Flow-Induced Vibrations of a Square Cylinder in the Combined Steady and Oscillatory Flow
Abstract
1. Introduction
2. Mathematical Formulation
2.1. Computational Model
2.2. Flow Model
2.3. Structural Model
2.4. Mesh Tests
3. Results and Discussion
3.1. Vibration Characteristics
3.2. Hydrodynamic Coefficients
3.3. XY Trajectories
3.4. Vorticity Contours
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hu, T.; Ren, H.; Shen, J.; Niu, Z.; Zhang, M.; Xu, Y.; Sun, T. Experimental investigation on hydrodynamic forces of semi-submerged cylinders in combined steady flow and oscillatory flow. Ocean Eng. 2023, 268, 113612. [Google Scholar] [CrossRef]
- Zhao, M.; Kaja, K.; Xiang, Y.; Yan, G. Vortex-induced vibration (VIV) of a circular cylinder in combined steady and oscillatory flow. Ocean Eng. 2013, 73, 83–95. [Google Scholar] [CrossRef]
- Gabbai, R.D.; Benaroya, H. An overview of modeling and experiments of vortex-induced vibration of circular cylinders. J. Sound Vib. 2005, 282, 575–616. [Google Scholar] [CrossRef]
- Williamson, C.H.; Govardhan, R. Vortex-induced vibrations. Annu. Rev. Fluid Mech. 2004, 36, 413–455. [Google Scholar] [CrossRef]
- Sarpkaya, T. A critical review of the intrinsic nature of vortex-induced vibrations. J. Fluids Struct. 2004, 19, 389–447. [Google Scholar] [CrossRef]
- Stappenbelt, B.; Lalji, F.; Tan, G. Low mass ratio vortex-induced motion. In Proceedings of the 16th Australasian Fluid Mechanics Conference, Gold Coast, Australia, 3–7 December 2007; pp. 1491–1497. [Google Scholar]
- Stappenbelt, B.; Lalji, F. Vortex-induced vibration super-upper response branch boundaries. Int. J. Offshore Polar Eng. 2008, 18, 99–105. [Google Scholar]
- Blevins, R.D.; Coughran, C.S. Experimental Investigation of Vortex-Induced Vibration in One and Two Dimensions With Variable Mass, Damping, and Reynolds Number. J. Fluids Eng. 2009, 131, 101202. [Google Scholar] [CrossRef]
- Franzini, G.R.; Fujarra, A.L.C.; Meneghini, J.R.; Korkischko, I.; Franciss, R. Experimental investigation of vortex-induced vibration on rigid, smooth and inclined cylinders. J. Fluids Struct. 2009, 25, 742–750. [Google Scholar] [CrossRef]
- Liangjie, M.; Qingyou, L.; Shouwei, Z. Experimental study of the vortex-induced vibration of drilling risers under the shear flow with the same shear parameter at the different Reynolds numbers. PLoS ONE 2014, 9, e104806. [Google Scholar] [CrossRef]
- Zhao, M.; Cheng, L.; An, H. Numerical investigation of vortex-induced vibration of a circular cylinder in transverse direction in oscillatory flow. Ocean Eng. 2012, 41, 39–52. [Google Scholar] [CrossRef]
- Nemes, A.; Zhao, J.; Jacono, D.L.; Sheridan, J. The interaction between flow-induced vibration mechanisms of a square cylinder with varying angles of attack. J. Fluid Mech. 2012, 710, 102–130. [Google Scholar] [CrossRef]
- Yoon, D.H.; Yang, K.S.; Choi, C.B. Flow past a square cylinder with an angle of incidence. Phys. Fluids 2010, 22, 043603. [Google Scholar] [CrossRef]
- Yen, S.C.; Yang, C.W. Flow patterns and vortex shedding behavior behind a square cylinder. J. Wind Eng. Ind. Aerodyn. 2011, 99, 868–878. [Google Scholar] [CrossRef]
- Dutta, S.; Panigrahi, P.K.; Muralidhar, K. Experimental investigation of flow past a square cylinder at an angle of incidence. J. Eng. Mech. 2008, 134, 788–803. [Google Scholar] [CrossRef]
- Zhao, J.; Leontini, J.S.; Jacono, D.L.; Sheridan, J. Fluid–structure interaction of a square cylinder at different angles of attack. J. Fluid Mech. 2014, 747, 688–721. [Google Scholar] [CrossRef]
- Cui, Z.; Zhao, M.; Teng, B.; Cheng, L. Two-dimensional numerical study of vortex-induced vibration and galloping of square and rectangular cylinders in steady flow. Ocean Eng. 2015, 106, 189–206. [Google Scholar] [CrossRef]
- Khan, M.A.; Masood, S.; Anwer, S.F.; Khan, S.A.; Arif, M.R. Vortex induced vibration for mixed convective flow past a square cylinder. Int. J. Heat Mass Transf. 2023, 202, 123722. [Google Scholar] [CrossRef]
- Ji, C.; Zhang, D.; Yao, Y.; Li, W.; Zhang, S. Flow-induced vibration of a square cylinder in low-Re flows: Excitation mechanisms at different mass ratios. Ocean Eng. 2024, 294, 116723. [Google Scholar] [CrossRef]
- Sen, S.; Mittal, S.; Biswas, G. Flow past a square cylinder at low Reynolds numbers. Int. J. Numer. Methods Fluids 2011, 67, 1160–1174. [Google Scholar] [CrossRef]
- Sohankar, A.; Norberg, C.; Davidson, L. Simulation of three-dimensional flow around a square cylinder at moderate Reynolds numbers. Phys. Fluids 1999, 11, 288–306. [Google Scholar] [CrossRef]
- Wu, J.; Liu, Y.; Zhang, D. Numerical simulation of flow around a transversely oscillating square cylinder at Re = 22000. Ocean Eng. 2024, 313, 119538. [Google Scholar] [CrossRef]
- Bai, H.; Alam, M.M. Dependence of square cylinder wake on Reynolds number. Phys. Fluids 2018, 30, 015102. [Google Scholar] [CrossRef]
- He, Z.; Zhao, Y.; Zhang, H.; Tang, H.; Zhu, Q.; Ai, Y.; Zhou, L. Vortex-induced vibrations and galloping of a square cylinder: The impact of damping and mass ratio. Ocean Eng. 2025, 320, 120371. [Google Scholar] [CrossRef]
- Tafarojnoruz, A.; Lauria, A. Large eddy simulation of the turbulent flow field around a submerged pile within a scour hole under current condition. Coastal Eng. J. 2020, 62, 489–503. [Google Scholar] [CrossRef]
- Cheng, M.; Tan, S.H.N.; Hung, K.C. Linear shear flow over a square cylinder at low Reynolds number. Phys. Fluids 2005, 17, 078103. [Google Scholar] [CrossRef]
- Cheng, M.; Whyte, D.S.; Lou, J. Numerical simulation of flow around a square cylinder in uniform-shear flow. J. Fluids Struct. 2007, 23, 207–226. [Google Scholar] [CrossRef]
- Lunghi, G.; Brusco, S.; Mariotti, A.; Piccardo, G.; Salvetti, M.V. Influence of inflow acceleration on the aerodynamic characteristics of a square cylinder. J. Wind Eng. Ind. Aerodyn. 2024, 252, 105814. [Google Scholar] [CrossRef]
- Brusco, S.; Buresti, G.; Lo, Y.L.; Piccardo, G. Constant-frequency time cells in the vortex-shedding from a square cylinder in accelerating flows. J. Wind Eng. Ind. Aerodyn. 2022, 230, 105182. [Google Scholar] [CrossRef]
- Brusco, S.; Bin, H.Y.; Lo, Y.L.; Piccardo, G. Transient aerodynamics of a square cylinder under downburst-like accelerating flows reproduced in a multiple-fan wind tunnel. J. Fluids Struct. 2024, 124, 104038. [Google Scholar] [CrossRef]
- Dutta, D.; Bihs, H.; Afzal, M.S. Computational Fluid Dynamics modelling of hydrodynamic characteristics of oscillatory flow past a square cylinder using the level set method. Ocean Eng. 2022, 253, 111211. [Google Scholar] [CrossRef]
- Li, M.; Li, Q.S.; Shi, H.Y.; Li, M.S. Large-scale sinusoidal gust effect on aerodynamic pressures and forces on a square cylinder. J. Fluids Struct. 2023, 120, 103917. [Google Scholar] [CrossRef]
- Kristiansen, T.; Ravinthrakumar, S. Hydrodynamic interaction between 2D square cylinders in oscillatory, large-amplitude flow. J. Fluids Struct. 2025, 135, 104312. [Google Scholar] [CrossRef]
- Masood, S.; Khan, M.A.; Anwer, S.F.; Hasan, N.; Ali, R. Effect of pulsatile flow on hydrodynamic characteristics of vortex induced vibration of square cylinder. Ocean Eng. 2023, 289, 116290. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Z.; Shi, K.; Zhu, X.; Guo, X.; Mei, Y.; Kadapa, C. Effect of pulsating flow on flow-induced vibrations of circular and square cylinders in the laminar regime. Ocean Eng. 2024, 301, 117609. [Google Scholar] [CrossRef]
- Versteeg, H.K.; Malalasekera, W. Computational fluid dynamics. The finite volume method. Comput. Fluid Dyn. 1995, 1, 1–26. [Google Scholar]
- Menter, F.R. 2-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 1994, 32, 1598–1605. [Google Scholar] [CrossRef]
- Qiu, T.; Zhao, Y.; Du, X.; Lin, W. Vortex-induced vibration of two tandem square cylinders with different restraint conditions. Ocean Engineering. 2023, 273, 113946. [Google Scholar] [CrossRef]
- Zhao, M.; Cheng, L.; Zhou, T. Numerical simulation of vortex-induced vibration of a square cylinder at a low Reynolds number. Phys. Fluids 2013, 25, 023603. [Google Scholar] [CrossRef]
- Zhao, M.; Cheng, L.; Zhou, T. Numerical investigation of vortex-induced vibration (VIV) of a circular cylinder in oscillatory flow. Ocean Eng. 2011, 41, 597–603. [Google Scholar]
- Kozakiewicz, A.; Sumer, B.M.; Fredsøe, J.; Hansen, E.A. Vortex regimes around a freely vibrating cylinder in oscillatory flow. Int. J. Offshore Polar Eng. 1997, 7, 94–103. [Google Scholar]
- Sumer, B.M.; Fredsøe, J. Transverse vibrations of an elastically mounted cylinder exposed to an oscillating flow. J. Offshore Mech. Arct. Eng. 1988, 110, 387–394. [Google Scholar] [CrossRef]
- Williamson, C.H.K. Evolution of a single wake behind a pair of bluff bodies. J. Fluid Mech. 1985, 159, 1–18. [Google Scholar] [CrossRef]
Mesh | Element Number Used | Node Number Used | Re | ||
---|---|---|---|---|---|
Current study | |||||
Mesh 1 | 49,607 | 25,124 | 5000 | 7 | 0.623 |
Mesh 2 | 63,218 | 31,954 | 0.650 | ||
Mesh 3 | 71,740 | 36,228 | 0.668 | ||
Mesh 4 | 82,585 | 41,667 | 0.667 | ||
Mesh 5 | 105,696 | 53,253 | 0.640 | ||
Published research | |||||
[2] | - | - | 5000 | 7 | 0.68 |
Mesh | Element Number Used | Time Step | Re | ||
---|---|---|---|---|---|
Current study | |||||
Mesh 4 | 82,585 | 0.01 | 5000 | 7 | 0.654 |
Mesh 4 | 82,585 | 0.005 | 0.667 | ||
Mesh 4 | 82,585 | 0.003 | 0.671 | ||
Published research | |||||
[2] | - | - | 5000 | 7 | 0.68 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Annapeh, H.F.; Kurushina, V. Flow-Induced Vibrations of a Square Cylinder in the Combined Steady and Oscillatory Flow. J. Mar. Sci. Eng. 2025, 13, 1621. https://doi.org/10.3390/jmse13091621
Annapeh HF, Kurushina V. Flow-Induced Vibrations of a Square Cylinder in the Combined Steady and Oscillatory Flow. Journal of Marine Science and Engineering. 2025; 13(9):1621. https://doi.org/10.3390/jmse13091621
Chicago/Turabian StyleAnnapeh, Henry Francis, and Victoria Kurushina. 2025. "Flow-Induced Vibrations of a Square Cylinder in the Combined Steady and Oscillatory Flow" Journal of Marine Science and Engineering 13, no. 9: 1621. https://doi.org/10.3390/jmse13091621
APA StyleAnnapeh, H. F., & Kurushina, V. (2025). Flow-Induced Vibrations of a Square Cylinder in the Combined Steady and Oscillatory Flow. Journal of Marine Science and Engineering, 13(9), 1621. https://doi.org/10.3390/jmse13091621