicted trend, seasonal, and remainder are summed to yield the SWH forecasts for this round.
- (iii)
- Forward sliding of the prediction window. After each prediction round, both the training window and the prediction horizon are shifted forward by a fixed number of time steps (e.g., 6, 12 and 24 steps), and steps (i)–(ii) are repeated until the entire target period is covered. The forecasts from all rounds are finally concatenated to form a continuous predicted SWH time series.
2.4. Data Sources
2.5. Evaluation Metrics
3. Results and Discussion
3.1. Effect of the Transfer-Learning Strategy
3.2. Effect of the Continuous Forecast Steps
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| Symbols | |
| Logistic Sigmoid Function | |
| Hyperbolic Tangent Function | |
| Cell State | |
| Hidden State | |
| Forget Gate | |
| Input Gate | |
| Element-wise Multiplication | |
| Tt | Trend Component of STL Decomposition |
| St | Seasonal Component of STL Decomposition |
| Rt | Residual Component of STL Decomposition |
| Abbreviations | |
| AE | Absolute Error |
| ANN | Artificial Neural Network |
| BiGRU | Bidirectional Gated Recurrent Unit |
| CNN | Convolutional Neural Network |
| EMD | Empirical Mode Decomposition |
| EMMD | Ensemble Empirical Mode Decomposition |
| IMF | Ntrinsic Mode Function |
| LSTM | Long Short-Term Memory |
| LOESS | Locally Estimated Scatterplot Smoothing |
| MSE | Mean Squared Error |
| MAPE | Mean Absolute Percentage Error |
| NDBC | National Data Buoy Center |
| PACF | Partial Autocorrelation Function |
| RMSE | Root Mean Squared Error |
| RNN | Recurrent Neural Network |
| STL | Seasonal-Trend Decomposition Using Loess |
| SWH | Significant Wave Height |
| SVMs | Support Vector Machines |
| WD-SVR | Wavelet-Decomposition-based Support Vector Regression |
References
- Cornejo-Bueno, L.; Garrido-Merchán, E.C.; Hernández-Lobato, D.; Salcedo-Sanz, S.J.N. Bayesian optimization of a hybrid system for robust ocean wave features prediction. Neurocomputing 2018, 275, 818–828. [Google Scholar] [CrossRef]
- Dempwolff, L.-C.; Melling, G.; Windt, C.; Lojek, O.; Martin, T.; Holzwarth, I.; Bihs, H.; Goseberg, N. Loads and effects of ship-generated, drawdown waves in confined waterways-A review of current knowledge and methods. J. Coast. Hydraul. Struct. 2022, 2, 46. [Google Scholar] [CrossRef]
- Pennino, S.; Scamardella, A. Motions assessment using a time domain approach for a research ship in Antarctic waters. J. Mar. Sci. Eng. 2023, 11, 558. [Google Scholar] [CrossRef]
- Group, T.W. The WAM model—A third generation ocean wave prediction model. J. Phys. Oceanogr. 1988, 18, 1775–1810. [Google Scholar] [CrossRef]
- Booij, N.; Ris, R.C.; Holthuijsen, L.H. A third-generation wave model for coastal regions: 1. Model description and validation. J. Geophys. Res. Oceans 1999, 104, 7649–7666. [Google Scholar] [CrossRef]
- Tolman, H.L.; Balasubramaniyan, B.; Burroughs, L.D.; Chalikov, D.V.; Chao, Y.Y.; Chen, H.S.; Gerald, V.M. Development and implementation of wind-generated ocean surface wave Modelsat NCEP. Weather Forecast. 2002, 17, 311–333. [Google Scholar] [CrossRef]
- Soares, C.G.; Ferreira, A.; Cunha, C. Linear models of the time series of significant wave height on the Southwest Coast of Portugal. Coast. Eng. 1996, 29, 149–167. [Google Scholar] [CrossRef]
- Agrawal, J.; Deo, M. On-line wave prediction. Mar. Struct. 2002, 15, 57–74. [Google Scholar] [CrossRef]
- Deo, M.; Naidu, C.S. Real time wave forecasting using neural networks. Ocean Eng. 1998, 26, 191–203. [Google Scholar] [CrossRef]
- Etemad-Shahidi, A.; Mahjoobi, J. Comparison between M5′ model tree and neural networks for prediction of significant wave height in Lake Superior. Ocean Eng. 2009, 36, 1175–1181. [Google Scholar] [CrossRef]
- Medsker, L.R.; Jain, L. Recurrent neural networks. Des. Appl. 2001, 5, 2. [Google Scholar]
- Yu, Y.; Si, X.; Hu, C.; Zhang, J. A review of recurrent neural networks: LSTM cells and network architectures. Neural Comput. 2019, 31, 1235–1270. [Google Scholar] [CrossRef] [PubMed]
- Fan, S.; Xiao, N.; Dong, S. A novel model to predict significant wave height based on long short-term memory network. Ocean Eng. 2020, 205, 107298. [Google Scholar] [CrossRef]
- Hu, H.; van der Westhuysen, A.J.; Chu, P.; Fujisaki-Manome, A. Predicting Lake Erie wave heights and periods using XGBoost and LSTM. Ocean Model. Online 2021, 164, 101832. [Google Scholar] [CrossRef]
- Meng, F.; Song, T.; Xu, D.; Xie, P.; Li, Y. Forecasting tropical cyclones wave height using bidirectional gated recurrent unit. Ocean Eng. 2021, 234, 108795. [Google Scholar] [CrossRef]
- Gu, J.; Wang, Z.; Kuen, J.; Ma, L.; Shahroudy, A.; Shuai, B.; Liu, T.; Wang, X.; Wang, G.; Cai, J.; et al. Recent advances in convolutional neural networks. Pattern Recognit. 2018, 77, 354–377. [Google Scholar] [CrossRef]
- Guo, M.-H.; Xu, T.-X.; Liu, J.-J.; Liu, Z.-N.; Jiang, P.-T.; Mu, T.-J.; Zhang, S.-H.; Martin, R.R.; Cheng, M.-M.; Hu, S.-M. Attention mechanisms in computer vision: A survey. Comput. Vis. Media 2022, 8, 331–368. [Google Scholar] [CrossRef]
- Cheng, X.; Wu, D.; Wang, J.; Yan, M. TransWaveNet: Cross-structural time series prediction of wave height based on a simplified transformer. Phys. Fluids 2025, 37, 107157. [Google Scholar] [CrossRef]
- Jörges, C.; Berkenbrink, C.; Stumpe, B. Prediction and reconstruction of ocean wave heights based on bathymetric data using LSTM neural networks. Ocean Eng. 2021, 232, 109046. [Google Scholar] [CrossRef]
- Gómez-Orellana, A.M.; Guijo-Rubio, D.; Gutiérrez, P.A.; Hervás-Martínez, C. Simultaneous short-term significant wave height and energy flux prediction using zonal multi-task evolutionary artificial neural networks. Renew. Energy 2022, 184, 975–989. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, J.; Zhang, R.; Wang, X.; Yang, Y.; Zhang, T. RIME-CNN-BiLSTM: A novel optimized hybrid enhanced model for significant wave height prediction in the Gulf of Mexico. Ocean Eng. 2024, 312, 119224. [Google Scholar] [CrossRef]
- Raj, N.; Prakash, R. Assessment and prediction of significant wave height using hybrid CNN-BiLSTM deep learning model for sustainable wave energy in Australia. Sustain. Horiz. 2024, 11, 100098. [Google Scholar] [CrossRef]
- Zhang, S.; Zhao, Z.; Wu, J.; Jin, Y.; Jeng, D.-S.; Li, S.; Li, G.; Ding, D. Solving the temporal lags in local significant wave height prediction with a new VMD-LSTM model. Ocean Eng. 2024, 313, 119385. [Google Scholar] [CrossRef]
- Dixit, P.; Londhe, S.; Dandawate, Y. Removing prediction lag in wave height forecasting using Neuro-Wavelet modeling technique. Ocean Eng. 2015, 93, 74–83. [Google Scholar] [CrossRef]
- Yang, H.; Wang, H.; Gao, Y.; Liu, X.; Xu, M. A significant wave height forecast framework with end-to-end dynamic modeling and lag features length optimization. Ocean Eng. 2022, 266, 113037. [Google Scholar] [CrossRef]
- Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.-C.; Tung, C.C.; Liu, H.H. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. London Ser. A Math. Phys. Eng. Sci. 1998, 454, 903–995. [Google Scholar] [CrossRef]
- Cleveland, R.B.; Cleveland, W.S.; McRae, J.E.; Terpenning, I. STL A seasonal-trend decomposition. J. Off. Stat. 1990, 6, 3–73. [Google Scholar]
- Duan, W.-y.; Huang, L.-m. A hybrid EMD-AR model for nonlinear and non-stationary wave forecasting. J. Zhejiang Univ. Sci. A 2016, 17, 115–129. [Google Scholar] [CrossRef]
- Duan, W.Y.; Han, Y.; Huang, L.M.; Zhao, B.B.; Wang, M.H. A hybrid EMD-SVR model for the short-term prediction of significant wave height. Ocean Eng. 2016, 124, 54–73. [Google Scholar] [CrossRef]
- Hao, W.; Sun, X.; Wang, C.; Chen, H.; Huang, L. A hybrid EMD-LSTM model for non-stationary wave prediction in offshore China. Ocean Eng. 2022, 246, 110566. [Google Scholar] [CrossRef]
- Guo, Y.; Si, J.; Wang, Y.; Hanif, F.; Li, S.; Wu, M.; Xu, M.; Mi, J. Ensemble-Empirical-Mode-Decomposition (EEMD) on SWH prediction: The effect of decomposed IMFs, continuous prediction duration, and data-driven models. Ocean Eng. 2025, 324, 120755. [Google Scholar] [CrossRef]
- Sun, Y.; Yu, L.; Zhu, D. A Hybrid Deep Learning Model Based on FFT-STL Decomposition for Ocean Wave Height Prediction. Appl. Sci. 2025, 15, 5517. [Google Scholar] [CrossRef]
- Liu, H.; Zhu, Z.; Zhou, Y.; Li, C.J. STL-FFT-STFT-TCN-LSTM: An Effective Wave Height High Accuracy Prediction Model Fusing Time-Frequency Domain Features. arXiv 2025, arXiv:2509.19313. [Google Scholar]
- Yang, S.; Deng, Z.; Li, X.; Zheng, C.; Xi, L.; Zhuang, J.; Zhang, Z.; Zhang, Z. A novel hybrid model based on STL decomposition and one-dimensional convolutional neural networks with positional encoding for significant wave height forecast. Renew. Energy 2021, 173, 531–543. [Google Scholar] [CrossRef]
- Weiss, K.; Khoshgoftaar, T.M.; Wang, D. A survey of transfer learning. J. Big Data 2016, 3, 9. [Google Scholar] [CrossRef]
- Zhuang, F.; Qi, Z.; Duan, K.; Xi, D.; Zhu, Y.; Zhu, H.; Xiong, H.; He, Q. A Comprehensive Survey on Transfer Learning. Proc. IEEE 2021, 109, 43–76. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Torrey, L.; Shavlik, J. Transfer learning. In Handbook of Research on Machine Learning Applications and Trends: Algorithms, Methods, and Techniques; IGI Global Scientific Publishing: Hershey, PA, USA, 2010; pp. 242–264. [Google Scholar]
- Ramsey, F.L. Characterization of the partial autocorrelation function. Ann. Stat. 1974, 2, 1296–1301. [Google Scholar] [CrossRef]
- Kingma, D.P. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]











| Station | LSTM Layers | Steps | STL-LSTM-T | STL-LSTM | ||||
|---|---|---|---|---|---|---|---|---|
| MAE | MSE | RMSE | MAE | MSE | RMSE | |||
| 46244 | 1 | 12 | 0.502 | 0.538 | 0.734 | - | - | - |
| 2 | 6 | 0.410 | 0.350 | 0.592 | 0.422 | 0.378 | 0.615 | |
| 12 | 0.546 | 0.607 | 0.779 | 0.517 | 0.557 | 0.747 | ||
| 24 | 0.807 | 1.239 | 1.239 | 0.659 | 0.867 | 0.931 | ||
| 4 | 12 | 0.539 | 0.586 | 0.766 | - | - | - | |
| 46253 | 1 | 12 | 0.159 | 0.057 | 0.238 | - | - | - |
| 2 | 6 | 0.143 | 0.046 | 0.215 | 0.156 | 0.056 | 0.237 | |
| 12 | 0.173 | 0.072 | 0.268 | 0.192 | 0.084 | 0.290 | ||
| 24 | 0.208 | 0.099 | 0.315 | 0.232 | 0.112 | 0.335 | ||
| 4 | 12 | 0.191 | 0.088 | 0.296 | - | - | - | |
| 44086 | 2 | 6 | 0.245 | 0.139 | 0.373 | 0.249 | 0.139 | 0.372847552 |
| 12 | 0.303 | 0.199 | 0.447 | 0.316 | 0.216 | 0.465230742 | ||
| 24 | 0.419 | 0.384 | 0.619 | 0.420 | 0.347 | 0.589381859 | ||
| 51101 | 2 | 12 | 0.421 | 0.430 | 0.655 | 0.373 | 0.320 | 0.566 |
| 51000 | 2 | 12 | 0.504 | 0.573 | 0.757 | 0.328 | 0.256 | 0.506 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Zhao, G.; Cheng, Y.; Jia, Y.; Li, S.; Si, J. A Transfer-Learning-Based STL–LSTM Framework for Significant Wave Height Forecasting. J. Mar. Sci. Eng. 2026, 14, 146. https://doi.org/10.3390/jmse14020146
Zhao G, Cheng Y, Jia Y, Li S, Si J. A Transfer-Learning-Based STL–LSTM Framework for Significant Wave Height Forecasting. Journal of Marine Science and Engineering. 2026; 14(2):146. https://doi.org/10.3390/jmse14020146
Chicago/Turabian StyleZhao, Guanhui, Yuyan Cheng, Yuanhao Jia, Shuang Li, and Jicang Si. 2026. "A Transfer-Learning-Based STL–LSTM Framework for Significant Wave Height Forecasting" Journal of Marine Science and Engineering 14, no. 2: 146. https://doi.org/10.3390/jmse14020146
APA StyleZhao, G., Cheng, Y., Jia, Y., Li, S., & Si, J. (2026). A Transfer-Learning-Based STL–LSTM Framework for Significant Wave Height Forecasting. Journal of Marine Science and Engineering, 14(2), 146. https://doi.org/10.3390/jmse14020146

