Smart Seaport and Maritime Transport Management
1. Introduction
2. Published Papers
3. Perspectives
Conflicts of Interest
List of Contributions
- Alamoush, A.S.; Ölçer, A.I. Maritime Autonomous Surface Ships: Architecture for Autonomous Navigation Systems. J. Mar. Sci. Eng. 2025, 13, 122. https://doi.org/10.3390/jmse13010122.
- Li, H.; Zhao, J.; Jia, P.; Ou, H.; Zhao, W. Optimization of Bulk Cargo Terminal Unloading and Outbound Operations Based on a Deep Reinforcement Learning Framework. J. Mar. Sci. Eng. 2025, 13, 105. https://doi.org/10.3390/jmse13010105.
- Qiu, X.; Zhang, H.; Yuan, C.; Liu, Q.; Yao, H. Advancing Ton-Bag Detection in Seaport Logistics with an Enhanced YOLOv8 Algorithm. J. Mar. Sci. Eng. 2024, 12, 1916. https://doi.org/10.3390/jmse12111916.
- Vorkapić, A.; Martinčić-Ipšić, S.; Piltaver, R. Interpretable Machine Learning: A Case Study on Predicting Fuel Consumption in VLGC Ship Propulsion. J. Mar. Sci. Eng. 2024, 12, 1849. https://doi.org/10.3390/jmse12101849.
- Albo-López, A.B.; Carrillo, C.; Díaz-Dorado, E. Contribution of Onshore Power Supply (OPS) and Batteries in Reducing Emissions from Ro-Ro Ships in Ports. J. Mar. Sci. Eng. 2024, 12, 1833. https://doi.org/10.3390/jmse12101833.
- Argyriou, I.; Tsoutsos, T. Assessing Critical Entities: Risk Management for IoT Devices in Ports. J. Mar. Sci. Eng. 2024, 12, 1593. https://doi.org/10.3390/jmse12091593.
- Qiao, X.; Yang, Y.; Jin, Y.; Wang, S. Joint Ship Scheduling and Speed Optimization for Naval Escort Operations to Ensure Maritime Security. J. Mar. Sci. Eng. 2024, 12, 1454. https://doi.org/10.3390/jmse12081454.
- Xia, M.; Chen, J.; Zhang, P.; Peng, P.; Claramunt, C. Spatial Structure and Vulnerability of Container Shipping Networks: A Case Study in the Beibu Gulf Sea Area. J. Mar. Sci. Eng. 2024, 12, 1307. https://doi.org/10.3390/jmse12081307.
- Issa-Zadeh, S.B.; Esteban, M.D.; López-Gutiérrez, J.-S.; Garay-Rondero, C.L. Unveiling the Sensitivity Analysis of Port Carbon Footprint via Power Alternative Scenarios: A Deep Dive into the Valencia Port Case Study. J. Mar. Sci. Eng. 2024, 12, 1290. https://doi.org/10.3390/jmse12081290.
- Chu, L.; Gao, Z.; Dang, S.; Zhang, J.; Yu, Q. Optimization of Joint Scheduling for Automated Guided Vehicles and Unmanned Container Trucks at Automated Container Terminals Considering Conflicts. J. Mar. Sci. Eng. 2024, 12, 1190. https://doi.org/10.3390/jmse12071190.
- Qu, H.; Wang, X.; Meng, L.; Han, C. Liner Schedule Design under Port Congestion: A Container Handling Efficiency Selection Mechanism. J. Mar. Sci. Eng. 2024, 12, 951. https://doi.org/10.3390/jmse12060951.
- Wang, Y.; Zou, T. Optimization of Berth-Tug Co-Scheduling in Container Terminals under Dual-Carbon Contexts. J. Mar. Sci. Eng. 2024, 12, 684. https://doi.org/10.3390/jmse12040684.
References
- Li, K.X.; Li, M.; Zhu, Y.; Yuen, K.F.; Tong, H.; Zhou, H. Smart port: A bibliometric review and future research directions. Transp. Res. E Logist. Transp. Rev. 2023, 174, 103098. [Google Scholar] [CrossRef]
- D’Amico, G.; Szopik-Depczyńska, K.; Dembińska, I.; Ioppolo, G. Smart and sustainable logistics of Port cities: A framework for comprehending enabling factors, domains and goals. Sustain. Cities Soc. 2021, 69, 102801. [Google Scholar] [CrossRef]
- Rekabi, S.; Sazvar, Z.; Tavakkoli-Moghaddam, R.; Dolgui, A. Developing a green multi-modal dry port-seaport logistics network enhanced by the internet of things and machine learning. Comput. Ind. Eng. 2025, 207, 111270. [Google Scholar] [CrossRef]
- Elsisi, M.; Amer, M.; Su, C.-L.; Aljohani, T.; Ali, M.N.; Sharawy, M. A comprehensive review of machine learning and Internet of Things integrations for emission monitoring and resilient sustainable energy management of ships in port areas. Renew. Sustain. Energy Rev. 2025, 218, 115843. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, Q.; Liang, M.; Peng, C.; Chen, C. Big-data-driven vessel destination prediction for smart port management. Eng. Appl. Artif. Intell. 2025, 154, 110829. [Google Scholar] [CrossRef]
- Liu, X.; Hu, Y.; Ji, H.; Zhang, M.; Yu, Q. A Deep Learning Method for Ship Detection and Traffic Monitoring in an Offshore Wind Farm Area. J. Mar. Sci. Eng. 2023, 11, 1259. [Google Scholar] [CrossRef]
- Ji, C.; Lu, S. Exploration of marine ship anomaly real-time monitoring system based on deep learning. J. Intell. Fuzzy Syst. 2020, 38, 1235–1240. [Google Scholar] [CrossRef]
- Liu, Z.; Qi, W.; Zhou, S.; Zhang, W.; Jiang, C.; Jie, Y.; Li, C.; Guo, Y.; Guo, J. Hybrid deep learning models for ship trajectory prediction in complex scenarios based on AIS data. Appl. Ocean Res. 2024, 153, 104231. [Google Scholar] [CrossRef]
- Drungilas, D.; Kurmis, M.; Senulis, A.; Lukosius, Z.; Andziulis, A.; Januteniene, J.; Bogdevicius, M.; Jankunas, V.; Voznak, M. Deep reinforcement learning based optimization of automated guided vehicle time and energy consumption in a container terminal. Alexandria Eng. J. 2023, 67, 397–407. [Google Scholar] [CrossRef]
- Jin, J.; Cui, T.; Bai, R.; Qu, R. Container port truck dispatching optimization using Real2Sim based deep reinforcement learning. Eur. J. Oper. Res. 2024, 315, 161–175. [Google Scholar] [CrossRef]
- Li, K.; Wang, L.; Gharehgozli, A.; Joo, S.-J.; Lee, J.-Y. Optimal quality design of smart technologies for port digitalization: A game theoretical approach under digitalization synergy. Transp. Res. E Logist. Transp. Rev. 2025, 204, 104459. [Google Scholar] [CrossRef]
- Song, Z.-Y.; Lin, C.-W.; Feng, X.; Lee, P.T.-W. An empirical study of the performance of the sixth generation ports model with smart ports with reference to major container ports in mainland China. Transp. Res. E Logist. Transp. Rev. 2024, 184, 103460. [Google Scholar] [CrossRef]
- Li, K.; Gharehgozli, A.; Lee, J.-Y. Smart technologies and port operations: Optimal adoption strategy with network externality consideration. Comput. Ind. Eng. 2023, 184, 109557. [Google Scholar] [CrossRef]
- Liu, X.; Yuen, K.F. A systematic review on artificial intelligence applications in seaports-a network analysis approach. Expert Syst. Appl. 2025, 289, 128309. [Google Scholar] [CrossRef]
- Ben Farah, M.; Ahmed, Y.; Mahmoud, H.; Shah, S.A.; Al-kadri, M.O.; Taramonli, S.; Bellekens, X.; Abozariba, R.; Idrissi, M.; Aneiba, A. A survey on blockchain technology in the maritime industry: Challenges and future perspectives. Future Gener. Comput. Syst. 2024, 157, 618–637. [Google Scholar] [CrossRef]
- Rekabi, S.; Sazvar, Z. A smart and agile dry port-seaport logistic network considering industry 5.0: A multi-stage data-driven approach. Socio-Econ. Plan. Sci. 2025, 98, 102141. [Google Scholar] [CrossRef]
- Mao, R.; Qian, Y.; Liu, K.; Li, Y.; Li, G.; Zhang, H. A comprehensive survey of battery energy in maritime transportation: Trends, challenges, and future perspectives. Ocean Eng. 2025, 337, 121881. [Google Scholar] [CrossRef]
- Yang, X.; Tsoulakos, N.; Xiao, Z.; Wei, X.; Fu, X.; Yan, R. Estimation of shipping emissions from maritime big data: A comprehensive review and prospective. Transp. Res. E Logist. Transp. Rev. 2025, 202, 104313. [Google Scholar] [CrossRef]
- Gunes, B.; Kayisoglu, G.; Bolat, P. Cyber security risk assessment for seaports: A case study of a container port. Comput. Secur. 2021, 103, 102196. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Wu, L.; Wang, S. Smart Seaport and Maritime Transport Management. J. Mar. Sci. Eng. 2026, 14, 80. https://doi.org/10.3390/jmse14010080
Wu L, Wang S. Smart Seaport and Maritime Transport Management. Journal of Marine Science and Engineering. 2026; 14(1):80. https://doi.org/10.3390/jmse14010080
Chicago/Turabian StyleWu, Lingxiao, and Shuaian Wang. 2026. "Smart Seaport and Maritime Transport Management" Journal of Marine Science and Engineering 14, no. 1: 80. https://doi.org/10.3390/jmse14010080
APA StyleWu, L., & Wang, S. (2026). Smart Seaport and Maritime Transport Management. Journal of Marine Science and Engineering, 14(1), 80. https://doi.org/10.3390/jmse14010080