From Form to Function: The Anatomy, Ecology, and Biotechnological Promise of the False-Kelp Saccorhiza polyschides
Abstract
1. Introduction
2. Taxonomy, Distribution and Environmental Preferences
2.1. Phylogenetic Placement and Taxonomic Notes
2.2. Ecological Function as a Marine Forest-Forming Species
2.3. Biogeographical Distribution and Environmental Tolerances
3. Morphology, Anatomy and Structural Adaptations
3.1. External Morphological Features
3.2. Tissue and Cellular Organisation
4. Lifecycle
4.1. Sporophyte Development and Phenology
4.2. Gametophyte Characteristics and Fertilisation
4.3. Environmental Regulation of Reproduction
5. Ecological Role and Seasonal Dynamics
5.1. Productivity and Canopy Formation
5.2. Successional Role in Disturbed Habitats
5.3. Interactions with Epifauna and Associated Communities
6. Anthropogenic and Environmental Stressors
6.1. Climate Change and Range Shifts
6.2. Storm Disturbances and Erosion
6.3. Invasive Species and Herbivory Pressure
6.4. Impacts of Harvesting and Anthropogenic Pressure
7. Bioactive Compounds and Bioactivities
7.1. Phytochemical Composition of Saccorhiza polyschides
7.1.1. Phlorotannins
7.1.2. Sulphated Polysaccharides: Fucoidans and Laminarins
7.1.3. Alginate
7.1.4. Carotenoids: Fucoxanthin
7.1.5. Fatty Acids
7.1.6. Sterols and Terpenoids
7.2. Bioactive Properties
7.2.1. Antioxidant Effects
7.2.2. Antimicrobial Effect
7.2.3. Anti-Inflammatory and Immunomodulatory Activities
7.2.4. Anticancer Potential
7.2.5. Plant Biostimulant Potential
8. Biotechnological Applications
9. Future Prospects
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Assis, J.; Berecibar, E.; Claro, B.; Alberto, F.; Reed, D.; Raimondi, P.; Serrão, E.A. Major Shifts at the Range Edge of Marine Forests: The Combined Effects of Climate Changes and Limited Dispersal. Sci. Rep. 2017, 7, 44348. [Google Scholar] [CrossRef] [PubMed]
- Salland, N.; Smale, D. Spatial Variation in the Structure of Overwintering, Remnant Saccorhiza Polyschides Sporophytes and Their Associated Assemblages. J. Mar. Biol. Assoc. UK 2021, 101, 639–648. [Google Scholar] [CrossRef]
- Salland, N.; Wilding, C.; Jensen, A.; Smale, D.A. Spatiotemporal Variability in Population Demography and Morphology of the Habitat-Forming Macroalga Saccorhiza Polyschides in the Western English Channel. Ann. Bot. 2024, 133, 117–130. [Google Scholar] [CrossRef]
- Pereira, T.R.; Engelen, A.H.; Pearson, G.A.; Valero, M.; Serrão, E.A. Population Dynamics of Temperate Kelp Forests near Their Low-Latitude Limit. Aquat. Bot. 2017, 139, 8–18. [Google Scholar] [CrossRef]
- Cardoso, C.; Almeida, J.; Coelho, I.; Delgado, I.; Gomes, R.; Quintã, R.; Bandarra, N.M.; Afonso, C. Farming a Wild Seaweed and Changes to Its Composition, Bioactivity, and Bioaccessibility: The Saccorhiza polyschides Case Study. Aquaculture 2023, 566, 739217. [Google Scholar] [CrossRef]
- Lomartire, S.; Gonçalves, A.M.M. An Overview of Potential Seaweed-Derived Bioactive Compounds for Pharmaceutical Applications. Mar. Drugs 2022, 20, 141. [Google Scholar] [CrossRef]
- Susano, P.; Silva, J.; Alves, C.; Martins, A.; Pinteus, S.; Gaspar, H.; Goettert, M.I.; Pedrosa, R. Saccorhiza Polyschides—A Source of Natural Active Ingredients for Greener Skincare Formulations. Molecules 2022, 27, 6496. [Google Scholar] [CrossRef]
- Barbosa, M.; Fernandes, F.; Pereira, D.M.; Azevedo, I.C.; Sousa-Pinto, I.; Andrade, P.B.; Valentão, P. Fatty Acid Patterns of the Kelps Saccharina Latissima, Saccorhiza Polyschides and Laminaria Ochroleuca: Influence of Changing Environmental Conditions. Arab. J. Chem. 2020, 13, 45. [Google Scholar] [CrossRef]
- Henry, E.C.; South, G.R. Phyllariopsis Gen. Nov. and a Reappraisal of the Phyllariaceae Tilden 1935 (Laminariales, Phaeophyceae). Phycologia 1987, 26, 9–16. [Google Scholar] [CrossRef]
- Sasaki, H.; Flores-Moya, A.; Henry, E.C.; Muller, D.G.; Kawai, H. Molecular Phylogeny of Phyllariaceae, Halosiphonaceae and Tilopteridales (Phaeophyceae). Phycologia 2001, 40, 123–134. [Google Scholar] [CrossRef]
- Emerson, C.J.; Buggeln, R.G.; Bal, A.K. Translocation in Saccorhiza Dermatodea (Laminariales, Phaeophyceae): Anatomy and Physiology. Can. J. Bot. 1982, 60, 2164–2184. [Google Scholar] [CrossRef]
- Bringloe, T.T.; Starko, S.; Wade, R.M.; Vieira, C.; Kawai, H.; De Clerck, O.; Cock, J.M.; Coelho, S.M.; Destombe, C.; Valero, M.; et al. Phylogeny and Evolution of the Brown Algae. Crit. Rev. Plant Sci. 2020, 39, 281–321. [Google Scholar] [CrossRef]
- Lee, R.E. Phycology; Cambridge University Press: Cambridge, UK, 2018; ISBN 978-1-107-55565-5. [Google Scholar]
- Smale, D.A.; Moore, P. Variability in Kelp Forest Structure along a Latitudinal Gradient in Ocean Temperature. J. Exp. Mar. Biol. Ecol. 2017, 486, 255–264. [Google Scholar] [CrossRef]
- Santelices, B. Patterns of Reproduction, Dispersal and Recruitment in Seaweeds. Oceanogr. Mar. Biol. Annu. Rev. 1990, 28, 177–276. [Google Scholar]
- Cabioc’h, J.; Floc’h, J.-I.; Le Toquin, A.; Boudouresque, C.-F.; Meinesz, A.; Verlaque, M. Guía de Las Algas Del Atântico e Del Del Metiterráneo; Ediciones OMEGA, S.A.: Barcelona, Spain, 2007; ISBN 978-84-282-1447-6. [Google Scholar]
- Mineur, F.; Arenas, F.; Assis, J.; Davies, A.J.; Engelen, A.H.; Fernandes, F.; Malta, E.; Thibaut, T.; Van Nguyen, T.; Vaz-Pinto, F.; et al. European Seaweeds under Pressure: Consequences for Communities and Ecosystem Functioning. J. Sea Res. 2014, 98, 91–108. [Google Scholar] [CrossRef]
- Wernberg, T.; Krumhansl, K.; Filbee-Dexter, K.; Pedersen, M.F. Status and Trends for the World’s Kelp Forests. In World Seas: An Environmental Evaluation; Elsevier: London, UK, 2019; Volume 3, pp. 57–78. ISBN 978-0-12-805052-1. [Google Scholar]
- Reed, D.C.; Foster, M.S. The Effects of Canopy Shadings on Algal Recruitment and Growth in a Giant Kelp Forest. Ecology 1984, 65, 937–948. [Google Scholar] [CrossRef]
- Morris, R.L.; Graham, T.D.J.; Kelvin, J.; Ghisalberti, M.; Swearer, S.E. Kelp Beds as Coastal Protection: Wave Attenuation of Ecklonia Radiata in a Shallow Coastal Bay. Ann. Bot. 2020, 125, 235–246. [Google Scholar] [CrossRef]
- Strain, E.M.A.; Swearer, S.E.; Ambler, I.; Morris, R.L.; Nickols, K.J. Assessing the Role of Natural Kelp Forests in Modifying Seawater Chemistry. Sci. Rep. 2024, 14, 22386. [Google Scholar] [CrossRef]
- de Bettignies, T.; Bettignies, F.D.; Bartsch, I.; Bekkby, T.; La Rivière, M. Background Document on Kelp Forest Habitat; Biodiversity and Ecosystems Series; OSPAR Commission, 2021; p. 68. Available online: https://epic.awi.de/id/eprint/55098/1/p00788_background_document_kelp_forest_habitat.pdf (accessed on 3 August 2025).
- Eger, A.M.; Marzinelli, E.M.; Beas-Luna, R.; Blain, C.O.; Blamey, L.K.; Byrnes, J.E.K.; Carnell, P.E.; Choi, C.G.; Hessing-Lewis, M.; Kim, K.Y.; et al. The Value of Ecosystem Services in Global Marine Kelp Forests. Nat. Commun. 2023, 14, 1894. [Google Scholar] [CrossRef]
- Filbee-Dexter, K. Ocean Forests Hold Unique Solutions to Our Current Environmental Crisis. One Earth 2020, 2, 398–401. [Google Scholar] [CrossRef]
- Araújo, R.M.; Assis, J.; Aguillar, R.; Airoldi, L.; Bárbara, I.; Bartsch, I.; Bekkby, T.; Christie, H.; Davoult, D.; Derrien-Courtel, S.; et al. Status, Trends and Drivers of Kelp Forests in Europe: An Expert Assessment. Biodivers. Conserv. 2016, 25, 1319–1348. [Google Scholar] [CrossRef]
- Smale, D.A.; Burrows, M.T.; Moore, P.; O’Connor, N.; Hawkins, S.J. Threats and Knowledge Gaps for Ecosystem Services Provided by Kelp Forests: A Northeast Atlantic Perspective. Ecol. Evol. 2013, 3, 4016–4038. [Google Scholar] [CrossRef]
- Blamey, L.K.; Bolton, J.J. The Economic Value of South African Kelp Forests and Temperate Reefs: Past, Present and Future. J. Mar. Syst. 2018, 188, 172–181. [Google Scholar] [CrossRef]
- Filbee-Dexter, K.; Wernberg, T. Rise of Turfs: A New Battlefront for Globally Declining Kelp Forests. BioScience 2018, 68, 64–76. [Google Scholar] [CrossRef]
- Curiel, D.; Guidetti, P.; Bellemo, G.; Scattolin, M.; Marzocchi, M. The Introduced Alga Undaria Pinnatifida (Laminariales, Alariaceae) in the Lagoon of Venice. Hydrobiologia 2002, 477, 209–219. [Google Scholar] [CrossRef]
- Lima, F.P.; Ribeiro, P.A.; Queiroz, N.; Hawkins, S.J.; Santos, A.M. Do Distributional Shifts of Northern and Southern Species of Algae Match the Warming Pattern? Glob. Change Biol. 2007, 13, 2592–2604. [Google Scholar] [CrossRef]
- Lüning, K. Seaweeds: Their Environment, Biogeography, and Ecophysiology; Lüning, K., Ed.; Wiley Interscience: New York, NY, USA, 1990; ISBN 0-471-62434-9. [Google Scholar]
- Kain, J.M.; Jones, M.N.S. The Biology of Laminaria hyperborea. V. Comparison with Early Stages of Competitors. J. Mar. Biol. Assoc. UK 1969, 49, 455–473. [Google Scholar] [CrossRef]
- Fernández, C. The Retreat of Large Brown Seaweeds on the North Coast of Spain: The Case of Saccorhiza Polyschides. Eur. J. Phycol. 2011, 46, 352–360. [Google Scholar] [CrossRef]
- Assis, J.; Tavares, J.T.; Tavares, D.; Serrao, E.A.; Cunha, A.H.; Alberto, F.; Tempera, F.; Paulos, L. Florestas Marinhas: As Espécies de Algas Castanhas Gigantes de Portugal; Mundo Gobius Comunicação e Ciência: Faro, Portugal, 2011; ISBN 978-989-97260-0-0. [Google Scholar]
- Bunker, F.; Brodie, J.A.; Maggs, C.A.; Bunker, A.R. (Eds.) Seaweeds of Britain and Ireland; Princeton University Press: Princeton, NJ, USA, 2017. [Google Scholar]
- De Kluijver, M.J. Sublittoral Hard-Substratum Communities off Orkney and St Abbs (Scotland). J. Mar. Biol. Assoc. UK 1993, 73, 733–754. [Google Scholar] [CrossRef]
- Angulo, R.; Gorostiaga Garay, J.M.; Ibáñez Artica, M. Nueva Cita de Saccorhiza Polyschides y Laminaria Ochroleuca En La Costa Vasca. Lurralde Investig. Espac. 1981, 4, 265–269. [Google Scholar]
- Fernández, J.A.; Pérez-Celorrio, B.; Ibanez, M. Sobre La Presencia de Saccorhiza Polyschides (Ligth) Batt. En La Costa Guipuzcoana; Especie Indicadora de Cambios Climaticos? Lurralde 1988, 11, 201–216. [Google Scholar]
- Araújo, R.; Bárbara, I.; Tibaldo, M.; Berecibar, E.; Tapia, P.D.; Pereira, R.; Santos, R.; Pinto, I.S.; Araujo, R.; Barbara, I.; et al. Checklist of Benthic Marine Algae and Cyanobacteria of Northern Portugal. Bot. Mar. 2009, 52, 24–46. [Google Scholar] [CrossRef]
- Bárbara, I.; Díaz, P.; Cremades, J.; Peña, V.; López-Rodríguez, M.C.; Berecibar, E.; Santos, R. Catálogo Gallego de Especies Amenazadas y Lista Roja de Las Algas Bentónicas Marinas de Galicia. Algas 2006, 35, 9–19. [Google Scholar]
- Cremades, J.; Calvo, S.; Dosil, J.; Bárbara, I.; Cremades, J.; Calvo, S.; López, M.C.; Dosil, J. Checklist of the Benthic Marine and Brackish Galician Algae (NW Spain). An. Jardín Botánico Madr. 2005, 62, 69–100. [Google Scholar]
- Gaspar, R.; Pereira, L.; Neto, J.M. Intertidal Zonation and Latitudinal Gradients on Macroalgal Assemblages: Species, Functional Groups and Thallus Morphology Approaches. Ecol. Indic. 2017, 81, 90–103. [Google Scholar] [CrossRef]
- Pereira, L. Seaweed Flora of the European North Atlantic and Mediterranean. In Handbook on Marine biotechnology; Kim, S.-K., Ed.; Springer: Berlin/Heidelberg, Germany, 2015; Volume 46, p. 1492. ISBN 978-92-64-19423-6. [Google Scholar]
- Burel, T.; Duff, M.L.; Gall, E.A. Updated Check-List of the Seaweeds of the French Coasts, Channel and Atlantic Ocean. Cah. Nat. L’Observatoire Mar. 2019, 7, 1–38. [Google Scholar]
- Derrien-Courtel, S.; Le Gal, A.; Grall, J. Regional-Scale Analysis of Subtidal Rocky Shore Community. Helgol. Mar. Res. 2013, 67, 697–712. [Google Scholar] [CrossRef]
- Svendsen, P. Some Observations on Saccorhiza Polyschides (Lightf.) Batt. (Phaeophyceae). Sarsia 1962, 7, 11–13. [Google Scholar] [CrossRef]
- Boudouresque, C.-F.; Semroud, R.; Blanfuné, A.; Perret-Boudouresque, M.; Blanfuné, A. Sighting of Saccorhiza Polyschides (Lightfoot) Batters (Phaeophyceae, Stramenopiles) in Algeria (Mediterranean Sea): An Insight into Range Expansion Routes. Cryptogamie, Algologie 2020, 41, 31–36. [Google Scholar] [CrossRef]
- Giaccone, G. Note Sistematiche Ed Osservazioni Fitosociologiche Sulle Laminariales Del Mediterraneo Occidentale. G. Bot. Ital. 1969, 103, 457. [Google Scholar] [CrossRef]
- Adama, D.; Mohammed, A.; Maroua, H.; Mohammed, E.; Essalmani, H.; Mouna, D. Distribution and Biomass Assessment of Macroalgae from Moroccan Strait of Gibraltar. Acta Ecol. Sin. 2021, 41, 442–450. [Google Scholar] [CrossRef]
- Ballesteros, E.; Sanson, M.; Reyes, J.; Gil-Rodriguez, M.C. New Records of Benthic Marine Algae from the Canary Islands. Bot. Mar. 1992, 35, 513. [Google Scholar] [CrossRef]
- Guiry, M.D.; Guiry, G.M. AlgaeBase. World-Wide Electronic Publication, National University of Ireland, Galway. 2024. Available online: http://www.algaebase.org (accessed on 1 October 2024).
- Birkett, D.A.; Maggs, C.A.; Dring, M.J.; Boaden, P.J.S. Infralittoral Reef Biotopes with Kelp Species (Volume VII). An Overview of Dynamic and Sensitivity Characteristics for Conservation Management of Marine SACs; UK Marine SACs Project: Belfast, UK, 1998; p. 174. [Google Scholar]
- Stamp, T. Saccorhiza Polyschides and Other Opportunistic Kelps on Disturbed Sublittoral Fringe Rock; Tyler-Walters, H., Hiscock, K., Eds.; Marine Life Information Network: Biology and Sensitivity Key Information Reviews, [on-line]; Marine Biological Association of the United Kingdom: Plymouth, UK, 2015. [Google Scholar]
- Norton, T.A. Experiments on the Factors Influencing the Geographical Distributions of Saccorhiza Polyschides and Saccorhiza Dermatodea. New Phytol. 1977, 78, 625–635. [Google Scholar] [CrossRef]
- Norton, T.A.; Burrows, E.M. Studies on Marine Algae of the British Isles. 7. Saccorhiza Polyschides (Lightf.) Batt. Br. Phycol. J. 1969, 4, 19–53. [Google Scholar] [CrossRef]
- Engelen, A.H.; Lévèque, L.; Destombe, C.; Valero, M. Spatial and Temporal Patterns of Recovery of Low Intertidal Laminaria Digitata after Experimental Spring and Autumn Removal. Cah. Biol. Mar. 2011, 52, 441–453. [Google Scholar]
- Fish, J.D.; Fish, S. A Student Guide to the Seashore; Unwin Hyman, Ltd.: London, UK, 1989. [Google Scholar]
- Norton, T.A. The Development of Saccorhiza Dermatodea (Phaeophyceae, Laminariales) in Culture. Phycologia 1972, 11, 81–86. [Google Scholar] [CrossRef]
- Norton, T.A. The Factors Influencing the Distribution of Saccorhiza Polyschides in the Region of Lough Ine. J. Mar. Biol. Assoc. UK 1978, 58, 527–536. [Google Scholar] [CrossRef]
- Reed, D.C. The Effects of Variable Settlement and Early Competition on Patterns of Kelp Recruitment. Ecology 1990, 71, 776–787. [Google Scholar] [CrossRef]
- Maier, I.; Müller, G.D. Sexual Pheromones and Related Egg Secretions in Laminariales (Phaeophyta); Naturforsch, Z., Ed.; Walter de Gruyter GmbH: Berlin, Germany, 1987; Volume 42c, pp. 948–954. [Google Scholar]
- Evans, L.V. Cytological Studies in the Laminariales. Ann. Bot. 1965, 29, 541. [Google Scholar] [CrossRef]
- Norton, T.A. Growth Form and Environment in Saccorhiza Polyschides. J. Mar. Biol. Assoc. UK 1969, 49, 1025–1045. [Google Scholar] [CrossRef]
- John, D.M. The Distribution and Net Productivity of Sublittoral Populations of Attached Macrophytic Algae in an Estuary on the Atlantic Coast of Spain. Mar. Biol. 1971, 11, 90–97. [Google Scholar] [CrossRef]
- Franke, K.; Matthes, L.C.; Graiff, A.; Karsten, U.; Bartsch, I. Net Primary Production of Laminaria Hyperborea along the Vertical Depth Profile Based on Different Diffuse Attenuation Coefficients. In Dataset for Estimating Photosynthetic Oxygen Production of Laminaria hyperborea off the Island of Helgoland in Summer 2014; PANGAEA: Bremen, Germany, 2023. [Google Scholar] [CrossRef]
- Jiang, L.; Blommaert, L.; Jansen, H.M.; Broch, O.J.; Timmermans, K.R.; Soetaert, K. Carrying Capacity of Saccharina Latissima Cultivation in a Dutch Coastal Bay: A Modelling Assessment|ICES Journal of Marine Science|Oxford Academic. ICES J. Mar. Sci. 2022, 79, 709–721. [Google Scholar] [CrossRef]
- Azevedo, I.C.; Marinho, G.S.; Silva, D.M.; Sousa-Pinto, I. Pilot Scale Land-Based Cultivation of Saccharina Latissima Linnaeus at Southern European Climate Conditions: Growth and Nutrient Uptake at High Temperatures. Aquaculture 2016, 459, 166–172. [Google Scholar] [CrossRef]
- Sato, Y.; Fujiwara, T.; Endo, H. Density Regulation of Aquaculture Production and Its Effects on Commercial Profit and Quality as Food in the Cosmopolitan Edible Seaweed Undaria Pinnatifida. Front. Mar. Sci. 2023, 10, 1085054. [Google Scholar] [CrossRef]
- de Bettignies, T.; Wernberg, T.; Lavery, P.S.; Vanderklift, M.A.; Mohring, M.B. Contrasting Mechanisms of Dislodgement and Erosion Contribute to Production of Kelp Detritus. Limnol. Oceanogr. 2013, 58, 1680–1688. [Google Scholar] [CrossRef]
- Pita, P.; Fernández-Márquez, D.; Freire, J. Spatiotemporal Variation in the Structure of Reef Fish and Macroalgal Assemblages in a North-East Atlantic Kelp Forest Ecosystem: Implications for the Management of Temperate Rocky Reefs. Mar. Freshw. Res. 2018, 69, 525. [Google Scholar] [CrossRef]
- Krumhansl, K.; Scheibling, R. Production and Fate of Kelp Detritus. Mar. Ecol. Prog. Ser. 2012, 467, 281–302. [Google Scholar] [CrossRef]
- Leclerc, J.-C.; Riera, P.; Leroux, C.; Lévêque, L.; Laurans, M.; Schaal, G.; Davoult, D. Trophic Significance of Kelps in Kelp Communities in Brittany (France) Inferred from Isotopic Comparisons. Mar. Biol. 2013, 3, 3249–3258. [Google Scholar] [CrossRef]
- Salland, N. Examining Climate-Driven Shifts in the Ecological Structure and Functioning of Northeast Atlantic Kelp Forests. Ph.D. Thesis, University of Southampton, Southampton, UK, 2024. Available online: https://eprints.soton.ac.uk/490709/ (accessed on 1 October 2024).
- Fernández, C.; Piñeiro-Corbeira, C.; Barrientos, S.; Barreiro, R. Could the Annual Saccorhiza Polyschides Replace a Sympatric Perennial Kelp (Laminaria Ochroleuca) When It Comes to Supporting the Holdfast-Associated Fauna? Mar. Environ. Res. 2022, 182, 105772. [Google Scholar] [CrossRef]
- McKenzie, J.D.; Moore, P.G. The Microdistribution of Animals Associated with the Bulbous Holdfasts of Saccorhiza Polyschides (Phaeophyta). Ophelia 1981, 20, 201–213. [Google Scholar] [CrossRef]
- Tuya, F.; Larsen, K.; Platt, V. Patterns of Abundance and Assemblage Structure of Epifauna Inhabiting Two Morphologically Different Kelp Holdfasts. Hydrobiologia 2011, 658, 373. [Google Scholar] [CrossRef]
- Gestoso, I.; Olabarria, C.; Troncoso, J.S. Effects of Macroalgal Identity on Epifaunal Assemblages: Native Species versus the Invasive Species Sargassum Muticum. Helgol. Mar. Res. 2012, 66, 159–166. [Google Scholar] [CrossRef]
- Susana, P.; José, C.; Pedro, G. Macrofauna Associated with Saccorhiza Polyschides (Lightfoot) Batters 1902 Holdfasts. Front. Mar. Sci. 2014, 1. [Google Scholar] [CrossRef]
- Vaz-Pinto, F.; Rodil, I.; Mineur, F.; Olabarria, C.; Arenas, F. Understanding Biological Invasions by Seaweeds. In Marine Algae–Biodiversity, Taxonomy, Environmental Assessment and Biotechnology; Pereira, L., Patrício, J., Neto, J.M., Eds.; CRC Press/Taylor & Francis: Boca Raton, FL, USA, 2014; pp. 140–177. ISBN 9781466581678. [Google Scholar] [CrossRef]
- Biskup, S.; Bertocci, I.; Arenas, F.; Tuya, F. Functional Responses of Juvenile Kelps, Laminaria Ochroleuca and Saccorhiza Polyschides, to Increasing Temperatures. Aquat. Bot. 2014, 113, 117–122. [Google Scholar] [CrossRef]
- Lemos, R.T.; Pires, H.O. The Upwelling Regime off the West Portuguese Coast, 1941–2000. Int. J. Climatol. 2004, 24, 511–524. [Google Scholar] [CrossRef]
- Sousa, M.C.; Ribeiro, A.; Des, M.; Gomez-Gesteira, M.; de Castro, M.; Dias, J.M. NW Iberian Peninsula Coastal Upwelling Future Weakening: Competition between Wind Intensification and Surface Heating. Sci. Total Environ. 2020, 703, 134808. [Google Scholar] [CrossRef]
- Franco, J.N.; Tuya, F.; Bertocci, I.; Rodríguez, L.; Martínez, B.; Sousa-Pinto, I.; Arenas, F. The “golden Kelp” Laminaria Ochroleuca under Global Change: Integrating Multiple Eco-Physiological Responses with Species Distribution Models. J. Ecol. 2018, 106, 47–58. [Google Scholar] [CrossRef]
- Bianchi, C.N.; Caroli, F.; Guidetti, P.; Morri, C. Seawater Warming at the Northern Reach for Southern Species: Gulf of Genoa, NW Mediterranean. J. Mar. Biol. Assoc. UK 2018, 98, 1–12. [Google Scholar] [CrossRef]
- de Azevedo, J.; Franco, J.N.; Vale, C.G.; Lemos, M.F.L.; Arenas, F. Rapid Tropicalization Evidence of Subtidal Seaweed Assemblages along a Coastal Transitional Zone. Sci. Rep. 2023, 13, 11720. [Google Scholar] [CrossRef] [PubMed]
- Casado-Amezúa, P.; Araújo, R.; Bárbara, I.; Bermejo, R.; Borja, Á.; Díez, I.; Fernández, C.; Gorostiaga, J.M.; Guinda, X.; Hernández, I.; et al. Distributional Shifts of Canopy-Forming Seaweeds from the Atlantic Coast of Southern Europe. Biodivers. Conserv. 2019, 28, 1151–1172. [Google Scholar] [CrossRef]
- Díez, I.; Muguerza, N.; Santolaria, A.; Ganzedo, U.; Gorostiaga, J.M. Seaweed Assemblage Changes in the Eastern Cantabrian Sea and Their Potential Relationship to Climate Change. Estuar. Coast. Shelf Sci. 2012, 99, 108–120. [Google Scholar] [CrossRef]
- Méndez-Sandín, M.; Fernández, C. Changes in the Structure and Dynamics of Marine Assemblages Dominated by Bifurcaria Bifurcata and Cystoseira Species over Three Decades (1977–2007). Estuar. Coast. Shelf Sci. 2016, 175, 46. [Google Scholar] [CrossRef]
- Smale, D.A.; Vance, T. Climate-Driven Shifts in Species’ Distributions May Exacerbate the Impacts of Storm Disturbances on Northeast Atlantic Kelp Forests. Mar. Freshw. Res 2016, 67, 65–74. [Google Scholar] [CrossRef]
- Earp, H.S.; Smale, D.A.; Almond, P.M.; Catherall, H.J.; Gouraguine, A.; Wilding, C.; Moore, P.J. Temporal Variation in the Structure, Abundance, and Composition of Laminaria Hyperborea Forests and Their Associated Understorey Assemblages over an Intense Storm Season. Mar. Environ. Res. 2024, 200, 106652. [Google Scholar] [CrossRef]
- Castric-Fey, A.; Girard, A.; L’Hardy-Halos, M.T. The Distribution of Undaria Pinnatifida (Phaeophyceae, Laminariales) on the Coast of St. Malo (Brittany, France). Bot. Mar. 1993, 36, 351–358. [Google Scholar] [CrossRef]
- Epstein, G.; Foggo, A.; Smale, D.A. Inconspicuous Impacts: Widespread Marine Invader Causes Subtle but Significant Changes in Native Macroalgal Assemblages. Ecosphere 2019, 10, e02814. [Google Scholar] [CrossRef]
- Franco, J.N.; Wernberg, T.; Bertocci, I.; Duarte, P.; Jacinto, D.; Vasco-Rodrigues, N.; Tuya, F. Herbivory Drives Kelp Recruits into ‘Hiding’ in a Warm Ocean Climate. Mar. Ecol. Prog. Ser. 2015, 536, 1–9. [Google Scholar] [CrossRef]
- Mac Monagail, M.; Cornish, L.; Morrison, L.; Araújo, R.; Critchley, A.T. Sustainable Harvesting of Wild Seaweed Resources. Eur. J. Phycol. 2017, 52, 371–390. [Google Scholar] [CrossRef]
- The_World Bank. Global Seaweed 2023—New and Emerging Markets Report; World Bank: Washington, DC, USA, 2023. [Google Scholar]
- Mouga, T. Seaweed Harvesting and Aquaculture: An Overview of the Past 70 Years. In Proceedings of the 3rd International Conference on Water Energy Food and Sustainability (ICoWEFS 2023); Galvão, J.R.D.C.S., Brito, P., Neves, F.D.S., Almeida, H.D.A., Mourato, S.D.J.M., Nobre, C., Eds.; Springer Proceedings in Earth and Environmental Sciences. Springer Nature: Switzerland, Cham, 2024; pp. 365–375, ISBN 978-3-031-48531-2. [Google Scholar]
- Rotter, A.; Barbier, M.; Bertoni, F.; Bones, A.M.; Cancela, M.L.; Carlsson, J.; Carvalho, M.F.; Cegłowska, M.; Chirivella-Martorell, J.; Conk Dalay, M.; et al. The Essentials of Marine Biotechnology. Front. Mar. Sci. 2021, 8, 629629. [Google Scholar] [CrossRef]
- Venkatesan, J.; Anil, S.; Kim, S.-K.; Shim, M. Marine Fish Proteins and Peptides for Cosmeceuticals: A Review. Mar. Drugs 2017, 15, 143. [Google Scholar] [CrossRef]
- Lopes, C.; Obando, J.M.C.; dos Santos, T.C.; Cavalcanti, D.N.; Teixeira, V.L. Abiotic Factors Modulating Metabolite Composition in Brown Algae (Phaeophyceae): Ecological Impacts and Opportunities for Bioprospecting of Bioactive Compounds. Mar. Drugs 2024, 22, 544. [Google Scholar] [CrossRef]
- Salehi, B.; Sharifi-Rad, J.; Seca, A.M.L.; Pinto, D.C.G.A.; Michalak, I.; Trincone, A.; Mishra, A.P.; Nigam, M.; Zam, W.; Martins, N. Current Trends on Seaweeds: Looking at Chemical Composition, Phytopharmacology, and Cosmetic Applications. Molecules 2019, 24, 4182. [Google Scholar] [CrossRef]
- Burtin, P. Nutricional Value of Seaweeds. Electron. J. Env. Agric. Food Chem. 2003, 2, 498–503. [Google Scholar]
- Fitton, J.H.; Stringer, D.N.; Park, A.Y.; Karpiniec, S.S. Therapies from Fucoidan: New Developments. Mar. Drugs 2019, 17, 571. [Google Scholar] [CrossRef]
- Lordan, S.; Ross, R.P.; Stanton, C. Marine Bioactives as Functional Food Ingredients: Potential to Reduce the Incidence of Chronic Diseases. Mar. Drugs 2011, 9, 1056. [Google Scholar] [CrossRef]
- Garcia-Vaquero, M.; Rajauria, G.; Miranda, M.; Sweeney, T.; Lopez-Alonso, M.; O’Doherty, J. Seasonal Variation of the Proximate Composition, Mineral Content, Fatty Acid Profiles and Other Phytochemical Constituents of Selected Brown Macroalgae. Marine Drugs 2021, 19, 204. [Google Scholar] [CrossRef] [PubMed]
- Jensen, A.; Indergaard, M.; Holt, T.J. Seasonal Variation in the Chemical Composition of Saccorhiza Polyschides (Laminariales, Phaeophyceae). Bot. Mar. 1985, 28, 375. [Google Scholar] [CrossRef]
- González-Ballesteros, N.; Diego-González, L.; Lastra-Valdor, M.; Grimaldi, M.; Cavazza, A.; Bigi, F.; Rodríguez-Argüelles, M.C.; Simón-Vázquez, R. Saccorhiza Polyschides Used to Synthesize Gold and Silver Nanoparticles with Enhanced Antiproliferative and Immunostimulant Activity. Mater. Sci. Eng. C 2021, 123, 111960. [Google Scholar] [CrossRef] [PubMed]
- Nhhala, N.; Latique, S.; Kchikich, A.; Kchikich, A.; Nhiri, M.; García-Angulo, P. Saccorhiza Polyschides Extract as Biostimulant for Reducing Salt Stress Effect in Common Bean Crops. Agronomy 2024, 14, 1626. [Google Scholar] [CrossRef]
- Cadar, E.; Popescu, A.; Dragan, A.-M.-L.; Pesterau, A.-M.; Pascale, C.; Anuta, V.; Prasacu, I.; Velescu, B.S.; Tomescu, C.L.; Bogdan-Andreescu, C.F.; et al. Bioactive Compounds of Marine Algae and Their Potential Health and Nutraceutical Applications: A Review. Mar. Drugs 2025, 23, 152. [Google Scholar] [CrossRef]
- Swanson, A.K.; Druehl, L.D. Induction, Exudation and the UV Protective Role of Kelp Phlorotannins. Aquat. Bot. 2002, 73, 241–253. [Google Scholar] [CrossRef]
- Bruhn, A.; Janicek, T.; Manns, D.; Nielsen, M.M.; Balsby, T.J.S.; Meyer, A.S.; Rasmussen, M.B.; Hou, X.; Saake, B.; Göke, C.; et al. Crude Fucoidan Content in Two North Atlantic Kelp Species, Saccharina Latissima and Laminaria Digitata—Seasonal Variation and Impact of Environmental Factors. J. Appl. Phycol. 2017, 29, 3121–3137. [Google Scholar] [CrossRef]
- Gil-Martín, E.; Forbes-Hernández, T.; Romero, A.; Cianciosi, D.; Giampieri, F.; Battino, M. Influence of the Extraction Method on the Recovery of Bioactive Phenolic Compounds from Food Industry By-Products. Food Chem. 2022, 378, 131918. [Google Scholar] [CrossRef]
- Lopes, G.; Barbosa, M.; Andrade, P.B.; Valentão, P. Phlorotannins from Fucales: Potential to Control Hyperglycemia and Diabetes-Related Vascular Complications. J. Appl. Phycol. 2019, 31, 3143–3152. [Google Scholar] [CrossRef]
- Catarino, M.D.; Amarante, S.J.; Mateus, N.; Silva, A.M.S.; Cardoso, S.M. Brown Algae Phlorotannins: A Marine Alternative to Break the Oxidative Stress, Inflammation and Cancer Network. Foods 2021, 10, 1478. [Google Scholar] [CrossRef]
- Heffernan, N.; Brunton, N.; FitzGerald, R.; Smyth, T. Profiling of the Molecular Weight and Structural Isomer Abundance of Macroalgae-Derived Phlorotannins. Mar. Drugs 2015, 13, 509–528. [Google Scholar] [CrossRef] [PubMed]
- Ferreres, F.; Lopes, G.; Gil-Izquierdo, A.; Andrade, P.; Sousa, C.; Mouga, T.; Valentão, P. Phlorotannin Extracts from Fucales Characterized by HPLC-DAD-ESI-MSn: Approaches to Hyaluronidase Inhibitory Capacity and Antioxidant Properties. Mar. Drugs 2012, 10, 2766–2781. [Google Scholar] [CrossRef]
- Cui, C.; Lu, J.; Sun-Waterhouse, D.; Mu, L.; Sun, W.; Zhao, M.; Zhao, H. Polysaccharides from Laminaria Japonica: Structural Characteristics and Antioxidant Activity. LWT 2016, 73, 602–608. [Google Scholar] [CrossRef]
- Draget, K.I.; Smidsrd, O.; Skjåk-Bræk, G. Alginates from Algae. In Polysaccharides and Polyamides in the Food Industry: Properties, Production, and Patents; Phillips, G.O., Williams, P.A., Eds.; Wiley-VCH: Weinheim, Germany, 2005; pp. 1–30. [Google Scholar]
- Cong, Q.; Xiao, F.; Liao, W.; Dong, Q.; Ding, K. Structure and Biological Activities of an Alginate from Sargassum Fusiforme, and Its Sulfated Derivative. Int. J. Biol. Macromol. 2014, 69, 252–259. [Google Scholar] [CrossRef] [PubMed]
- Carrasqueira, J.; Bernardino, S.; Bernardino, R.; Afonso, C. Marine-Derived Polysaccharides and Their Potential Health Benefits in Nutraceutical Applications. Mar. Drugs 2025, 23, 60. [Google Scholar] [CrossRef]
- Maeda, H.; Hosokawa, M.; Sashima, T.; Funayama, K.; Miyashita, K. Fucoxanthin from Edible Seaweed, Undaria Pinnatifida, Shows Antiobesity Effect through UCP1 Expression in White Adipose Tissues. Biochem. Biophys. Res. Commun. 2005, 332, 392–397. [Google Scholar] [CrossRef]
- Peng, J.; Yuan, J.-P.; Wu, C.-F.; Wang, J.-H. Fucoxanthin, a Marine Carotenoid Present in Brown Seaweeds and Diatoms: Metabolism and Bioactivities Relevant to Human Health. Mar. Drugs 2011, 9, 1806–1828. [Google Scholar] [CrossRef]
- Holdt, S.L.; Kraan, S. Bioactive Compounds in Seaweed: Functional Food Applications and Legislation. J. Appl. Phycol. 2011, 23, 543–597. [Google Scholar] [CrossRef]
- Ferreira, H.S.; Mouga, T.; Lourenço, S.; Matias, M.H.; Freitas, M.V.; Afonso, C.N. Assessing High-Value Bioproducts from Seaweed Biomass: A Comparative Study of Wild, Cultivated and Residual Pulp Sources. Appl. Sci. 2025, 15, 5745. [Google Scholar] [CrossRef]
- Abdul, Q.A.; Choi, R.J.; Jung, H.A.; Choi, J.S. Health Benefit of Fucosterol from Marine Algae: A Review. J. Sci. Food Agric. 2016, 96, 1856–1866. [Google Scholar] [CrossRef]
- Choi, J.S.; Han, Y.R.; Byeon, J.S.; Choung, S.-Y.; Sohn, H.S.; Jung, H.A. Protective Effect of Fucosterol Isolated from the Edible Brown Algae, Ecklonia Stolonifera and Eisenia Bicyclis, on Tert -Butyl Hydroperoxide- and Tacrine-Induced HepG2 Cell Injury. J. Pharm. Pharmacol. 2015, 67, 1170–1178. [Google Scholar] [CrossRef]
- Blunt, J.W.; Carroll, A.R.; Copp, B.R.; Davis, R.A.; Keyzers, R.A.; Michèle, M.; Prinsep, R. Marine Natural Products. Nat. Prod. Rep. 2018, 35, 8. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, S.; Zhang, W.; Smid, S.D. Phlorotannins: A Review on Biosynthesis, Chemistry and Bioactivity. Food Biosci. 2021, 39, 100832. [Google Scholar] [CrossRef]
- Huebbe, P.; Nikolai, S.; Schloesser, A.; Herebian, D.; Campbell, G.; Glüer, C.-C.; Zeyner, A.; Demetrowitsch, T.; Schwarz, K.; Metges, C.C.; et al. An Extract from the Atlantic Brown Algae Saccorhiza Polyschides Counteracts Diet-Induced Obesity in Mice via a Gut Related Multi-Factorial Mechanisms. Oncotarget 2017, 8, 73501–73515. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-K.; Van Ta, Q. Potential Beneficial Effects of Marine Algal Sterols on Human Health. Adv. Food Nutr. Res. 2011, 64, 191–198. [Google Scholar] [CrossRef]
- Pérez, M.; Falqué, E.; Domínguez, H. Antimicrobial Action of Compounds from Marine Seaweed. Mar. Drugs 2016, 14, 52. [Google Scholar] [CrossRef]
- Fitton, J.H. Therapies from Fucoidan: Multifunctional Marine Polymers. Mar. Drugs 2011, 9, 1731–1760. [Google Scholar] [CrossRef]
- Chater, P.I.; Wilcox, M.D.; Houghton, D.; Pearson, J.P. The Role of Seaweed Bioactives in the Control of Digestion: Implications for Obesity Treatments. Food Funct. 2015, 6, 3420–3427. [Google Scholar] [CrossRef]
- Rioux, L.-E.; Turgeon, S.L.; Beaulieu, M. Characterization of Polysaccharides Extracted from Brown Seaweeds. Carbohydr. Polym. 2007, 69, 530–537. [Google Scholar] [CrossRef]
- Chen, J.; Yang, J.; Du, H.; Aslam, M.; Wang, W.; Chen, W.; Li, T.; Liu, Z.; Liu, X. Laminarin, a Major Polysaccharide in Stramenopiles. Mar. Drugs 2021, 19, 576. [Google Scholar] [CrossRef] [PubMed]
- Kaidi, S.; Bentiss, F.; Jama, C.; Khaya, K.; Belattmania, Z.; Reani, A.; Sabour, B. Isolation and Structural Characterization of Alginates from the Kelp Species Laminaria Ochroleuca and Saccorhiza Polyschides from the Atlantic Coast of Morocco. Colloids Interfaces 2022, 6, 51. [Google Scholar] [CrossRef]
- McHugh, D.J. A Guide to the Seaweed Industry; Food and Agriculture Organization of the United Nations: Rome, Italy, 2003; ISBN 92-5-104958-0. [Google Scholar]
- Kelly, B.J.; Brown, M.T. Variations in the Alginate Content and Composition of Durvillaea Antarctica and D. Willana from Southern New Zealand. J. Appl. Phycol. 2000, 12, 317–324. [Google Scholar] [CrossRef]
- Lee, K.Y.; Mooney, D.J. Alginate: Properties and Biomedical Applications. Prog. Polym. Sci. 2012, 37, 106–126. [Google Scholar] [CrossRef]
- Kenny, H.M.; Reynolds, C.M.; Garcia-Vaquero, M.; Feeney, E.L. Keeping an Eye on Alginate: Innovations and Opportunities for Sustainable Production and Diverse Applications. Carbohydr. Polym. 2025, 366, 123902. [Google Scholar] [CrossRef] [PubMed]
- Maeda, H.; Tsukui, T.; Sashima, T.; Hosokawa, M.; Miyashita, K. Seaweed Carotenoid, Fucoxanthin, as a Multi-Functional Nutrient. Asia Pac. J. Clin. Nutr. 2008, 17, 196–199. [Google Scholar] [CrossRef]
- Terasaki, M.; Kubota, A.; Kojima, H.; Maeda, H.; Miyashita, K.; Kawagoe, C.; Mutoh, M.; Tanaka, T. Fucoxanthin and Colorectal Cancer Prevention. Cancers 2021, 13, 2379. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, A.E.; Bergman, K.; Gomez Barrio, L.P.; Cabral, E.M.; Tiwari, B.K. Life Cycle Assessment of a Seaweed-Based Biorefinery Concept for Production of Food, Materials, and Energy. Algal Res. 2022, 65, 102725. [Google Scholar] [CrossRef]
- Pereira, H.; Barreira, L.; Figueiredo, F.; Custódio, L.; Vizetto-Duarte, C.; Polo, C.; Rešek, E.; Engelen, A.; Varela, J. Polyunsaturated Fatty Acids of Marine Macroalgae: Potential for Nutritional and Pharmaceutical Applications. Mar. Drugs 2012, 10, 1920–1935. [Google Scholar] [CrossRef]
- Cardoso, S.S.M.; Carvalho, L.L.G.L.; Silva, P.P.J.; Rodrigues, M.S.M.; Pereira, O.; Pereira, L. Bioproducts From Seaweeds: A Review With Special Focus On The Iberian Peninsula. Curr. Org. Chem. 2014, 18, 896–917. [Google Scholar] [CrossRef]
- Meinita, M.D.N.; Harwanto, D.; Choi, J.S. A Concise Review of the Bioactivity and Pharmacological Properties of the Genus Codium (Bryopsidales, Chlorophyta). J. Appl. Phycol. 2022, 34, 2827–2845. [Google Scholar] [CrossRef]
- Budzałek, G.; Śliwińska-Wilczewska, S.; Wiśniewska, K.; Wochna, A.; Bubak, I.; Latała, A.; Wiktor, J.M. Macroalgal Defense against Competitors and Herbivores. Int. J. Mol. Sci. 2021, 22, 7865. [Google Scholar] [CrossRef]
- Meirelles, B.; Pagels, F.; Sousa-Pinto, I.; Guedes, A.C. Biorefinery as a Tool to Obtain Multiple Seaweed Extracts for Cosmetic Applications. J. Appl. Phycol. 2023, 35, 3041–3055. [Google Scholar] [CrossRef]
- Bahammou, N.; Raja, R.; Carvalho, I.S.; Cherifi, K.; Bouamama, H.; Cherifi, O. Assessment of the Antifungal and Antioxidant Activities of the Seaweeds Collected from the Coast of Atlantic Ocean, Morocco. Moroc. J. Chem. 2021, 9, 639–648. [Google Scholar] [CrossRef]
- Soares, C.; Švarc-Gajić, J.; Oliva-Teles, M.T.; Pinto, E.; Nastić, N.; Savić, S.; Almeida, A.; Delerue-Matos, C. Mineral Composition of Subcritical Water Extracts of Saccorhiza Polyschides, a Brown Seaweed Used as Fertilizer in the North of Portugal. J. Mar. Sci. Eng. 2020, 8, 244. [Google Scholar] [CrossRef]
Species | Life History | Productivity (kg WW m−2 yr−1) | References | |
---|---|---|---|---|
Wild | Cultivated | |||
Saccorhiza polyschides | Annual | 3.9–13 | 12–15 | [5,64] |
Laminaria hyperborea | Perennial | 2.0–3.0 | 8–12 | [32,65] |
Saccharina latissima | Perennial | 1.5–2.5 | 10–16 | [31,66,67] |
Undaria pinnatifida | Annual | 2.5–3.0 | 14–18 | [31,68] |
Compound Class | Main Example(s) | Biological Activities | Potential Applications | References |
---|---|---|---|---|
Polyphenols | Phlorotannins | Antioxidant, anti-inflammatory, antimicrobial | Anti-ageing and skin cosmetics; nutraceuticals; functional foods | [112,113,114,115] |
Sulphated polysaccharides | Fucoidans, laminarins | Anticoagulant, antiviral, immunomodulatory, antioxidant | Pharmaceutical agents; nutraceuticals; functional foods | [102,116] |
Structural polysaccharides | Alginate | Gelling agent, stabiliser | Food industry; biomedical (wound dressings, drug delivery); tissue engineering | [117,118,119] |
Carotenoids | Fucoxanthin | Antioxidant, anti-obesity, anti-tumour | Nutraceuticals; anti-ageing skincare; cancer-preventive supplements | [120,121] |
Fatty acids | EPA, DHA | Anti-inflammatory, cardioprotective, nutraceutical | Functional foods; dietary supplements; dermatological formulations | [122,123] |
Sterols | Fucosterol | Antioxidant, anti-inflammatory, neuroprotective | Nutraceuticals for brain health; anti-inflammatory supplements | [124,125] |
Terpenoids | Sesquiterpenes, diterpenes | Antibacterial, antifungal, cytotoxic | Pharmaceutical leads (antimicrobial, anticancer); agricultural biocontrol | [126] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Afonso, C.; Mouga, T. From Form to Function: The Anatomy, Ecology, and Biotechnological Promise of the False-Kelp Saccorhiza polyschides. J. Mar. Sci. Eng. 2025, 13, 1694. https://doi.org/10.3390/jmse13091694
Afonso C, Mouga T. From Form to Function: The Anatomy, Ecology, and Biotechnological Promise of the False-Kelp Saccorhiza polyschides. Journal of Marine Science and Engineering. 2025; 13(9):1694. https://doi.org/10.3390/jmse13091694
Chicago/Turabian StyleAfonso, Clélia, and Teresa Mouga. 2025. "From Form to Function: The Anatomy, Ecology, and Biotechnological Promise of the False-Kelp Saccorhiza polyschides" Journal of Marine Science and Engineering 13, no. 9: 1694. https://doi.org/10.3390/jmse13091694
APA StyleAfonso, C., & Mouga, T. (2025). From Form to Function: The Anatomy, Ecology, and Biotechnological Promise of the False-Kelp Saccorhiza polyschides. Journal of Marine Science and Engineering, 13(9), 1694. https://doi.org/10.3390/jmse13091694