Empirical Research to Design Rule-Based Strategy Control with Energy Consumption Minimization Strategy of Energy Management Systems in Hybrid Electric Propulsion Systems
Abstract
1. Introduction
1.1. Development of Energy Management System in Hybrid Electric Propulsion Systems
1.2. Necessity for Experimentally Evaluating Energy Management in Hybrid Electric Propulsion Systems
2. Methodology
2.1. Step 1: Selection of Comparative Vessels and System Specifications
2.2. Step 2: Design of Optimal Control Rules Based on System Specifications and Load Profiles
- Operation mode
- Battery status
- Engine status
2.3. Step 3: Construction of Hybrid Electric Propulsion System for Land-Based Demonstration
System Diagram
2.4. Step 4: Characteristics of Load Sharing and Fuel Consumption Measurement Based on Controller Application
3. Result
3.1. Selection of Comparative Vessels and System Specifications
3.2. Design of Optimal Control Rules Based on System Specifications and Load Profiles
3.3. Establishment of Hybrid Electric Propulsion System for Land-Based Validation
3.4. Characteristics of Load Sharing and Fuel Consumption Measurement Based on Controller Application
3.4.1. Operating Characteristics of Load Sharing for Constant-Speed Generators Based on Conventional Nonequivalent Load Sharing Methods
3.4.2. Operating Characteristics of Load Sharing for Variable-Speed Generators Based on Conventional Nonequivalent Load Sharing Methods
3.4.3. Battery-Integrated Constant-Speed Generator Hybrid System with Proposed Control Rules
3.4.4. Battery-Integrated Variable-Speed Generator Hybrid System with Proposed Control Rules
3.5. Comparison Evaluation Based on Fuel Consumption
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Aakko-Saksa, P.T.; Lehtoranta, K.; Kuittinen, N.; Järvinen, A.; Jalkanen, J.-P.; Johnson, K.; Jung, H.; Ntziachristos, L.; Gagné, S.; Takahashi, C. Reduction in greenhouse gas and other emissions from ship engines: Current trends and future options. Prog. Energy Combust. Sci. 2023, 94, 101055. [Google Scholar] [CrossRef]
- Aksöz, A.; Asal, B.; Golestan, S.; Gençtürk, M.; Oyucu, S.; Biçer, E. Electrification in Maritime Vessels: Reviewing Storage Solutions and Long-Term Energy Management. Appl. Sci. 2025, 15, 5259. [Google Scholar] [CrossRef]
- Wang, K.; Chi, Y.; Liang, H.; Jing, Z.; Li, Z.; Ma, R.; Huang, L. Carbon emission monitoring and control technology for ships: A review. Mar. Pollut. Bull. 2025, 219, 118219. [Google Scholar] [CrossRef]
- Lindstad, H.; Asbjørnslett, B.E.; Strømman, A.H. Reductions in greenhouse gas emissions and cost by shipping at lower speeds. Energy Policy 2011, 39, 3456–3464. [Google Scholar] [CrossRef]
- Xie, P.; Guerrero, J.M.; Tan, S.; Bazmohammadi, N.; Vasquez, J.C.; Mehrzadi, M.; Al-Turki, Y. Optimization-based power and energy management system in shipboard microgrid: A review. IEEE Syst. J. 2021, 16, 578–590. [Google Scholar] [CrossRef]
- Bai, J.; Yan, Y.; Bai, X. A comprehensive review of ship emission reduction technologies for sustainable maritime transport. Front. Mar. Sci. 2025, 12, 1576661. [Google Scholar] [CrossRef]
- Yin, H.; Lan, H.; Hong, Y.-Y.; Wang, Z.; Cheng, P.; Li, D.; Guo, D. A comprehensive review of shipboard power systems with new energy sources. Energies 2023, 16, 2307. [Google Scholar] [CrossRef]
- Nguyen, H.P.; Hoang, A.T.; Nizetic, S.; Nguyen, X.P.; Le, A.T.; Luong, C.N.; Chu, V.D.; Pham, V.V. The electric propulsion system as a green solution for management strategy of CO2 emission in ocean shipping: A comprehensive review. Int. Trans. Electr. Energy Syst. 2021, 31, e12580. [Google Scholar] [CrossRef]
- Liu, S. Model-Based Design of Hybrid Electric Marine Propulsion System Using Modified Low-Order Ship Hull Resistance and Propeller Thrust Models. Master’s Thesis, University of Victoria, Victoria, Canada, 2020. [Google Scholar]
- Rafiei, M.; Boudjadar, J.; Khooban, M.-H. Energy management of a zero-emission ferry boat with a fuel-cell-based hybrid energy system: Feasibility assessment. IEEE Trans. Ind. Electron. 2020, 68, 1739–1748. [Google Scholar] [CrossRef]
- Tang, D.; Wang, H. Energy management strategies for hybrid power systems considering dynamic characteristics of power sources. IEEE Access 2021, 9, 158796–158807. [Google Scholar] [CrossRef]
- Bennabi, N.; Menana, H.; Charpentier, J.-F.; Billard, J.-Y.; Nottelet, B. Design and comparative study of hybrid propulsions for a river ferry operating on short cycles with high power demands. J. Mar. Sci. Eng. 2021, 9, 631. [Google Scholar] [CrossRef]
- Litwin, W.; Leśniewski, W.; Piątek, D.; Niklas, K. Experimental research on the energy efficiency of a parallel hybrid drive for an inland ship. Energies 2019, 12, 1675. [Google Scholar] [CrossRef]
- Man Energy Solutions; Batteries on Board Ocean-Going Vessels. September 2019. Available online: https://www.man-es.com/docs/default-source/marine/tools/batteries-on-board-ocean-going-vessels.pdf (accessed on 1 January 2025).
- Nivolianiti, E.; Karnavas, Y.L.; Charpentier, J.-F. Energy management of shipboard microgrids integrating energy storage systems: A review. Renew. Sustain. Energy Rev. 2024, 189, 114012. [Google Scholar] [CrossRef]
- Guo, X.; Lang, X.; Yuan, Y.; Tong, L.; Shen, B.; Long, T.; Mao, W. Energy management system for hybrid ship: Status and perspectives. Ocean. Eng. 2024, 310, 118638. [Google Scholar] [CrossRef]
- Zhang, Z.; Guan, C.; Liu, Z. Real-time optimization energy management strategy for fuel cell hybrid ships considering power sources degradation. IEEE Access 2020, 8, 87046–87059. [Google Scholar] [CrossRef]
- Cao, W.; Geng, P.; Xu, X. Optimization of battery energy storage system size and power allocation strategy for fuel cell ship. Energy Sci. Eng. 2023, 11, 2110–2121. [Google Scholar] [CrossRef]
- Kim, K.; Park, K.; Lee, J.; Chun, K.; Lee, S.-H. Analysis of battery/generator hybrid container ship for CO2 reduction. IEEE Access 2018, 6, 14537–14543. [Google Scholar] [CrossRef]
- Ünlübayir, C.; Mierendorff, U.H.; Börner, M.F.; Quade, K.L.; Blömeke, A.; Ringbeck, F.; Sauer, D.U. A data-driven approach to ship energy management: Incorporating automated tracking system data and weather information. J. Mar. Sci. Eng. 2023, 11, 2259. [Google Scholar] [CrossRef]
- Seenumani, G.; Sun, J.; Peng, H. A hierarchical optimal control strategy for power management of hybrid power systems in all electric ships applications. In Proceedings of the 49th IEEE Conference on Decision and Control (CDC), Atlanta, GA, USA, 15–17 December 2010; pp. 3972–3977. [Google Scholar]
- Bennabi, N.; Charpentier, J.; Menana, H.; Billard, J.-Y.; Genet, P. Hybrid propulsion systems for small ships: Context and challenges. In Proceedings of the 2016 XXII International Conference on Electrical Machines (ICEM), Lausanne, Switzerland, 4–7 September 2016; pp. 2948–2954. [Google Scholar]
- Kurniawan, E.; Koenhardono, E.S.; Kurniawan, A.; Kusuma, I.R. Literature Review of Hybrid Propulsion System on Ship. In Proceedings of the 2024 IEEE 2nd International Conference on Electrical Engineering, Computer and Information Technology (ICEECIT), Sydney, NSW, Australia, 25–27 July 2024; pp. 239–244. [Google Scholar]
- Roslan, S.B.; Konovessis, D.; Tay, Z.Y. Sustainable hybrid marine power systems for power management optimisation: A review. Energies 2022, 15, 9622. [Google Scholar] [CrossRef]
- Ghimire, P.; Zadeh, M.; Thapa, S.; Thorstensen, J.; Pedersen, E. Operational efficiency and emissions assessment of ship hybrid power systems with battery; effect of control strategies. IEEE Trans. Transp. Electrif. 2024, 10, 8543–8556. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, Z.; Guan, C.; Gao, H. Optimization of sizing and frequency control in battery/supercapacitor hybrid energy storage system for fuel cell ship. Energy 2020, 197, 117285. [Google Scholar] [CrossRef]
- Tan, S.; Xie, P.; Norman, R. Advancements in Power Management Systems for Hybrid Electric Vessels. J. Mar. Sci. Eng. 2025, 13, 794. [Google Scholar] [CrossRef]
- Wang, X.; Shipurkar, U.; Haseltalab, A.; Polinder, H.; Claeys, F.; Negenborn, R.R. Sizing and control of a hybrid ship propulsion system using multi-objective double-layer optimization. IEEE Access 2021, 9, 72587–72601. [Google Scholar] [CrossRef]
- Akbarzadeh, M.; De Smet, J.; Stuyts, J. Battery hybrid energy storage systems for full-electric marine applications. Processes 2022, 10, 2418. [Google Scholar] [CrossRef]
- Choi, E.; Kim, H. Advanced Energy Management System for Generator—Battery Hybrid Power System in Ships: A Novel Approach with Optimal Control Algorithms. J. Mar. Sci. Eng. 2024, 12, 1755. [Google Scholar] [CrossRef]
- Choi, M.; Choi, J.; Sung, D.; Jung, W. Energy Management Strategies for Hybrid Propulsion Ferry with Different Battery System Capacities. J. Mar. Sci. Eng. 2024, 12, 2165. [Google Scholar] [CrossRef]
- Chua, L.W.; Tjahjowidodo, T.; Seet, G.G.; Chan, R. Implementation of optimization-based power management for all-electric hybrid vessels. IEEE Access 2018, 6, 74339–74354. [Google Scholar] [CrossRef]
- Kanellos, F.D.; Anvari-Moghaddam, A.; Guerrero, J.M. A cost-effective and emission-aware power management system for ships with integrated full electric propulsion. Electr. Power Syst. Res. 2017, 150, 63–75. [Google Scholar] [CrossRef]
- Yuan, L.C.W.; Tjahjowidodo, T.; Lee, G.S.G.; Chan, R.; Ådnanes, A.K. Equivalent consumption minimization strategy for hybrid all-electric tugboats to optimize fuel savings. In Proceedings of the 2016 American Control Conference (ACC), Boston, MA, USA, 6–8 July 2016; pp. 6803–6808. [Google Scholar]
- Skjong, E.; Johansen, T.A.; Molinas, M.; Sørensen, A.J. Approaches to economic energy management in diesel—Electric marine vessels. IEEE Trans. Transp. Electrif. 2017, 3, 22–35. [Google Scholar] [CrossRef]
- Kolodziejski, M.; Michalska-Pozoga, I. Battery energy storage systems in ships’ hybrid/electric propulsion systems. Energies 2023, 16, 1122. [Google Scholar] [CrossRef]
- He, W.; Mo, O.; Remøy, A.; Valøen, L.O.; Såtendal, H.; Howie, A.; Vie, P.J. Accelerating efficient installation and optimization of battery energy storage system operations onboard vessels. Energies 2022, 15, 4908. [Google Scholar] [CrossRef]
- Vicenzutti, A.; Sulligoi, G. Electrical and energy systems integration for maritime environment-friendly transportation. Energies 2021, 14, 7240. [Google Scholar] [CrossRef]
- Park, D.; Perabo, F.; Choi, M.; Skjong, E.; Zadeh, M. An optimal energy management system for marine hybrid power systems. In Proceedings of the 2021 IEEE 22nd Workshop on Control and Modelling of Power Electronics (COMPEL), Cartagena, Colombia, 2–5 November 2021; pp. 1–8. [Google Scholar]
- Radica, G.; Vidović, T.; Šimunović, J.; Jurić, Z. Overview of Hybrid Marine Energy System Configurations and System Component Modeling Approaches. Energies 2025, 18, 1189. [Google Scholar] [CrossRef]
- Son, Y.-K.; Lee, S.-Y.; Ko, S.; Kim, Y.-W.; Sul, S.-K. Maritime DC power system with generation topology consisting of combination of permanent magnet generator and diode rectifier. IEEE Trans. Transp. Electrif. 2020, 6, 869–880. [Google Scholar] [CrossRef]
- Bø, T.I.; Vaktskjold, E.; Pedersen, E.; Mo, O. Model predictive control of marine power plants with gas engines and battery. IEEE Access 2019, 7, 15706–15721. [Google Scholar] [CrossRef]
- Ghimire, P.; Karimi, S.; Zadeh, M.; Nagalingam, K.K.; Pedersen, E. Model-based efficiency and emissions evaluation of a marine hybrid power system with load profile. Electr. Power Syst. Res. 2022, 212, 108530. [Google Scholar] [CrossRef]
- Kang, K.-W.; Jeon, C.-H.; Jeon, H.-M.; Kim, J.-S. Empirical study on the application of fuel cell-battery hybrid electric propulsion systems in small coastal ships. J. Korean Soc. Mar. Eng 2019, 43, 648–654. [Google Scholar] [CrossRef]
- Torreglosa, J.P.; González-Rivera, E.; García-Triviño, P.; Vera, D. Performance analysis of a hybrid electric ship by real-time verification. Energies 2022, 15, 2116. [Google Scholar] [CrossRef]
- Mo, O.; Guidi, G. Design of minimum fuel consumption energy management strategy for hybrid marine vessels with multiple diesel engine generators and energy storage. In Proceedings of the 2018 IEEE Transportation Electrification Conference and Expo (ITEC), Long Beach, CA, USA, 13–15 June 2018; pp. 537–544. [Google Scholar]
- Sciberras, E.A.; Zahawi, B.; Atkinson, D.J.; Breijs, A.; Van Vugt, J.H. Managing shipboard energy: A stochastic approach special issue on marine systems electrification. IEEE Trans. Transp. Electrif. 2016, 2, 538–546. [Google Scholar] [CrossRef]
- Mobarra, M.; Rezkallah, M.; Ilinca, A. Variable speed diesel generators: Performance and characteristic comparison. Energies 2022, 15, 592. [Google Scholar] [CrossRef]
- Tjandra, R.; Wen, S.; Zhou, D.; Tang, Y. Optimal sizing of BESS for hybrid electric ship using multi-objective particle swarm optimization. In Proceedings of the 2019 10th International Conference on Power Electronics and ECCE Asia (ICPE 2019-ECCE Asia), Busan, Republic of Korea, 27–30 May 2019; pp. 1460–1466. [Google Scholar]
- Wu, P.; Bucknall, R. Hybrid fuel cell and battery propulsion system modelling and multi-objective optimisation for a coastal ferry. Int. J. Hydrog. Energy 2020, 45, 3193–3208. [Google Scholar] [CrossRef]
- Zhang, C. The research of power allocation in diesel-electric hybrid propulsion system. In Proceedings of the 2019 Chinese Automation Congress (CAC), Hangzhou, China, 22–24 November 2019; pp. 3664–3668. [Google Scholar]
- Antonopoulos, S.; Visser, K.; Kalikatzarakis, M.; Reppa, V. MPC framework for the energy management of hybrid ships with an energy storage system. J. Mar. Sci. Eng. 2021, 9, 993. [Google Scholar] [CrossRef]
- Xiang, Y.; Yang, X. An ECMS for multi-objective energy management strategy of parallel diesel electric hybrid ship based on ant colony optimization algorithm. Energies 2021, 14, 810. [Google Scholar] [CrossRef]
- Gao, D.; Wang, X.; Wang, T.; Wang, Y.; Xu, X. An energy optimization strategy for hybrid power ships under load uncertainty based on load power prediction and improved NSGA-II algorithm. Energies 2018, 11, 1699. [Google Scholar] [CrossRef]
- Wang, X.; Yuan, Y.; Tong, L.; Yuan, C.; Shen, B.; Long, T. Energy management strategy for diesel–electric hybrid ship considering sailing route division based on DDPG. IEEE Trans. Transp. Electrif. 2023, 10, 187–202. [Google Scholar] [CrossRef]
- Bassam, A.M.; Phillips, A.B.; Turnock, S.R.; Wilson, P.A. Development of a multi-scheme energy management strategy for a hybrid fuel cell driven passenger ship. Int. J. Hydrog. Energy 2017, 42, 623–635. [Google Scholar] [CrossRef]
- Valera-García, J.J.; Atutxa-Lekue, I. On the optimal design of hybrid-electric power systems for offshore vessels. IEEE Trans. Transp. Electrif. 2018, 5, 324–334. [Google Scholar] [CrossRef]
- Guo, Q.; Fu, Z.; Zhang, X. Co-Optimization of the Hardware Configuration and Energy Management Parameters of Ship Hybrid Power Systems Based on the Hybrid Ivy-SA Algorithm. J. Mar. Sci. Eng. 2025, 13, 731. [Google Scholar] [CrossRef]
- Inal, O.B.; Charpentier, J.-F.; Deniz, C. Hybrid power and propulsion systems for ships: Current status and future challenges. Renew. Sustain. Energy Rev. 2022, 156, 111965. [Google Scholar] [CrossRef]
- Zaccone, R.; Campora, U.; Martelli, M. Optimisation of a diesel-electric ship propulsion and power generation system using a genetic algorithm. J. Mar. Sci. Eng. 2021, 9, 587. [Google Scholar] [CrossRef]
- Yoon, H.-h. Battery Hybrid Electric Propulsion Vessel. ChosunBiz, 27 November 2023. Available online: https://biz.chosun.com/policy/policy_sub/2023/11/27/LX2OPRXUSFBFHGDBDUPIINCAQA/ (accessed on 1 January 2025).
SOC | |||
---|---|---|---|
Generator only | Generator only | Generator only | |
Battery only | Hybrid | Power boost mode | |
Hybrid | Battery only | Hybrid |
SOC | |||
---|---|---|---|
Charging (with alarm) | - | Idle (with alarm) | |
Discharging | Charging & Discharging | Discharging | |
Discharging (with alarm) | Battery only(discharge) | Discharging (with alarm) |
SOC | |||
---|---|---|---|
SOC | |||
---|---|---|---|
Generator only | Generator only | Generator only | |
Battery only | Generator only | Hybrid (Gen. + Batt.) | |
Battery only | Generator only | Hybrid (Gen. + Batt.) |
SOC | |||
---|---|---|---|
Charging (with alarm) | - | Idle (with alarm) | |
Discharging | Charging or idle | Discharging | |
Discharging (with alarm) | Idle | Discharging (with alarm) |
SOC | |||
---|---|---|---|
- |
No. | Description | Spec | QTY | No. | Description | QTY |
---|---|---|---|---|---|---|
1 | Diesel generator | 400 kW/440 V/1800 rpm | 2 | 5 | Motor drive unit | 2 |
2 | Battery system | 400 kW | 2 | 6 | Load(R) | 1 |
3 | Distribution system | Distribution system | 1 | 7 | Flowmeter | 4 |
4 | Propulsion motor | 400 kW | 2 | 8 | Energy management system | 1 |
Conventional Constant | Conventional Variable | |
---|---|---|
Hybrid Constant | −33.87% | −26.23% |
Hybrid Variable | −38.15% | −31.01% |
Conventional Constant | Conventional Variable | |
---|---|---|
HYBRID Constant | −5.50% | 5.41% |
HYBRID Variable | −9.79% | 0.64% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.; Jeon, H. Empirical Research to Design Rule-Based Strategy Control with Energy Consumption Minimization Strategy of Energy Management Systems in Hybrid Electric Propulsion Systems. J. Mar. Sci. Eng. 2025, 13, 1695. https://doi.org/10.3390/jmse13091695
Kim S, Jeon H. Empirical Research to Design Rule-Based Strategy Control with Energy Consumption Minimization Strategy of Energy Management Systems in Hybrid Electric Propulsion Systems. Journal of Marine Science and Engineering. 2025; 13(9):1695. https://doi.org/10.3390/jmse13091695
Chicago/Turabian StyleKim, Seongwan, and Hyeonmin Jeon. 2025. "Empirical Research to Design Rule-Based Strategy Control with Energy Consumption Minimization Strategy of Energy Management Systems in Hybrid Electric Propulsion Systems" Journal of Marine Science and Engineering 13, no. 9: 1695. https://doi.org/10.3390/jmse13091695
APA StyleKim, S., & Jeon, H. (2025). Empirical Research to Design Rule-Based Strategy Control with Energy Consumption Minimization Strategy of Energy Management Systems in Hybrid Electric Propulsion Systems. Journal of Marine Science and Engineering, 13(9), 1695. https://doi.org/10.3390/jmse13091695