Impact of Non-Gaussian Winds on Blade Loading and Fatigue of Floating Offshore Wind Turbines
Abstract
1. Introduction
2. Methodology
2.1. Non-Gaussian Character of Wind Thrust
2.2. Simulation of Short-Term Wind Process
2.3. Numerical Simulation of FOWT
2.4. Fatigue Damage of the Blades
2.5. Fatigue Life Estimation of the Blade
3. Result
3.1. Loading Analysis of Blade
3.2. Fatigue Analysis of Blade
3.2.1. Fatigue Analysis Under Gaussian Winds
3.2.2. Fatigue Analysis Under Non-Gaussian DLCs
3.2.3. Summary of Fatigue Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Manwell, J.F.; McGowan, J.G.; Rogers, A.L. Wind Energy Explained: Theory, Design and Application; John Wiley & Sons: Hoboken, NJ, USA, 2010. [Google Scholar]
- Vieira, M.; Snyder, B.; Henriques, E.; Reis, L. European offshore wind capital cost trends up to 2020. Energy Policy 2019, 129, 1364–1371. [Google Scholar] [CrossRef]
- Van Bussel, G.J.W.; Zaaijer, M.B. Reliability, availability and maintenance aspects of large-scale offshore wind farms, a concepts study. In Proceedings of the MAREC, Newcastle, UK, 27–28 March 2001; Volume 2001. [Google Scholar]
- Kong, C.; Kim, T.; Han, D.; Sugiyama, Y. Investigation of fatigue life for a medium scale composite wind turbine blade. Int. J. Fatigue 2006, 28, 1382–1388. [Google Scholar] [CrossRef]
- Shokrieh, M.M.; Rafiee, R. Simulation of fatigue failure in a full composite wind turbine blade. Compos. Struct. 2006, 74, 332–342. [Google Scholar] [CrossRef]
- Hu, W.; Choi, K.; Gaul, N.; Hardee, E. Reliability analysis of wind turbine blades for fatigue life under wind load uncertainty. In Proceedings of the 12th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference and 14th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Indianapolis, Indiana, 17–19 September 2012; p. 5601. [Google Scholar]
- Song, Y.P.; Sun, T.; Zhang, Z.L. Fatigue reliability analysis of floating offshore wind turbines considering the uncertainty due to finite sampling of load conditions. Renew. Energy 2023, 212, 570–588. [Google Scholar] [CrossRef]
- Zhao, G.H.; Dong, S.; Zhao, Y.L. Fatigue reliability analysis of floating offshore wind turbines under the random environmental conditions based on surrogate model. Ocean Eng. 2024, 314, 119686. [Google Scholar] [CrossRef]
- Ding, J.; Chen, H.; Liu, X.; Rashed, Y.F.; Fu, Z. Fatigue reliability analysis of offshore wind turbines under combined wind–wave excitation via direct probability integral method. J. Mar. Sci. Eng. 2025, 13, 506. [Google Scholar] [CrossRef]
- Dai, S.; Sweetman, B. Physics-based recalibration method of cup anemometers. Flow Meas. Instrum. 2023, 91, 102343. [Google Scholar] [CrossRef]
- Dai, S.; Sweetman, B. Influence of Non-Gaussian Winds on the Performance of Floating Offshore Wind Turbines. In Proceedings of the ISOPE International Ocean and Polar Engineering Conference, Shanghai, China, 5–10 June 2022. [Google Scholar]
- Mücke, T.; Kleinhans, D.; Peinke, J. Atmospheric turbulence and its influence on the alternating loads on wind turbines. Wind Energy 2011, 14, 301–316. [Google Scholar] [CrossRef]
- Schottler, J.; Reinke, N.; Hölling, A.; Whale, J.; Peinke, J.; Hölling, M. On the impact of non-Gaussian wind statistics on wind turbines–an experimental approach. Wind Energy Sci. 2017, 2, 1–13. [Google Scholar] [CrossRef]
- Gong, K.; Chen, X. Influence of non-Gaussian wind characteristics on wind turbine extreme response. Eng. Struct. 2014, 59, 727–744. [Google Scholar] [CrossRef]
- Sweetman, B.; Choi, M. The modal distribution method for statistical analysis of measured structural response. Probabilistic Eng. Mech. 2010, 25, 218–227. [Google Scholar] [CrossRef]
- Zhao, N.; Li, X.; Peng, L.; Xu, Z.; Chen, X.; Wang, X. Influence of Phases of Coherence Functions on the Wind Field Simulation Using Spectral Representation Method. Appl. Sci. 2022, 12, 8190. [Google Scholar] [CrossRef]
- Denoël, V. Moment-based Hermite model for asymptotically small non-Gaussianity. Appl. Math. Model. 2025, 144, 116061. [Google Scholar] [CrossRef]
- Tang, S.; Sweetman, B.; Gao, J. Nonlinear effects and dynamic coupling of floating offshore wind turbines using geometrically-exact blades and momentum-based methods. Ocean Eng. 2021, 229, 108866. [Google Scholar] [CrossRef]
- Creech, A.; Früh, W.G.; Maguire, A.E. Simulations of an offshore wind farm using large-eddy simulation and a torque-controlled actuator disc model. Surv. Geophys. 2015, 36, 759–774. [Google Scholar]
- Dai, S.; Zheng, Y.; Song, Y.; Yang, W.; Shi, Y.; Wang, H.; Wen, J.F. Observation and Analysis of Sea Breeze Characteristics Over the Coastal Region of Shantou, China. In Proceedings of the ISOPE International Ocean and Polar Engineering Conference, Goyang, Republic of Korea, 1–6 June 2025. [Google Scholar]
- Wu, K.L.; Porté-Agel, F. Flow adjustment inside and around large finite-size wind farms. Energies 2017, 10, 2164. [Google Scholar] [CrossRef]
- Gambier, A. Pitch control of three-bladed large wind energy converters—A review. Energies 2021, 14, 8083. [Google Scholar] [CrossRef]
- Samani, A.E.; De Kooning, J.D.; Kayedpour, N.; Singh, N.; Vandevelde, L. The impact of pitch-to-stall and pitch-to-feather control on the structural loads and the pitch mechanism of a wind turbine. Energies 2020, 13, 4503. [Google Scholar] [CrossRef]
- Ma, X.; Xu, F. Investigation on the sampling distributions of non-Gaussian wind pressure skewness and kurtosis. Mech. Syst. Signal Process. 2024, 220, 111610. [Google Scholar] [CrossRef]
- Jonkman, B.J.; Buhl, M.L., Jr. TurbSim User’s Guide for Version 1.06; National Renewable Energy Laboratory: Golden, CO, USA, 2012. [Google Scholar]
- Chian, C.Y.; Zhao, Y.Q.; Lin, T.Y.; Nelson, B.; Huang, H.H. Comparative Study of Time-Domain Fatigue Assessments for an Offshore Wind Turbine Jacket Substructure by Using Conventional Grid-Based and Monte Carlo Simulation Approaches. Energies 2018, 11, 3112. [Google Scholar] [CrossRef]
- Hasselmann, K.; Barnett, T.P.; Bouws, E.; Carlson, H.; Cartwright, D.E.; Enke, K.; Ewing, J.A.; Gienapp, A.; Hasselmann, D.E.; Kruseman, P.; et al. Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). Ergaenzungsheft Zur Dtsch. Hydrogr. Z. Reihe A 1973. [Google Scholar]
- Holthuijsen, L.H. Waves in Oceanic and Coastal Waters; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Jonkman, J. The new modularization framework for the FAST wind turbine CAE tool. In Proceedings of the 51st AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Grapevine, TX, USA, 7–10 January 2013; p. 202. [Google Scholar]
- Ma, R.; Siaw, F.L.; Thio, T.H.G. A Hybrid Fuzzy LQR-PI Blade Pitch Control Scheme for Spar-Type Floating Offshore Wind Turbines. J. Mar. Sci. Eng. 2024, 12, 1306. [Google Scholar] [CrossRef]
- Jonkman, J.; Butterfield, S.; Musial, W.; Scott, G. Definition of a 5-MW Reference Wind Turbine for Offshore System Development; National Renewable Energy Lab.(NREL): Golden, CO, USA, 2009. [Google Scholar]
- Matsuishi, M.; Endo, T. Fatigue of Metals Subjected to Varying Stress. Jpn. Soc. Mech. Eng. 1968, 68, 37–40. [Google Scholar]
- Nijssen, R.P.L. Fatigue life prediction and strength degradation of wind turbine rotor blade composites. In Contractor Report SAND2006-7810P; Sandia National Laboratories: Albuquerque, NM, USA, 2006. [Google Scholar]
- Fossum, P.K.; Froyd, L.; Dahlhaug, O.G. Design and fatigue performance of large utility-scale wind turbine blades. J. Sol. Energy Eng. 2013, 135, 031019. [Google Scholar] [CrossRef]
- Shu, Z.R.; Li, Q.S.; Chan, P.W. Statistical analysis of wind characteristics and wind energy potential in Hong Kong. Energy Convers. Manag. 2015, 101, 644–657. [Google Scholar] [CrossRef]
- Burton, T.; Sharpe, D.; Jenkins, N. Handbook of Wind Energy; John Wiley & Sons: Hoboken, NJ, USA, 2001. [Google Scholar]
- Hsu, S.A.; Meindl, E.A.; Gilhousen, D.B. Determining the power-law wind-profile exponent under near-neutral stability conditions at sea. J. Appl. Meteorol. 1994, 33, 757–765. [Google Scholar] [CrossRef]
- Miner, M.A. Cumulative damage in fatigue. J. Appl. Mech. 1945, 12, 149–164. [Google Scholar] [CrossRef]
Parameters | Value |
---|---|
Rotor, Hub Diameter | 126 m, 3 m |
Hub Height | 90 m |
Cut-in, Rated, Cut-out wind speed | 3 m/s, 11.4 m/s, 25 m/s |
Cut-in, Rated rotor speed | 6.9 rpm, 12.1 rpm |
Generator Electrical Efficiency | 94.4% |
Rotor Mass | 110,000 kg |
Nacelle Mass | 240,000 kg |
Tower Mass | 347,460 kg |
Initial CM | 85.6 m |
Elevation to Tower Top | 87.6 m |
Platform Diameter above Taper | 6.5 m |
Platform Diameter below Taper | 9.4 m |
Platform Draft | 120 m |
Parameters | ||
---|---|---|
Case 1 | 10.24 | 2.00 |
Case 2 | 11.40 | 2.31 |
Wind Speed (m/s) | 0–3 | 4–5 | 6–7 | 8–9 | 10–11 | 12–13 | |
---|---|---|---|---|---|---|---|
Case 1 | 0.082 | 0.149 | 0.167 | 0.158 | 0.132 | 0.099 | |
Case 2 | 0.045 | 0.118 | 0.154 | 0.166 | 0.153 | 0.124 | |
Wind Speed (m/s) | 14–15 | 16–17 | 18–19 | 20–21 | 22–23 | 24–25 | |
Case 1 | 0.067 | 0.042 | 0.024 | 0.012 | 0.005 | 0.003 | |
Case 2 | 0.089 | 0.055 | 0.031 | 0.015 | 0.007 | 0.003 |
Wind Condition | Wave | Wind Thrust | Blade Root Bending Moment (Flapwise) | ||||||
---|---|---|---|---|---|---|---|---|---|
Mean (m/s) | Std (m/s) | Skewness | Kurtosis | Significant Height (m) | Peak Period (s) | Mean ( N) | Std ( N) | Mean ( Nm) | Std ( Nm) |
10 | 2.096 | 0 | 1.5 | 1.53 | 6.15 | 4.76 | 1.60 | 7.63 | 2.41 |
10 | 2.096 | 0 | 2.0 | 1.53 | 6.15 | 4.77 | 1.61 | 7.64 | 2.42 |
10 | 2.096 | 0 | 2.5 | 1.53 | 6.15 | 4.78 | 1.61 | 7.65 | 2.42 |
10 | 2.096 | 0 | 3.0 (Gaussian) | 1.53 | 6.15 | 4.79 | 1.61 | 7.67 | 2.42 |
10 | 2.096 | 0 | 3.5 | 1.53 | 6.15 | 4.80 | 1.62 | 7.69 | 2.43 |
10 | 2.096 | 0 | 4.0 | 1.53 | 6.15 | 4.81 | 1.63 | 7.71 | 2.44 |
10 | 2.096 | 0 | 4.5 | 1.53 | 6.15 | 4.83 | 1.64 | 7.74 | 2.44 |
Wind Condition | Wave | Wind Thrust | Blade Root Bending Moment (Flapwise) | ||||||
---|---|---|---|---|---|---|---|---|---|
Mean (m/s) | Std (m/s) | Skewness | Kurtosis | Significant Height (m) | Peak Period (s) | Mean( N) | Std N) | Mean( Nm) | Std( Nm) |
10 | 1.572 | 0 | 1.5 | 1.53 | 6.15 | 5.09 | 1.31 | 8.13 | 1.95 |
10 | 1.572 | 0 | 2.0 | 1.53 | 6.15 | 5.10 | 1.31 | 8.14 | 1.95 |
10 | 1.572 | 0 | 2.5 | 1.53 | 6.15 | 5.11 | 1.32 | 8.15 | 1.97 |
10 | 1.572 | 0 | 3.0 (Gaussian) | 1.53 | 6.15 | 5.11 | 1.33 | 8.15 | 1.98 |
10 | 1.572 | 0 | 3.5 | 1.53 | 6.15 | 5.11 | 1.33 | 8.15 | 1.99 |
10 | 1.572 | 0 | 4.0 | 1.53 | 6.15 | 5.11 | 1.33 | 8.16 | 1.99 |
10 | 1.572 | 0 | 4.5 | 1.53 | 6.15 | 5.12 | 1.33 | 8.17 | 1.99 |
Wind | Wave | |||||
---|---|---|---|---|---|---|
DLC/ Gaussian | Mean (m/s) | Std (m/s) | Skewness | Kurtosis | Significant Height (m) | Peak Period (s) |
1.1 | 4 | 1.032 | 0 | 3 | 0.24 | 2.46 |
1.2 | 6 | 1.212 | 0 | 3 | 0.55 | 3.69 |
1.3 | 8 | 1.392 | 0 | 3 | 0.98 | 4.92 |
1.4 | 10 | 1.572 | 0 | 3 | 1.53 | 6.15 |
1.5 | 12 | 1.752 | 0 | 3 | 2.20 | 7.38 |
1.6 | 14 | 1.932 | 0 | 3 | 3.00 | 8.62 |
1.7 | 16 | 2.112 | 0 | 3 | 3.91 | 9.85 |
1.8 | 18 | 2.292 | 0 | 3 | 4.95 | 11.08 |
1.9 | 20 | 2.472 | 0 | 3 | 6.12 | 12.31 |
Wind | Wave | |||||
---|---|---|---|---|---|---|
DLC/ Gaussian | Mean (m/s) | Std (m/s) | Skewness | Kurtosis | Significant Height (m) | Peak Period (s) |
1.1 | 4 | 1.032 | 0 | 4.5 | 0.24 | 2.46 |
1.2 | 6 | 1.212 | 0 | 4.5 | 0.55 | 3.69 |
1.3 | 8 | 1.392 | 0 | 4.5 | 0.98 | 4.92 |
1.4 | 10 | 1.572 | 0 | 4.5 | 1.53 | 6.15 |
1.5 | 12 | 1.752 | 0 | 4.5 | 2.20 | 7.38 |
1.6 | 14 | 1.932 | 0 | 4.5 | 3.00 | 8.62 |
1.7 | 16 | 2.112 | 0 | 4.5 | 3.91 | 9.85 |
1.8 | 18 | 2.292 | 0 | 4.5 | 4.95 | 11.08 |
1.9 | 20 | 2.472 | 0 | 4.5 | 6.12 | 12.31 |
Wind Speed (m/s) | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20 | |
---|---|---|---|---|---|---|---|---|---|---|
(10−4) | Case 1 | 0 | 0 | 81 | 451 | 439 | 127 | 13 | 9 | 1 |
Case 2 | 0 | 0 | 86 | 523 | 550 | 168 | 17 | 12 | 1 |
Wind Speed (m/s) | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20 | |
---|---|---|---|---|---|---|---|---|---|---|
(10−4) | Case 1 | 0 | 0 | 151 | 641 | 438 | 124 | 17 | 8 | 1 |
Case 2 | 0 | 0 | 158 | 743 | 549 | 164 | 22 | 11 | 1 |
Case 1 | Case 2 | Difference | Percentage Difference | |
---|---|---|---|---|
Gaussian Model | 8.9 | 7.4 | 1.5 | 16.9% |
Non-Gaussian Model | 7.2 | 6.1 | 1.1 | 15.3% |
Difference | 1.7 | 1.3 | ||
Percentage Difference | 19.1% | 17.6% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, S.; Sweetman, B.; Tang, S. Impact of Non-Gaussian Winds on Blade Loading and Fatigue of Floating Offshore Wind Turbines. J. Mar. Sci. Eng. 2025, 13, 1686. https://doi.org/10.3390/jmse13091686
Dai S, Sweetman B, Tang S. Impact of Non-Gaussian Winds on Blade Loading and Fatigue of Floating Offshore Wind Turbines. Journal of Marine Science and Engineering. 2025; 13(9):1686. https://doi.org/10.3390/jmse13091686
Chicago/Turabian StyleDai, Shu, Bert Sweetman, and Shanran Tang. 2025. "Impact of Non-Gaussian Winds on Blade Loading and Fatigue of Floating Offshore Wind Turbines" Journal of Marine Science and Engineering 13, no. 9: 1686. https://doi.org/10.3390/jmse13091686
APA StyleDai, S., Sweetman, B., & Tang, S. (2025). Impact of Non-Gaussian Winds on Blade Loading and Fatigue of Floating Offshore Wind Turbines. Journal of Marine Science and Engineering, 13(9), 1686. https://doi.org/10.3390/jmse13091686