Reconstruction of South China Sea Deep Water Salinity During the Last Glacial Maximum (LGM)
Abstract
1. Introduction
2. General Situation of the SCS and Sites Information
3. Methods
3.1. Sampling and Measuring Methods
3.2. Diffusion-Advection Numerical Model
3.2.1. Porosity in Sediments
3.2.2. Effective Diffusion Coefficient
3.2.3. Advection Velocity
3.2.4. Initial Condition and Boundary Conditions
4. Results
4.1. Simulation Results of Porosity
4.2. Simulation Results of Salinity
5. Discussion
5.1. LGM Deep Water Salinity of the SCS
5.2. Deep Water Exchange Between the Pacific and SCS During the LGM
5.3. LGM Salinity of the Deep Pacific
6. Conclusions
- (1)
- The LGM deep water salinity in the northern SCS was 35.68 ± 0.04 g/kg, while in the central SCS, it was 35.61 ± 0.03 g/kg, leading to an intra-basin salinity gradient of ~0.07 g/kg. This gradient value is substantially smaller than the modern gradient of ~0.26 g/kg, demonstrating significantly weakened circulation in the deep SCS during the glacial periods.
- (2)
- During the LGM, the salinity gradient between UCDW—sourced from the Southern Ocean—and the deep northern SCS was marginally reduced compared to the modern gradient, indicating diminished overflow flux of UCDW into the SCS through the Luzon Strait.
- (3)
- The LGM salinity gradient between LCDW and UCDW reached 0.21–0.57 g/kg, significantly exceeding the modern gradient of ~0.08 g/kg. Combined with evidence of reduced glacial deep water ventilation in the western Pacific, this enhanced LGM vertical salinity gradient also demonstrates intensified deep ocean stratification and sluggish deep water circulation in the western Pacific during the glacial periods.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Clark, P.U.; Dyke, A.S.; Shakun, J.D.; Carlson, A.E.; Clark, J.; Wohlfarth, B.; Mitrovica, J.X.; Hostetler, S.W.; McCabe, A.M. The Last Glacial Maximum. Science 2009, 325, 710–714. [Google Scholar] [CrossRef]
- Lisiecki, L.E.; Raymo, M.E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 2005, 20, PA1003. [Google Scholar]
- Tierney, J.E.; Zhu, J.; King, J.; Malevich, S.B.; Hakim, G.J.; Poulsen, C.J. Glacial cooling and climate sensitivity revisited. Nature 2020, 584, 569–573. [Google Scholar] [CrossRef]
- Waelbroeck, C.; Labeyrie, L.; Michel, E.; Duplessy, J.D.; McManus, J.F.; Lambeck, K.; Balbon, E.; Labracherie, M. Sea-level and deep water temperature changes derived from benthic foraminifera isotope records. Quat. Sci. Rev. 2002, 21, 295–305. [Google Scholar] [CrossRef]
- Seltzer, A.M.; Ng, J.; Aeschbach, W.; Kipfer, R.; Kulongoski, J.T.; Severinghaus, J.P.; Stute, M. Widespread six degrees Celsius cooling on land during the Last Glacial Maximum. Nature 2021, 593, 228–232. [Google Scholar] [CrossRef] [PubMed]
- Annan, J.D.; Hargreaves, J.C.; Mauritsen, T. A new global surface temperature reconstruction for the Last Glacial Maximum. Clim. Past 2022, 18, 1883–1896. [Google Scholar] [CrossRef]
- Selzer, A.M.; Davidson, P.W.; Shackleton, S.A.; Nicholson, D.P.; Khatiwala, S. Global Ocean Cooling of 2.3°C During the Last Glacial Maximum. Geophys. Res. Lett. 2024, 51, e2024GL108866. [Google Scholar] [CrossRef]
- Lembeck, K.; Rouby, H.; Purcell, A.; Sun, Y.; Sambridge, M. Sea level and global ice volumes from the Last Glacial Maximum to the Holocene. Proc. Natl. Acad. Sci. USA 2014, 111, 15296–15303. [Google Scholar] [CrossRef] [PubMed]
- Grant, K.M.; Rohling, E.J.; Bronk Ramsey, C.; Cheng, H.; Edwards, R.L.; Florindo, F.; Heslop, D.; Marra, F.; Roberts, A.P.; Tamisiea, M.E.; et al. Sea-level variability over five glacial cycles. Nat. Commun. 2014, 5, 5076. [Google Scholar] [CrossRef]
- Mix, A.C.; Bard, E.; Schneider, R. Environmental processes of the ice age: Land, oceans, glaciers (EPILOG). Quat. Sci. Rev. 2001, 20, 627–657. [Google Scholar] [CrossRef]
- Peltier, W.R.; Fairbanks, R.G. Global glacial ice volume and Last Glacial Maximum duration from an extended Barbados sea level record. Quat. Sci. Rev. 2006, 25, 3322–3337. [Google Scholar] [CrossRef]
- Petit, J.R.; Jouzel, J.; Raynaud, D.; Barkov, N.I.; Barnola, J.-M.; Basile, I.; Bender, M.; Chappellaz, J.; Davis, M.; Delaygue, G.; et al. Climate and atmospheric history of the past 420, 000 years from the Vostok ice core, Antarctica. Nature 1999, 399, 429–436. [Google Scholar] [CrossRef]
- Jouzel, J.; Masson-Delmotte, V.; Cattani, O.; Dreyfus, G.; Falourd, S.; Hoffmann, G.; Minster, B.; Nouet, J.; Barnola, J.-M.; Chappellaz, J.; et al. Orbital and millennial Antarctic climate variability over the past 800, 000 years. Science 2007, 317, 793–796. [Google Scholar] [CrossRef]
- Lüthi, D.; Le Floch, M.; Bereiter, B.; Blunier, T.; Barnola, J.-M.; Siegenthaler, U.; Raynaud, D.; Jouzel, J.; Fischer, H.; Kawamura, K.; et al. High-resolution carbon dioxide concentration record 650000–800000 years before present. Nature 2008, 453, 379–382. [Google Scholar] [CrossRef]
- Wang, P.; Jian, Z.M.; Liu, Z.F. Interactions between the earth spheres: Deep-sea processes and records (I) research progress and achievement. Adv. Earth Sci. 2006, 21, 331–337. [Google Scholar]
- Talley, L.D.; Pickard, G.; Emery, W.J.; Swift, J. Descriptive Physical Oceanography: An Introduction, 6th ed.; Elsevier: Burlingham, MA, USA, 2011; pp. 473–494. [Google Scholar]
- Sigman, D.M.; Boyle, E.A. Glacial/interglacial variations in atmospheric carbon dioxide. Nature 2000, 407, 859–869. [Google Scholar] [CrossRef]
- Siegenthaler, U.; Stocker, T.F.; Monnin, E.; Lüthi, D.; Schwander, J.; Stauffer, B.; Raynaud, D.; Barnola, J.-M.; Fischer, H.; Masson-Delmotte, V.; et al. Stable carbon cycle-climate relationship during the Late Pleistocene. Science 2005, 310, 1313–1317. [Google Scholar] [CrossRef]
- Miller, M.D.; Simons, M.; Adkins, J.F.; Minson, S.E. The information content of pore fluid δ18O and [Cl−]. J. Phys. Oceanogr. 2015, 45, 2070–2094. [Google Scholar] [CrossRef]
- Marchitto, T.M.; Bryan, S.P.; Curry, W.B.; McCorkle, D.C. Mg/Ca temperature calibration for the benthic foraminifer Cibicidoides pachyderma. Paleoceanography 2007, 22, PA1203. [Google Scholar] [CrossRef]
- Bryan, S.P.; Marchitto, T.M. Mg/Ca-temperature proxy in benthic foraminifera: New calibrations from the Florida Straits and a hypothesis regarding Mg/Li. Paleoceanography 2008, 23, PA2220. [Google Scholar] [CrossRef]
- Barras, C.; Duplessy, J.-C.; Geslin, E.; Michel, E.; Jorissen, F.J. Calibration of δ18O of cultured benthic foraminiferal calcite as a function of temperature. Biogeosciences 2010, 7, 1349–1356. [Google Scholar] [CrossRef]
- Marchitto, T.M.; Curry, W.B.; Lynch-Stieglitz, J.; Bryan, S.P.; Cobb, K.M.; Lund, D.C. Improved oxygen isotope temperature calibrations for cosmopolitan benthic foraminifera. Geochim. Cosmochim. Acta 2014, 130, 1–11. [Google Scholar] [CrossRef]
- Meinicke, N.; Ho, S.L.; Hannisdal, B.; Nürnberg, D.; Tripati, A.; Schiebel, R.; Meckler, A.N. A robust calibration of the clumped isotopes to temperature relationship for foraminifers. Geochim. Cosmochim. Acta 2020, 270, 160–183. [Google Scholar] [CrossRef]
- Huntington, K.; Petersen, S.V. Frontiers of Carbonate Clumped Isotope Thermometry. Annu. Rev. Earth Planet. Sci. 2023, 51, 611–641. [Google Scholar] [CrossRef]
- McDuff, R.E. The chemistry of interstitial waters, Deep Sea Drilling Project Leg 86. In Initial Reports of the Deep Sea Drilling Project; Government Printing Office: Washington, DC, USA, 1984; Volume 86, pp. 675–687. [Google Scholar]
- Dählmann, A.; de Lange, G.J. Fluid-sediment interactions at Eastern Mediterrance mud volcanoes: A stable isotope study from ODP Leg 160. Earth Planet. Sci. Lett. 2003, 212, 377–391. [Google Scholar] [CrossRef]
- Pilson, M.E.Q. An Introduction to the Chemistry of the Sea, 2nd ed.; Cambridge University Press: London, UK, 2012; pp. 48–52. [Google Scholar]
- Adkins, J.F.; McIntyre, K.; Schrag, D.P. The salinity, temperature and δ18O of the Glacial deep ocean. Science 2002, 298, 1769–1773. [Google Scholar] [CrossRef]
- Adkins, J.F.; Schrag, D.P. Pore fluid constraints on deep ocean temperature and salinity during the last glacial maximum. Geophys. Res. Lett. 2001, 28, 771–774. [Google Scholar] [CrossRef]
- Talley, L.D. Salinity patterns in the ocean. In Encyclopedia of Global Environmental Change; MacCracken, M.C., Perry, J.S., Eds.; John Wiley & Sons, Ltd.: Chichester, UK, 2002; Volume 1, pp. 629–640. [Google Scholar]
- Homola, K.; Spivack, A.J.; Murray, R.W.; Pockalny, R.; D’Hondt, S.; Robinson, R. Deep North Atlantic Last Glacial Maximum salinity reconstruction. Paleoceanogr. Paleoclimatol. 2021, 36, e2020PA004088. [Google Scholar] [CrossRef]
- Insua, T.L.; Spivack, A.J.; Graham, D.; D’Hondt, S.; Moran, K. Reconstruction of Pacific Ocean bottom water salinity during the Last Glacial Maximum. Geophys. Res. Lett. 2014, 41, 2914–2920. [Google Scholar] [CrossRef]
- Qu, T.; Song, Y.; Yamagata, T. An introduction to the South China Sea throughflow: Its dynamics, variability, and application for climate. Dyn. Atmos. Oceans 2009, 47, 3–14. [Google Scholar] [CrossRef]
- Steinke, S.; Chiu, H.-Y.; Shen, C.-Z.; Erlenkeuser, H.; Löwemark, L.; Chen, M.-T. On the influence of sea level and monsoon climate on the southern South China Sea freshwater budget over the last 22,000 years. Quat. Sci. Rev. 2006, 25, 1475–1488. [Google Scholar] [CrossRef]
- Steinke, S.; Mohtadi, M.; Groeneveld, J.; Lin, L.-C.; Löwemark, L.; Chen, M.-T.; Rendle-Bühring, R. Reconstructing the southern South China Sea upper water column structure since the Last Glacial Maximum: Implications for the East Asian winter monsoon development. Palaeogeography 2010, 25, PA2219. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, Y.; Dang, H.; Jian, Z. Hydroclimatic changes in the northeastern South China Sea since the Last Glacial Maximum. Quat. Sci. 2021, 41, 1031–1043. [Google Scholar] [CrossRef]
- Jian, Z.; Tian, J.; Huang, W.; Ma, X.; Wan, S. Evolution of the South China Sea basin and the deep circulation. Sci. Technol. Rev. 2020, 38, 52–56. [Google Scholar]
- Wang, G.; Tian, J. Origin and development of the deep water in South China Sea. Sci. Technol. Rev. 2020, 38, 21–25. [Google Scholar]
- Wang, P. Exploring the deep sea processes in the South China Sea. Sci. Technol. Rev. 2020, 38, 6–20. [Google Scholar]
- Zhao, W.; Zhou, C.; Tian, J.; Yang, Q.; Wang, B.; Xie, L.; Qu, T. Deep water circulation in the Luzon Strait. J. Geophys. Res. Oceans 2014, 119, 790–804. [Google Scholar] [CrossRef]
- Qu, T.; Girton, J.B.; Whitehead, J.A. Deepwater overflow through Luzon Strait. J. Geophys. Res. 2006, 111, C01002. [Google Scholar] [CrossRef]
- Wang, D.; Xiao, J.; Shu, Y.; Xie, Q.; Chen, J.; Wang, Q. Progress on deep circulation and meridional overturning circulation in the South China Sea. Sci. Technol. Rev. 2016, 59, 1827–1833. [Google Scholar] [CrossRef]
- Qu, T. Evidence for water exchange between the South China Sea and the Pacific Ocean through the Luzon Strait. Acta Oceanol. Sin. 2002, 21, 175–185. [Google Scholar]
- Zhang, Y.; Yi, L.; Ogg, J.O. Pliocene-Pleistocene magneto-cyclostratigraphy of IODP Site U1499 and implications for climate-driven sedimentation in the northern South China Sea. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2019, 527, 118–132. [Google Scholar] [CrossRef]
- Sun, Z.; Stock, J.M.; Klaus, A.; Larsen, H.C.; Jian, Z.; Alvarez Zarikian, C.A.; Boaga, J.; Bowden, S.A.; Briais, A.; Chen, Y.; et al. Site U1499. In South China Sea Rifted Margin; Proceedings of the International Ocean Discovery Program; Sun, Z., Jian, Z., Stock, J.M., Larsen, H.C., Klaus, A., Alvarez Zarikian, C.A., the Expedition 367/368 Scientists, Eds.; International Ocean Discovery Program: College Station, TX, USA, 2018; Volume 367/368. [Google Scholar] [CrossRef]
- Li, C.-F.; Lin, J.; Kulhanek, D.K.; Williams, T.; Bao, R.; Briais, A.; Brown, E.A.; Chen, Y.; Clift, P.D.; Colwell, F.S.; et al. Site U1431. In Proceedings of the International Ocean Discovery Program, 349: South China Sea Tectonics; Li, C.-F., Lin, J., Kulhanek, D.K., the Expedition 349 Scientists, Eds.; International Ocean Discovery Program: College Station, TX, USA, 2015. [Google Scholar] [CrossRef]
- Li, C.-F.; Lin, J.; Kulhanek, D.K.; Williams, T.; Bao, R.; Briais, A.; Brown, E.A.; Chen, Y.; Clift, P.D.; Colwell, F.S.; et al. Site U1433. In Proceedings of the International Ocean Discovery Program, 349: South China Sea Tectonics; Li, C.-F., Lin, J., Kulhanek, D.K., the Expedition 349 Scientists, Eds.; International Ocean Discovery Program: College Station, TX, USA, 2015. [Google Scholar] [CrossRef]
- Reece, J.S.; Flemings, P.B.; Dugan, B.; Long, H.; Germaine, J.T. Permeability-porosity relationships of shallow mudstones in the Ursa Basin, northern deepwater Gulf of Mexico. J. Geophys. Res. Solid Earth 2012, 117, B12102. [Google Scholar] [CrossRef]
- Exon, N.F.; Kennett, J.P.; Malone, M.J.; Brinkhuis, H.; Chaproniere, G.C.H.; Ennyu, A.; Fothergill, P.; Fuller, M.D.; Grauert, M.; Hill, P.J.; et al. Proceedings of the Ocean Drilling Program, Initial Reports Volume 189, Site 1172; International Ocean Discovery Program: College Station, TX, USA, 2001. [Google Scholar] [CrossRef]
- Li, C.-F.; Lin, J.; Kulhanek, D.K.; Williams, T.; Bao, R.; Briais, A.; Brown, E.A.; Chen, Y.; Clift, P.D.; Colwell, F.S.; et al. Methods. In Proceedings of the Integrated Ocean Discovery Program, 349: South China Sea Tectonics; Li, C.-F., Lin, J., Kulhanek, D.K., the Expedition 349 Scientists, Eds.; International Ocean Discovery Program: College Station, TX, USA, 2015. [Google Scholar] [CrossRef]
- Sun, Z.; Jian, Z.; Stock, J.M.; Larsen, H.C.; Klaus, A.; Alvarez Zarikian, C.A.; Boaga, J.; Bowden, S.A.; Briais, A.; Chen, Y.; et al. Expedition 367/368 methods. In South China Sea Rifted Margin; Proceedings of the International Ocean Discovery Program; Sun, Z., Jian, Z., Stock, J.M., Larsen, H.C., Klaus, A., Alvarez Zarikian, C.A., the Expedition 367/368 Scientists, Eds.; International Ocean Discovery Program: College Station, TX, USA, 2018; Volume 367/368. [Google Scholar] [CrossRef]
- Schrag, D.P.; DePaolo, D.J. Determination of δ18O of seawater in the deep ocean during the Last Glacial Maximum. Paleoceanography 1993, 8, 1–6. [Google Scholar]
- Berner, R.A. Early Diagenesis; Princeton University Press: Princeton, NJ, USA, 1980; p. 20. [Google Scholar]
- Boudreau, B.P.; Bennett, R.H. New rheological and porosity equations for steady-state compaction. Am. J. Sci. 1999, 299, 517–528. [Google Scholar] [CrossRef]
- Wu, L.; Zeng, Z.; Yin, X.; Wang, X.; Chen, S. Study on the porosity of a metalliferous sediment core from the East Pacific Rise 13°N. Mar. Sci. 2012, 36, 81–86. [Google Scholar]
- Adkins, J.F.; Schrag, D.P. Reconstructing Last Glacial Maximum bottom water salinities from deep-sea sediment pore fluid profiles. Earth Planet. Sci. Lett. 2003, 216, 109–123. [Google Scholar] [CrossRef]
- Boudreau, B.P. The diffusive tortuosity of fine-grained unlithified sediments. Geochim. Cosmochim. Acta 1996, 60, 3139–3142. [Google Scholar]
- Li, Y.-H.; Gregory, S. Diffusion of ions in sea water and in deep-sea sediments. Geochim. Cosmochim. Acta 1974, 38, 703–714. [Google Scholar]
- Boudreau, B.P. Diagenetic Model and Their Implementation: Modelling Transport and Reactions in Aquatic Sediments; Springer: Berlin, Germany; New York, NY, USA, 1997; pp. 92–115. [Google Scholar]
- Tian, J.; Yang, Q.; Zhao, W. Enhanced diapycnal mixing in the South China Sea. J. Phys. Oceanogr. 2009, 39, 3191–3203. [Google Scholar] [CrossRef]
- Xie, Q.; Xiao, J.; Wang, D.; Yu, Y. Analysis of deep-layer and bottom circulation in the South China Sea based on eight quasi-global ocean model outputs. Chin. Sci. Bull. 2013, 58, 4000–4011. [Google Scholar] [CrossRef]
- Rohling, E.J.; Braun, K.; Grant, K.; Kucera, M.; Roberts, A.P.; Siddall, M.; Trommer, G. Comparison between Holocene and Marine Isotope Stage-11 sea-level histories. Earth Planet. Sci. Lett. 2010, 291, 97–105. [Google Scholar] [CrossRef]
- Wang, G.; Xie, S.-P.; Qu, T.; Huang, R.X. Deep South China Sea circulation. Geophys. Res. Lett. 2011, 38, L05601. [Google Scholar] [CrossRef]
- Wang, A.; Du, Y.; Peng, S.; Liu, K.; Huang, R.X. Deep water characteristics and circulation in the South China Sea. Deep Sea Res. I Oceanogr. Res. Pap. 2018, 134, 55–63. [Google Scholar] [CrossRef]
- Tian, J.; Qu, T. Advances in research on the deep South China Sea circulation. Chin. Sci. Bull. 2012, 57, 1827–1832. [Google Scholar] [CrossRef]
- Chang, Y.-T.; Hsu, W.-L.; Tai, J.-H.; Tang, T.Y.; Chang, M.-H.; Chao, S.-Y. Cold deep water in the South China Sea. J. Oceanogr 2010, 66, 183–190. [Google Scholar] [CrossRef]
- Malone, M.J.; Martin, J.B.; Schonfeld, J.; Ninnemann, U.S.; Nurnburd, D.; White, T.S. The oxygen isotopic composition and temperature of Southern Ocean bottom waters during the last glacial maximum. Earth Planet. Sci. Lett. 2004, 222, 275–283. [Google Scholar] [CrossRef]
- Talley, L.D. Closure of the global overturning circulation through the Indian, Pacific, and Southern Oceans: Schematics and transports. Oceanography 2013, 26, 80–97. [Google Scholar] [CrossRef]
- Wu, Q.; Colin, C.; Liu, Z.; Douville, E.; Dubois-Dauphin, Q.; Frank, N. New insights into hydrological exchange between the South China Sea and the Western Pacific Ocean based on the Nd isotopic composition of seawater. Deep-Sea Res. II 2015, 122, 25–40. [Google Scholar] [CrossRef]
- Germineaud, C.; Cravatte, S.; Sprintall, J.; Alberty, M.S.; Grenier, M.; Ganachaud, A. Deep Pacific circulation: New insights on pathways through the Solomon Sea. Deep-Sea Res. I 2021, 171, 103510. [Google Scholar] [CrossRef]
- Amakawa, H.; Yu, T.-L.; Tazoe, H.; Obata, H.; Gamo, T.; Sano, Y.; Shen, C.-C.; Suzuki, K. Neodymium concentration and isotopic composition distributions in the southwestern Indian Ocean and the Indian sector of the Southern Ocean. Chem. Geol. 2019, 511, 190–223. [Google Scholar] [CrossRef]
- Wu, J.; Lao, Q.; Chen, F.; Huang, C.; Zhang, S.; Wang, C.; Zhou, F.; Chen, C.; Zhou, X.; Lu, X. Water mass processes between the South China Sea and the Western Pacific through the Luzon Strait: Insights from hydrogen and oxygen isotopes. J. Geophys. Res. Oceans 2021, 126, e2021JC017484. [Google Scholar] [CrossRef]
- Duplessy, J.-C.; Labeyrie, L.; Waelbroeck, C. Constraints on the ocean oxygen isotopic enrichment between the Last Glacial Maximum and the Holocene: Paleoceanographic implications. Quat. Sci. Rev. 2002, 21, 315–330. [Google Scholar] [CrossRef]
- Rosenthal, Y.; Holbourn, A.E.; Kulhanek, D.K.; the Expedition 363 Scientists. Western Pacific Warm Pool. In Proceedings of the International Ocean Discovery Program; International Ocean Discovery Program: College Station, TX, USA, 2018; Volume 363. [Google Scholar]
- Oris, A.H.; Whitworth, T., III. Hydrographic Atlas of the World Ocean Circulation Experiment (WOCE) Volume 1: Southern Ocean; Sparrow, M., Chapman, P., Gould, J., Eds.; International WOCE Project Office: Southampton, UK, 2005. [Google Scholar]
- Wan, S.; Jian, Z.; Gong, X.; Dang, H.; Wu, J.; Qiao, P. Deep water [CO32-] and circulation in the South China Sea over the last glacial cycle. Quat. Sci. Rev. 2020, 243, 106499. [Google Scholar] [CrossRef]
- Wan, S.; Jian, Z. Deep water exchanges between the South China Sea and the Pacific since the last glacial period. Paleoceanography 2014, 29, 1162–1178. [Google Scholar] [CrossRef]
- Wan, S.; Jian, Z.; Dang, H. Deep hydrography of the South China Sea and deep water circulation in the Pacific since the Last Glacial Maximum. Geochem. Geophys. Geosyst. 2018, 19, 1447–1463. [Google Scholar] [CrossRef]
- Kawabe, M.; Fujio, S. Pacific Ocean circulation based on observation. J. Oceanogr. 2010, 66, 389–403. [Google Scholar] [CrossRef]
- Liu, Y.; Guan, Y.; Lin, Y. One question of the oceanic thermohaline circulation: Whether deepwater formation in the north Pacific. Adv. Earth Sci. 2006, 21, 1185–1192. [Google Scholar]
Site | IODP U1499 | IODP U1431 | IODP U1433 | ODP 1172 1 | |
---|---|---|---|---|---|
Site description | Latitude | 18°24.5698′ N | 15°22.5379′ N | 12°55.1380′ N | 43°57.5854′ S |
Longitude | 115°51.5881′ E | 117°00.0022′ E | 115°02.8345′ E | 149°55.6961′ E | |
Water depth (m) | 3760 | 4240 | 4380 | 2620 | |
Bottom water temperature (°C) | 2.5 (θ ≈ 2.18 °C) | 2.5 (θ ≈ 2.13 °C) | 2.5 (θ ≈ 2.11 °C) | 2.46 (θ ≈ 2.26 °C) | |
Geothermal gradient (°C/km) | 93 | 14.8 | 78 | 46 | |
Sedimentation rate (cm/ka) | 8.4 | 5 | 20 | 3.2 | |
Simulation parameters | Simulation depth (m) | 162.4 | 168.9 | 188.3 | 100 |
Simulation time (ka) | 410 | 410 | 410 | 410 | |
Porosity (φ0, φ∞, β/cm−1) | 0.851, 0.498, 2.15 × 10−4 | 0.794, 0.523, 1.31 × 10−4 | 0.770, 0.516, 1.31 × 10−4 | 0.699, 0.574, 2.41 × 10−4 | |
Upper boundary condition (x = 0) | sea level (410 ka~0) | sea level (410 ka~0) | sea level (410 ka~0) | sea level (410 ka~0) | |
Lower boundary condition (g/kg) | 34.89 | 34.39 | 34.25 | 34.96 | |
Initial condition (g/kg) | 34.63 | 34.38 | 34.37 | 34.71 | |
Simulation results | LGM salinity (g/kg) | 35.68 ± 0.04 | 35.61 ± 0.03 | 35.63 ± 0.31 | 35.70 ± 0.14 |
LGM salinity difference with modern salinity (g/kg) | 1.05 ± 0.04 | 1.23 ± 0.03 | 1.26 ± 0.31 | 0.99 ± 0.14 | |
Relative difference (%) 2 | 3.03 ± 0.12 | 3.58 ± 0.09 | 3.67 ± 0.90 | 2.85 ± 0.40 |
Site | Latitude | Longitude | Water Depth (m) | Present Salinity (g/kg) | LGM Salinity (g/kg) | Relative Difference (%) |
---|---|---|---|---|---|---|
IODP U1499 | 18°24.57′ N | 115°51.59′ E | 3760 | 34.63 | 35.68 ± 0.04 | 3.03 ± 0.12 |
IODP U1431 | 15°22.54′ N | 117°00.00′ E | 4240 | 34.38 | 35.61 ± 0.03 | 3.58 ± 0.09 |
IODP U1433 | 12°55.14′ N | 115°02.83′ E | 4380 | 34.37 | 35.63 ± 0.31 | 3.67 ± 0.90 |
ODP 1172 | 43°57.59′ S | 149°55.70′ E | 2620 | 34.71 | 35.70 ± 0.14 | 2.85 ± 0.40 |
IODP U1370 [33] | 41°51.12′ S | 153°6.36′ W | 5074 | 34.71 | 35.91 ± 0.09 | 3.54 ± 0.3 |
ODP 1123 [29] | 41°47.16′ S | 171°29.94′ W | 3290 | 34.73 | 36.19 ± 0.07 | 4.2 ± 0.2 |
IODP U1365 [33] | 23°51.06′ S | 165°38.64′ W | 5695 | 34.70 | 36.25 ± 0.09 | 4.53 ± 0.3 |
ODP 1225 [33] | 2°46.26′ N | 110°34.26′ W | 3760 | 34.69 | 36.07 ± 0.09 | 4.01 ± 0.3 |
EQP 10 [33] | 20°40.98′ N | 143°21.42′ W | 5412 | 34.70 | 36.21 ± 0.18 | 4.41 ± 0.5 |
EQP 11 [33] | 30°21.30′ N | 157°52.26′ W | 5813 | 34.69 | 36.06 ± 0.18 | 3.96 ± 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Chen, Y.; Haeckel, M. Reconstruction of South China Sea Deep Water Salinity During the Last Glacial Maximum (LGM). J. Mar. Sci. Eng. 2025, 13, 1773. https://doi.org/10.3390/jmse13091773
Wang H, Chen Y, Haeckel M. Reconstruction of South China Sea Deep Water Salinity During the Last Glacial Maximum (LGM). Journal of Marine Science and Engineering. 2025; 13(9):1773. https://doi.org/10.3390/jmse13091773
Chicago/Turabian StyleWang, Haolan, Yifeng Chen, and Matthias Haeckel. 2025. "Reconstruction of South China Sea Deep Water Salinity During the Last Glacial Maximum (LGM)" Journal of Marine Science and Engineering 13, no. 9: 1773. https://doi.org/10.3390/jmse13091773
APA StyleWang, H., Chen, Y., & Haeckel, M. (2025). Reconstruction of South China Sea Deep Water Salinity During the Last Glacial Maximum (LGM). Journal of Marine Science and Engineering, 13(9), 1773. https://doi.org/10.3390/jmse13091773