Fully Nonlinear Simulation of the Hydrodynamic Performance of a Submerged Cylindrical Wave Energy Converter in the Presence of Current
Abstract
1. Introduction
2. Mathematical Formulations
2.1. Problem Definition
2.2. Governing Equation and Boundary Conditions
2.3. Wave Forces on the Submerged Cylinder
2.4. Motion of the Submerged Cylindrical WEC
2.5. Hydrodynamic Efficiency of the Submerged Cylindrical WEC
3. Numerical Implementation
3.1. Time Stepping of the Free Surface
3.2. Desingularized Boundary Integral Equation Method
3.3. Nonlinear Stokes Wave Theory
4. Results and Discussions
4.1. Model Validation
4.2. Performance of the Submerged Cylindrical WEC Under Combined Wave–Current Conditions
4.2.1. Effects of Wave Height
4.2.2. Effects of Steady Current Velocity
4.2.3. Effects of PTO Mechanism Parameters
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Falcão, A. Wave energy utilization: A review of the technologies. Renew. Sust. Energ. Rev. 2010, 14, 899–918. [Google Scholar] [CrossRef]
- López, I.; Andreu, J.; Ceballos, S.; de Alegría, I.; Kortabarria, I. Review of wave energy technologies and the necessary power-equipment. Renew. Sust. Energ. Rev. 2013, 27, 413–434. [Google Scholar] [CrossRef]
- Stromstedt, E.; Eriksson, M.; Sundberg, J.; Stalberg, M.; Waters, R.; Leijon, M.; Danielsson, O.; Svensson, O.; Gustafsson, S. Experimental results from sea trials of an offshore wave energy system. Appl. Phys. Lett. 2007, 90, 034105. [Google Scholar] [CrossRef]
- Elwood, D.; Schacher, A.; Rhinefrank, K.; Prudell, J.; Yim, S.; Amon, E.; Brekken, T.; von Jouanne, A. Numerical modeling and ocean testing of a direct-drive wave energy device utilizing a permanent magnet linear generator for power take-off. In Proceedings of the ASME 2009 28th International Conference on Ocean, Offshore and Arctic Engineering, Honolulu, HI, USA, 31 May–5 June 2009. [Google Scholar]
- Weber, J.; Mouwen, F.; Parish, A.; Robertson, D. Wavebob-research & development network and tools in the context of systems engineering. In Proceedings of the 8th European Wave and Tidal Energy Conference, Uppsala, Sweden, 7–10 September 2009. [Google Scholar]
- Zhang, Y.; Li, D.; Hong, S.; Zhang, M. Design of a new oscillating-buoy type wave energy converter and numerical study on its hydrodynamic performance. Brodogradnja 2023, 74, 145–168. [Google Scholar] [CrossRef]
- Martic´, I.; Degiuli, N.; Grlj, C. Scaling of wave energy converters for optimum performance in the Adriatic Sea. Energy 2024, 294, 130922. [Google Scholar] [CrossRef]
- Crowley, S.; Porter, R.; Evans, D. A submerged cylinder wave energy converter. J. Fluid Mech. 2013, 716, 566–596. [Google Scholar] [CrossRef]
- Crowley, S.; Porter, R.; Evans, D. A submerged cylinder wave energy converter with internal sloshing power take off. Eur. J. Mech. B Fluids 2014, 47, 108–123. [Google Scholar] [CrossRef]
- Sergiienko, N.; Cazzolato, B.; Ding, B.; Hardy, P.; Arjomandi, M. Performance comparison of the floating and fully submerged quasi-point absorber wave energy converters. Renew. Energy 2017, 108, 425–437. [Google Scholar] [CrossRef]
- Evans, D.; Jeffrey, D.; Salter, S.; Taylor, J. Submerged cylinder wave energy device: Theory and experiment. Appl. Ocean Res. 1979, 1, 3–12. [Google Scholar] [CrossRef]
- Gardner, F. Learning experience of AWS pilot plant test offshore Portugal. In Proceedings of the 6th European Wave and Tidal Energy Conference, Glasgow, UK, 29 August–2 September 2005. [Google Scholar]
- Mann, L.; Burns, A.; Ottaviano, M. CETO, a carbon free wave power energy provider of the future. In Proceedings of the 7th European Wave and Tidal Energy Conference, Porto, Portugal, 11–13 September 2007. [Google Scholar]
- Saruwatari, A.; Ingram, D.; Cradden, L. Wave-current interaction effects on marine energy converters. Ocean Eng. 2013, 73, 106–118. [Google Scholar] [CrossRef]
- Davis, J. Wave energy absorption by the Bristol cylinder-linear and non-linear effects. Proc. Inst. Civ. Eng. 1990, 89, 317–340. [Google Scholar] [CrossRef]
- Anbarsooz, M.; Passandideh-Fard, M.; Moghiman, M. Numerical simulation of a submerged cylindrical wave energy converter. Renew. Energy 2014, 64, 132–143. [Google Scholar] [CrossRef]
- Kim, M.; Celebi, M.; Park, J. A numerical wave tank for nonlinear wave simulations. In Proceedings of the 1997 3rd International Symposium on Ocean Wave Measurement and Analysis (WAVES97), Virginia Beach, VA, USA, 3–7 November 1997. [Google Scholar]
- Kim, M.; Celebi, M.; Kim, D. Fully nonlinear interactions of waves with a three-dimensional body in uniform currents. Appl. Ocean Res. 1998, 20, 309–321. [Google Scholar] [CrossRef]
- Grue, J.; Palm, E. Wave radiation and wave diffraction from a submerged body in a uniform current. J. Fluid Mech. 1985, 151, 257–278. [Google Scholar] [CrossRef]
- Wu, G.; Eatock Taylor, R. Hydrodynamic forces on submerged oscillating cylinders at forward speed. Proc. R. Soc. London Ser. A Math. Phys. Eng. Sci. 1987, 414, 149–170. [Google Scholar]
- Zhao, R.; Faltinsen, O. Interaction between waves and current on a two-dimensional body in the free surface. Appl. Ocean Res. 1988, 10, 87–99. [Google Scholar] [CrossRef]
- Isaacson, M.; Cheung, K. Time-domain solution for wave-current interactions with a two-dimensional body. Appl. Ocean Res. 1993, 15, 39–52. [Google Scholar] [CrossRef]
- Kim, D.; Kim, M. Wave-current interaction with a large three-dimensional body by THOBEM. J. Ship Res. 1997, 41, 273–285. [Google Scholar] [CrossRef]
- Celebi, M. Nonlinear transient wave-body interactions in steady uniform currents. Comput. Meth. Appl. Mech. Eng. 2001, 190, 5149–5172. [Google Scholar] [CrossRef]
- Koo, W.; Kim, M. Current effects on nonlinear wave-body interactions by a 2D fully nonlinear numerical wave tank. J. Waterw. Port Coast. Ocean Eng. 2007, 133, 136–146. [Google Scholar] [CrossRef]
- Shao, Y.; Faltinsen, O. Fully-nonlinear wave-current-body interaction analysis by a harmonic polynomial cell method. J. Offshore Mech. Arct. Eng. 2014, 136, 031301. [Google Scholar] [CrossRef]
- Cheng, Y.; Ji, C.; Zhai, G.; Ma, Z. Fully nonlinear simulation of wave-current interaction with an oscillating wave surge converter. J. Mar. Sci. Technol. 2020, 25, 93–110. [Google Scholar] [CrossRef]
- Cheng, Y.; Ji, C.; Yuan, Z.; Atilla, I. Wave slamming on an OWSC wave energy converter in coupled wave-current conditions with variable-depth seabed. China Ocean Eng. 2021, 35, 646–661. [Google Scholar] [CrossRef]
- Capasso, S.; Tagliafierro, B.; Martínez-Estévez, I.; Altomare, C.; Gómez-Gesteira, M.; Göteman, M.; Viccione, G. Development of an SPH-based numerical wave-current tank and application to wave energy converters. Appl. Energy 2025, 377, 124508. [Google Scholar] [CrossRef]
- Wang, L.; Wu, Y.; Tang, H. Effects of wave-current interaction on a submerged wave energy converter. In Proceedings of the Twenty-Fifth International Ocean and Polar Engineering Conference, Kona, Big Island, HI, USA, 21–26 June 2015. [Google Scholar]
- Thomas, G. Wave-current interactions: An experimental and numerical study. Part 1. Linear waves. J. Fluid Mech. 1981, 110, 457–474. [Google Scholar] [CrossRef]
- Ryu, S.; Kim, M.; Lynett, P. Fully nonlinear wave-current interactions and kinematics by a BEM-based numerical wave tank. Comput. Mech. 2003, 32, 336–346. [Google Scholar] [CrossRef]
- Lin, P.; Li, C. Wave-current interaction with a vertical square cylinder. Ocean Eng. 2003, 30, 855–876. [Google Scholar] [CrossRef]
- Tanizawa, K. A nonlinear simulation method of 3-D body motions in waves (1st report). J. Soc. Naval Arch. Japan 1995, 178, 179–191. [Google Scholar] [CrossRef]
- Dean, R.; Dalrymple, R. Water Wave Mechanics for Engineers and Scientists; World Scientific Publishing Company: Singapore, 1991. [Google Scholar]
- Longuet-Higgins, M.; Cokelet, E. The deformation of steep surface waves on water—I. A numerical method of computation. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 1976, 350, 1–26. [Google Scholar]
- Dommermuth, D.; Yue, D. Numerical simulations of nonlinear axisymmetric flows with a free surface. J. Fluid Mech. 1987, 178, 195–219. [Google Scholar] [CrossRef]
- Abbasnia, A.; Guedes Soares, C. Fully nonlinear simulation of wave interaction with a cylindrical wave energy converter in a numerical wave tank. Ocean Eng. 2018, 152, 210–222. [Google Scholar] [CrossRef]
- Koo, W.; Kim, M. Fully nonlinear wave-body interactions with surface-piercing bodies. Ocean Eng. 2007, 34, 1000–1012. [Google Scholar] [CrossRef]
- Contento, G.; Codiglia, R.; D’Este, F. Nonlinear effects in 2D transient nonbreaking waves in a closed flume. Appl. Ocean Res. 2001, 23, 3–13. [Google Scholar] [CrossRef]
- Tanizawa, K.; Naito, S. A study on parametric roll motions by fully nonlinear numerical wave tank. Int. J. Offshore Polar Eng. 1997, 8, 251–257. [Google Scholar]
- Wang, L.; Tang, H.; Wu, Y. Simulation of wave-body interaction: A desingularized method coupled with acceleration potential. J. Fluids Struct. 2015, 52, 37–48. [Google Scholar] [CrossRef]
- Cao, Y.; Schultz, W.; Beck, R. Three-dimensional desingularized boundary integral methods for potential problems. Int. J. Numer. Methods Fluids 1991, 12, 785–803. [Google Scholar] [CrossRef]
- Liu, C.; Huang, Z.; Tan, S. Nonlinear scattering of non-breaking waves by a submerged horizontal plate: Experiments and simulations. Ocean Eng. 2009, 36, 1332–1345. [Google Scholar] [CrossRef]
- Evans, D.; Porter, R. Wave-free motions of isolated bodies and the existence of motion-trapped modes. J. Fluid Mech. 2007, 584, 225–234. [Google Scholar] [CrossRef]
- Guerber, E.; Benoit, M.; Grilli, S.; Buvat, C. A fully nonlinear implicit model for wave interactions with submerged structures in forced or free motion. Eng. Anal. Bound. Elem. 2012, 36, 1151–1163. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, Y.; Zhang, B.; Tao, C.; Wang, L. Fully Nonlinear Simulation of the Hydrodynamic Performance of a Submerged Cylindrical Wave Energy Converter in the Presence of Current. J. Mar. Sci. Eng. 2025, 13, 1763. https://doi.org/10.3390/jmse13091763
Xia Y, Zhang B, Tao C, Wang L. Fully Nonlinear Simulation of the Hydrodynamic Performance of a Submerged Cylindrical Wave Energy Converter in the Presence of Current. Journal of Marine Science and Engineering. 2025; 13(9):1763. https://doi.org/10.3390/jmse13091763
Chicago/Turabian StyleXia, Yihui, Bin Zhang, Changxin Tao, and Lixian Wang. 2025. "Fully Nonlinear Simulation of the Hydrodynamic Performance of a Submerged Cylindrical Wave Energy Converter in the Presence of Current" Journal of Marine Science and Engineering 13, no. 9: 1763. https://doi.org/10.3390/jmse13091763
APA StyleXia, Y., Zhang, B., Tao, C., & Wang, L. (2025). Fully Nonlinear Simulation of the Hydrodynamic Performance of a Submerged Cylindrical Wave Energy Converter in the Presence of Current. Journal of Marine Science and Engineering, 13(9), 1763. https://doi.org/10.3390/jmse13091763