Australia’s Two Great Barrier Reefs: What Can ~360 Million Years of Change Teach Us?
Abstract
1. Introduction
2. Operational Definitions—Methods, Perspectives, Concepts and Semantics
- Construction of calcium carbonate by biomineralization (e.g., coral skeletons, foraminifer tests) or by induction of carbonate precipitation by microbial biofilms (microbialites); in situ carbonate production is the major role of the carbonate factory, and importantly, includes production of both skeletons in growth position and particulate sediment;
- Destruction of in situ calcium carbonate (e.g., today, coral skeletons) both by physicochemical processes (waves, storms, chemical dissolution) and by bioerosion (destruction by other organisms) create mobile sediment from initially immobile substrates;
- Transportation of sediment by gravity, waves, currents and wind;
- Deposition of sediment by settling, baffling and/or trapping;
- Unification, where skeletons in growth position, sediment (including coarse rubble) and microbial deposits are bound into rigid, hard substrate by (1) direct encrustation by other skeletal organisms, generally termed binders (e.g., CCA), (2) microbial precipitates within larger and smaller cavities and pore spaces and in some cases (3) early marine cement that precipitates naturally from seawater.
3. Results
3.1. Location, Age and Tectonic Settings
3.1.1. Great Barrier Reef Province
3.1.2. Devonian Great Barrier Reef
3.2. Global Constraints—Climate and Water Chemistry
3.2.1. Great Barrier Reef Province
3.2.2. Devonian Great Barrier Reef
3.3. Carbonate Factories
3.3.1. Reef Builders of the Great Barrier Reef Province
3.3.2. Reef Builders of the Devonian Great Barrier Reef
3.4. Comparing Reef Geomorphology and Palaeogeography
4. Discussion
4.1. Comparing GBRP and DGBR Reef Builders
4.2. Tectonic Constraints on Reefs
4.3. Climatic Constraints on Reefs
4.4. Marine Chemistry Constraints on Reefs
4.5. Evaluating the Analogs
5. Conclusions
5.1. Reefs in General
- Biological reefs (today, coral reefs) are not just biological communities and ecosystems, they are the relief-bearing structures that are bio-engineered and constructed by those communities. Those structures provide many ecological services that extend far beyond the reefs themselves.
- Repeated reassembly of biological communities after successive disruptions, (e.g., between parasequences, even tracking sea level down and back up through glacial–interglacial cycles) in both reef provinces suggests that community integration and interdependency is a general characteristic of reef-building communities and provides further evidence for their specialized nature. Reef communities are more than random associations of organisms that can coexist in the same shallow carbonate environments.
- Despite bio-engineering their own geomorphological habitats, reef communities are subject to numerous external constraints (climate, sea level, wave energy, nutrients, marine alkalinity, to name a few). These constraints occur as both temporal and spatial unidirectional trends (e.g., latitudinal gradients, increasing continentality through time) and heterogeneous and stochastic distributions (e.g., intermediate disturbance to glacial cycles). In the face of these constraints, reef building depends on communities managing or balancing five key processes (Figure 5): (1) construction of calcium carbonate by a carbonate factory; (2) destruction of existing structures by physical or biological erosion; (3) transport of particulate sediment; (4) deposition of particulate sediment; and finally, (5) unification, where both in situ and transported carbonate skeletal material is bound and cemented into a hard reef substrate. It is that hard substrate that allows continued reef growth and underpins reef geomorphology and thus, survival of the broader reef system. Changes to the external constraints on, or biological roles in, any of the five key processes may cause major changes within the other processes and, thus, to the entire reef system.
- Very different reef communities can make very similar reef geomorphologies. However, they also can create very different structures and platforms where communities and/or external constraints differ. Understanding the differences can provide information on fundamental aspects of reef communities that might be applicable to reefs across time and space.
5.2. Modern Reef Workers and Conservationists
- The study of ancient reefs provides significant insights into how modern reef communities have come to be, not just at the assembly level, but the evolutionary level. For example, the dominance of many (but not all) Indo-Pacific reefs by fast growing acroporids has been attributed to the high amplitude of modern icehouse sea level oscillations [27]. Over longer time scales the rise of rasping bioeroders, like scarid fishes, may have favored the evolution of modern CCA at the expense of the earlier, less well-calcified solenoporoid algae [447], which occurred in the DGBR.
- Abundant carbonate production in an appropriate shallow setting is inadequate to build a reef. The abundant growth of CF1 corals and stromatoporoids constructed only low-relief carbonate banks. What was lacking was adequate unification to allow the banks to aggrade to sea level at their margins. Subsequent CF3 communities on the other hand, had far fewer and less massive skeletal constructors, but had effective binders in calcimicrobes and early marine cement to support unification. They constructed steep, high-energy reef margins similar to those of modern reefs from less volumetrically abundant, fragile stromatoporoids with virtually no corals at all. The example highlights that successful reef growth requires both construction, although not necessarily by so-called ‘hypercalcifiers,’ and unification from binders [62]. Importantly, these two processes may be constrained independently from each other by external forcing.
- While coral bleaching is a major threat to important members of the carbonate factory today, it is far from the only threat. Many skeletal organisms can manage calcification in lower pH waters, but the larval and juvenile forms of many taxa in reef carbonate factories are at risk, although under-studied [520]. These include CCA, which is more sensitive to carbonate saturation state than are corals [521,522]. The effects of OA on binders, both CCA and microbialites, could severely restrict modern reef unification, and thus development of the hard substrates required for recruitment and renewed coral growth after even small disturbance events. The scale and frequency of disturbance events are projected to increase, with increased wave energy and cyclone activity and higher sea levels allowing more wave energy across reef platforms. Critically, modern reefal microbialites that increase the strength of porous reef carbonates by filling pore space at many scales are non-obligate calcifiers; their occurrence and distribution is almost completely constrained by ambient water chemistry. Reduced marine pH associated with anthropogenic OA could inhibit their precipitation, thus removing a major component of modern reef unification.
- From a conservation perspective, it is critical to remember that it takes more than a coral community to raise a reef. Corals are without doubt the most important skeletal framework constructors on modern reefs, but all five of the key reef-building processes must balance for reefs to be maintained. The role of bioerosion and source and fate of reef sediment is increasingly acknowledged and studied (from conservation and carbonate budget–carbon cycle perspectives), but much of the reef conservation and monitoring effort is directed only to corals and commonly only coral cover on the slope. This partly reflects the relative ease of measuring coral cover remotely, but it is not the only measure of reef health and studies of other critical reef growth processes have lagged behind. Through modern reef coring we are only beginning to grasp the importance of cryptic microbial communities in framework unification and know very little about their metabolic processes, trophic structures or even rates of growth. Fortunately, reef cores through the last glacial cycle have provided a natural laboratory to understand the effects of changing pCO2 on modern reefal microbialite growth [148], but the results are alarming in the face of OA.
5.3. Geologists and Paleobiologists
- Ancient reefs provide a means to explore temporal differences in marine chemistry, such as carbonate saturation state, as it provides major external constraints on carbonate factories, reef unification and carbonate platform development. Marine alkalinity is also intimately related to Earth’s climate through time. While direct comparison of modern and Late Devonian unification processes and modeled marine alkalinity appear to be consistent (explaining the lack of abundant calcimicrobes and marine cement today), major inconsistencies in expectations are evident in other time intervals since the Mesozoic suggesting major gaps in our understanding of marine alkalinity through time.
- Comparison of the GBRP and DGBR provides strong support for the hypothesis that ‘empty bucket’ carbonate platform morphologies are favored by, if not limited to, icehouse conditions [460]. This association likely results from the interplay between the amplitude of accommodation creation versus the relative aggradation potential of the carbonate factory across the geographical profile (Figure 15). Where the amplitude is high, geographically variable carbonate aggradation rates can lead to deep lagoons and steeper barriers and margins, as in the GBRP. However, low parasequence amplitude provides a vertical ‘equalizer’ that does not allow the greater aggradation potential at the margin to reach fruition. Higher-aggrading communities are limited by sea level, spilling sediment laterally to help fill accommodation with lower-aggrading communities in the back-reef. This may have limited development of deeper lagoons behind aggrading CF3 margins in the DGBR. Where aggradation potential is equivalent across the geographic profile, the role of accommodation is decreased, but still, no deep lagoon should form. The CF1 banks of the DGBR had similar aggradation potential across the bank mostly even to the margin and thus, did not create deep lagoons even as accommodation increased through the early Frasnian.
- The DGBR is not a single reef geographically or through time any more than is the modern GBR. To understand it, it must be separated into different temporal units that reflect the changing carbonate factories and external constraints.
- Despite the strong ‘pull of the recent’, corals are not the answer to understanding the DGBR or other Late Devonian reefs. Stromatoporoids were the best functional analogs for modern reef corals, but their trophic structures and general biology are less well understood. Importantly, the key binders in the DGBR, calcimicrobes, are even less well understood. Recent work suggests that some were mixotrophs capable of photosynthesis where exposed, but other types of metabolism in cryptic settings [455]. We know little about them but cannot afford to treat all reefal microbialites as the products of cyanobacteria.
- Trace element geochemistry suggests that the DGBR occurred in a higher nutrient setting than the outer GBR today (i.e., not oligotrophic). However, the source of the high alkalinity that drove cementation and calcimicrobe growth in CF3–5, but not in CF1, is less easy to identify.
- Isolation of the exposed DGBR in an intracontinental setting and absence of abundant shallow anoxia [509] suggests that local marine chemistry could have differed in many important ways from that of the ‘global ocean’ where coeval reefs around the world occurred. However, broad stratigraphy shows that most or all Late Devonian reefs were affected by a major eustatic sea level cycle through the Frasnian and Famennian. Hence, the DGBR may be typical of reefs of its time in some ways, but not in others.
5.4. Recommendations
- Conservation of the GBR and other modern reefs requires transdisciplinary study that addresses threats that affect changes to any and all of the five key reef processes (Figure 5).
- Additional deep reef coring is needed in the northern GBR and in the offshore plateaus to better understand how the older reef history (Miocene to Pleistocene) was constrained, as that history led to the reefs we know today.
- Additional Holocene and Pleistocene reef coring in the GBR is needed to provide direct analogues for modern reefs that had changing local conditions, and to recover both paleoclimate data to inform modern climate models and projections and data of the specific responses of individual organisms, communities and whole reefs to past environmental–climatic changes. All will inform conservation strategies for modern reefs.
- Current understanding of the DGBR is limited by difficulties in correlating the shallow successions. Hence, increased shallow biostratigraphy (e.g., microvertebrates) and chemostratigraphy (especially stable isotopes) are needed for addition to the ever-improving sequence stratigraphy.
- Additional geochemical investigations are also needed in the Canning Basin to better understand the patterns and causes of changes to marine alkalinity and nutrients that affected carbonate factories, hydrocarbon systems and base metal emplacement. Trace element geochemistry including REEs, redox sensitive metals and halogens along with stable C and N isotopes derived from carbonates, shales and organic matter would be useful.
- Additional study of subsurface examples of the DGBR (offshore western Australia and Barbwire Terrace) and the exposures in the Bonaparte Gulf would also shed more light on this large reef province.
Funding
Acknowledgments
Conflicts of Interest
References
- Knowlton, N.; Brainard, R.E.; Fisher, R.; Moews, M.; Plaisance, L.; Caley, M.J. Coral reef biodiversity. In Life in the World’s Oceans; McIntyre, A.D., Ed.; John Wiley & Sons: Chichester, UK, 2010; pp. 65–77. [Google Scholar] [CrossRef]
- Burke, L.; Reytar, K.; Spalding, M.; Perry, A. Reefs at Risk Revisited; World Resources Institute: Washington, DC, USA, 2011; pp. 1–130. ISBN 978-1-56973-762-0. [Google Scholar]
- Harris, D.L.; Rovere, A.; Casella, E.; Power, H.; Canavesio, R.; Collin, A.; Pomeroy, A.; Webster, J.M.; Parravicini, V. Coral reef structural complexity provides important coastal protection from waves under rising sea levels. Sci. Adv. 2018, 4, eaao4350. [Google Scholar] [CrossRef]
- Woodhead, A.J.; Hicks, C.C.; Norström, A.V.; Williams, G.J.; Graham, N.A.J. Coral reef ecosystem services in the Anthropocene. Funct. Ecol. 2019, 33, 1023–1034. [Google Scholar] [CrossRef]
- Reguero, B.G.; Storlazzi, C.D.; Gibbs, A.E.; Shope, J.B.; Cole, A.D.; Kumming, K.A.; Beck, M.W. The value of US coral reefs for flood risk reduction. Nat. Sustain. 2021, 4, 688–698. [Google Scholar] [CrossRef]
- Bindoff, N.L.; Cheung, W.W.; Kairo, J.G.; Arístegui, J.; Guinder, V.A.; Hallberg, R.; Williamson, P. Changing Ocean, Marine Ecosystems, and Dependent Communities. In IPCC Special Report on the Ocean and Cryosphere in a Changing Climate; Intergovernmental Panel on Climate Change: Cambridge University Press: Cambridge, UK; New York, NY, USA, 2019; pp. 477–587. [Google Scholar] [CrossRef]
- De Valck, J.; Rolfe, J. Reviewing the use of proxies to value coastal and marine biodiversity protection: The Great Barrier Reef in Australia. Mar. Policy 2022, 136, 104890. [Google Scholar] [CrossRef]
- Barker, B. The Sea People: Late Holocene Maritime Specialisation in the Whitsunday Islands, Central Queensland; Pandanus Books: Canberra, Australia, 2004; pp. 1–236. [Google Scholar]
- Narchie, N.E.; Price, L.L. Ethnobiology of Corals and Coral Reefs; Springer: Cham, Switzerland, 2015; pp. 1–240. [Google Scholar] [CrossRef]
- Marrie, H.L. Indigenous Coral Reef Tourism. In Coral Reefs: Tourism, Conservation and Management; Prideaux, B., Pabel, A., Eds.; Routledge: London, UK, 2018; pp. 227–246. [Google Scholar]
- Bradley, J. with Yanyuwa families. Three coral reefs in Yanyuwa country, meaningful and powerful. In Coral Reefs of Australia: Perspectives from Beyond the Water’s Edge; Hamylton, S.M., Hutchings, P., Hoegh-Guldberg, O., Eds.; CSIRO Publishing: Clayton South, VIC, Australia, 2023; pp. 53–57. [Google Scholar]
- Rowland, M.J.; Lambrides, A.B.J.; McNiven, I.J.; Ulm, S. Great Barrier Reef Indigenous archaeology and occupation of associated reef and continental islands. Aust. J. Environ. Manag. 2024, 32, 22–45. [Google Scholar] [CrossRef]
- Reyes-Nivia, C.; Diaz-Pulido, G.; Kline, D.; Hoegh-Guldberg, O.; Dove, S. Ocean acidification and warming scenarios increase microbioerosion of coral skeletons. Glob. Change Biol. 2013, 19, 1919–1929. [Google Scholar] [CrossRef]
- Hoegh-Guldberg, O.; Pendleton, L.; Kaup, A. People and the changing nature of coral reefs. Reg. Stud. Mar. Sci. 2019, 30, 100699. [Google Scholar] [CrossRef]
- Hughes, T.P.; Kerry, J.T.; Baird, A.H.; Connolly, S.R.; Dietzel, A.; Eakin, C.M.; Heron, S.F.; Hoey, A.S.; Hoogenboom, M.O.; Liu, G.; et al. Global warming transforms coral reef assemblages. Nature 2018, 556, 492–496. [Google Scholar] [CrossRef] [PubMed]
- Walsh, K.J.E.; McBride, J.L.; Klotzbach, P.J.; Balachandran, S.; Camargho, S.J.; Holland, G.; Knutson, T.R.; Kossin, J.P.; Lee, T.-C.; Sobel, A.; et al. Tropical cyclones and climate change. WIREs Clim. Chang. 2016, 7, 65–89. [Google Scholar] [CrossRef]
- Cheal, A.J.; MacNeil, M.A.; Emslie, M.J.; Sweatman, H. The threat to coral reefs from more intense cyclones under climate change. Glob. Change Biol. 2017, 23, 1511–1524. [Google Scholar] [CrossRef]
- Eyre, B.D.; Cyronak, T.; Drupp, P.; De Carlo, E.H.; Sachs, J.P.; Andersson, A.J. Coral reefs will transition to net dissolving before end of century. Science 2018, 359, 908–911. [Google Scholar] [CrossRef] [PubMed]
- Hill, T.S.; Hoogenboom, M.O. The indirect effects of ocean acidification on corals and coral communities. Coral Reefs 2022, 41, 1557–1583. [Google Scholar] [CrossRef]
- Pandolfi, J.; Bradbury, R.H.; Sala, E.; Hughes, T.P.; Bjorndal, K.A.; Cooke, R.G.; McArdle, D.; McClenachan, L.; Newman, M.J.H.; Paredes, G.; et al. Global trajectories of the long-term decline of coral reef ecosystems. Science 2003, 301, 955–958. [Google Scholar] [CrossRef]
- Riegl, B.M.; Glynn, P.W. Population dynamics of the reef crisis: Consequences of the growing human population. Adv. Mar. Biol. 2020, 87, 2–30. [Google Scholar] [CrossRef]
- Castro-Sanguino, C.; Ortiz, J.C.; Thompson, A.; Wolff, N.H.; Ferrari, R.; Robson, B.; Magno-Canto, M.M.; Puotinen, M.; Fabricius, K.E.; Uthicke, S. Reef state and performance as indicators of cumulative impacts on coral reefs. Ecol. Indic. 2021, 123, 107335. [Google Scholar] [CrossRef]
- Lewis, S.; McCloskey, G.; Bainbridge, Z.; Davis, A.; Bartley, R.; Turner, R. Sediment and nutrient flux from land. In Oceanographic Processes of Coral Reefs, Physical and Biological Links in the Great Barrier Reef, 2nd ed.; Wolanski, E., Kingsford, M., Eds.; CRC Press: Boca Raton, FL, USA, 2024; pp. 126–142. [Google Scholar]
- Darwin, C.R. The Structure and Distribution of Coral Reefs. Being the First Part of the Geology of the Voyage of the Beagle, Under the Command of Capt. Fitzroy, R.N. During the Years 1832 to 1836; Smith Elder and Co.: London, UK, 1842; pp. 1–214. [Google Scholar]
- Montaggioni, L.F.; Braithwaite, C.J.R. Quaternary Coral Reef Systems: History, Development, Processes and Controlling Factors; Elsevier: Amsterdam, The Netherlands, 2009; pp. 1–532. [Google Scholar]
- Pandolfi, J.M.; Kiessling, W. Gaining insights from past reefs to inform understanding of coral reef response to global climate change. Curr. Opin. Environ. Sustain. 2014, 7, 52–58. [Google Scholar] [CrossRef]
- Renema, W.; Pandolfi, J.M.; Kiessling, W.; Bosellini, F.R.; Klaus, J.S.; Korpanty, C.; Rosen, B.R.; Santodomingo, N.; Wallace, C.C.; Webster, J.M.; et al. Are coral reefs victims of their own past success? Sci. Adv. 2016, 2, e1500850. [Google Scholar] [CrossRef] [PubMed]
- O’Dea, A.; Lepore, M.; Altieri, A.H.; Chan, M.; Morales-Saldaña, J.M.; Muñoz, N.-H.; Pandolfi, J.M.; Toscano, M.A.; Zhao, J.X.; Dillon, E.M. Defining variation in pre-human ecosystems can guide conservation: An example from a Caribbean coral reef. Sci. Rep. 2020, 10, 2922. [Google Scholar] [CrossRef]
- Dimitrijević, D.; Santodomingo, N.; Kiessling, W. Reef refugia in the aftermath of past episodes of global warming. Coral Reefs 2024, 43, 1431–1442. [Google Scholar] [CrossRef]
- Webb, G.E. Advances in understanding climate change on the Great Barrier Reef using coral-based proxies, Chapter 5. In Oceanographic Processes of Coral Reefs: Physical and Biological Links in the Great Barrier Reef, 2nd ed.; Wolanski, E., Kingsford, M.J., Eds.; CRC Press: Boca Raton, Fl, USA, 2024; pp. 62–85. [Google Scholar]
- Fagerstrom, J.A. The Evolution of Reef Communities; Wiley: New York, NY, USA, 1987; pp. 1–600. [Google Scholar]
- Fagerstrom, J.A. A structural model for reef communities. Palaios 1988, 3, 217–220. [Google Scholar] [CrossRef]
- Fagerstrom, J.A. Reef-building guilds and a checklist for determining guild membership. Coral Reefs 1991, 10, 47–52. [Google Scholar] [CrossRef]
- Machel, H.G.; Hunter, I.G. Facies models for Middle to Late Devonian shallow-marine carbonates, with comparisons to modern reefs: A guide for facies analysis. Facies 1994, 30, 155–176. [Google Scholar] [CrossRef]
- Wood, R. Reef Evolution; Oxford University Press: Oxford, UK, 1999; pp. 1–414. [Google Scholar]
- Stanley, G.D., Jr. The History and Sedimentology of Ancient Reef Systems; Kluwer Academic/Plenum Publishers: New York, NY, USA, 2001; pp. 1–458. [Google Scholar]
- Kiessling, W.; Flügel, E.; Golonka, J. (Eds.) Phanerozoic Reef Patterns; SEPM: Tulsa, OK, USA, 2002; pp. 1–775. [Google Scholar]
- Kiessling, W. Long-term relationships between ecological stability and biodiversity in Phanerozoic reefs. Nature 2005, 433, 410–413. [Google Scholar] [CrossRef]
- Kiessling, W. Geologic and biologic controls on the evolution of reefs. Ann. Rev. Ecol. Evol. Syst. 2009, 40, 73–192. [Google Scholar] [CrossRef]
- Berger, W.H. Increase of carbon dioxide in the atmosphere during deglaciation: The coral reef hypothesis. Naturwissenschaften 1982, 69, 87–88. [Google Scholar] [CrossRef]
- Ryan, D.A.; Opdyke, B.N.; Jell, J.S. Holocene sediments of Wistari Reef: Towards a global quantification of coral reef related neritic sedimentation in the Holocene. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2001, 175, 173–184. [Google Scholar] [CrossRef]
- Felis, T.; Hinstrosa, G.; Köhler, P.; Webster, J. Role of the Deglacial Buildup of the Great Barrier Reef for the Global Carbon Cycle. Geophys. Res. Lett. 2022, 49, e2021GL096495. [Google Scholar] [CrossRef]
- James, K.; Macreadie, P.I.; Burdett, H.L.; Davies, I.; Kamenos, N.A. It’s time to broaden what we consider a ‘blue carbon ecosystem. ’ Glob. Change Biol. 2024, 30, e17261. [Google Scholar] [CrossRef]
- Greenstein, B.J.; Pandolfi, J.M. Escaping the heat: Range shifts of reef coral taxa in coastal Western Australia. Glob. Change Biol. 2008, 14, 513–528. [Google Scholar] [CrossRef]
- Camoin, G.F.; Webster, J.M. Coral reef response to Quaternary sea-level and environmental changes: State of the science. Sedimentology 2015, 62, 401–428. [Google Scholar] [CrossRef]
- Webster, J.M.; Braga, J.C.; Humblet, M.; Potts, D.C.; Iryu, Y.; Yokoyama, Y.; Fujita, K.; Bourillot, R.; Esat, T.M.; Fallon, S.; et al. Response of the Great Barrier Reef to sea-level and environmental changes over the past 30,000 years. Nat. Geosci. 2018, 11, 426–432. [Google Scholar] [CrossRef]
- Davies, P.J. Subsurface solution unconformities at Heron Island, Great Barrier Reef. In Proceedings of the Second International Symposium on Coral Reefs; Cameron, A.M., Campbell, B.M., Cribb, A.B., Endean, R., Jell, J.S., Jones, O.A., Talbot, F.H., Eds.; The Great Barrier Reef Committee: Brisbane, Australia, 1974; Volume 2, pp. 573–578. [Google Scholar]
- Macintyre, I.G. Modern coral reefs of western Atlantic: New geologic perspectives. Am. Assoc. Pet. Geol. Bull. 1988, 72, 1360–1369. [Google Scholar]
- International Consortium for Great Barrier Reef Drilling; Alexander, I.; Andres, M.S.; Braithwaite, C.J.R.; Braga, J.C.; Davies, P.J.; Elderfield, H.; Gilmour, M.A.; Kay, R.L.; Kroon, D.; et al. New constraints on the origin of the Australian Great Barrier Reef: Results from an international project of deep coring. Geology 2001, 29, 483–486. [Google Scholar] [CrossRef]
- Birkeland, C.; Green, A.; Lawrence, A.; Coward, G.; Vaeoso, M.; Fenner, D. Different resiliencies in coral communities over ecological and geological time scales in American Samoa. Mar. Ecol. Prog. Ser. 2021, 673, 55–68. [Google Scholar] [CrossRef]
- Webb, G.E.; Webster, J.M. Scientific drilling on the Great Barrier Reef: Unlocking the history of the reef. In Coral Reefs of Australia: Perspectives from Beyond the Water’s Edge; Hamylton, S.M., Hutchings, P., Hoegh-Guldberg, O., Eds.; CSIRO Publishing: Clayton South, VIC, Australia, 2023; pp. 124–130. [Google Scholar]
- Pingitore, N.E. Vadose and phreatic diagenesis: Processes, products and their recognition in corals. J. Sediment. Petrol. 1976, 46, 985–1006. [Google Scholar]
- Hendy, E.J.; Gagan, M.K.; Lough, J.M.; McCulloch, M.; de Menocal, P. Impact of skeletal dissolution and secondary aragonite on trace element and isotopic climate proxies in Porites corals. Paleoceanography 2007, 22, PA4101. [Google Scholar] [CrossRef]
- Webb, G.E.; Nothdurft, L.D.; Kamber, B.S.; Kloprogge, J.T.; Zhao, J.-X. Rare earth element geochemistry of scleractinian coral skeleton during meteoric diagenesis: A sequence through neomorphism of aragonite to calcite. Sedimentology 2009, 56, 1433–1463. [Google Scholar] [CrossRef]
- Gischler, E.; Thomas, A.L.; Droxler, A.W.; Webster, J.M.; Yokoyama, Y.; Schöne, B.R. Microfacies and diagenesis of older Pleistocene (pre-last glacial maximum) reef deposits, Great Barrier Reef, Australia (IODP Expedition 325): A quantitative approach. Sedimentology 2013, 60, 1432–1466. [Google Scholar] [CrossRef]
- Booker, S.; Jones, B.; Li, L. Diagenesis in Pleistocene (80 to 500 ka) corals from the Ironshore Formation: Implications for paleoclimate reconstruction. Sed. Geol. 2020, 399, 105615. [Google Scholar] [CrossRef]
- Salles, T.; Ding, X.; Webster, J.M.; Vila-Concejo, A.; Brocard, G.; Pall, J. A unified framework for modelling sediment fate from source to sink and its interactions with reef systems over geological times. Sci. Rep. 2018, 8, 5252. [Google Scholar] [CrossRef]
- Pall, J.; Chandra, R.; Azam, D.; Salles, T.; Webster, J.M.; Scalzo, R.; Cripps, S. Bayesreef: A Bayesian inference framework for modelling reef growth in response to environmental change and biological dynamics. Environ. Model. Softw. 2020, 125, 104610. [Google Scholar] [CrossRef]
- Pandolfi, J.M. Limited membership in Pleistocene reef coral assemblages from the Huon Peninsula, Papa New Guinea: Constancy during global change. Paleobiology 1996, 22, 152–176. [Google Scholar] [CrossRef]
- Pandolfi, J.M.; Connolly, S.R.; Marshall, D.J.; Cohen, A.L. Projecting coral reef futures under global warming and ocean acidification. Science 2011, 333, 418–422. [Google Scholar] [CrossRef] [PubMed]
- Weiss, A.; Martindale, R.C. Crustose coralline algae increased framework and diversity on ancient coral reefs. PLoS ONE 2017, 12, e0181637. [Google Scholar] [CrossRef]
- Raja, N.B.; Pandolfi, J.M.; Kiessling, W. Modularity explains large-scale reef booms in earth’s history. Facies 2023, 69, 15. [Google Scholar] [CrossRef]
- Fagerstrom, J.A.; Weidlich, O. Strengths and Weaknesses of the Reef Guild Concept and Quantitative Data: Application to the Upper Capitan-Massive Community (Permian), Guadalupe Mountains, New Mexico-Texas. Facies 1999, 40, 131–156. [Google Scholar] [CrossRef]
- Cheal, A.J.; MacNeil, M.; Cripps, E.; Emslie, M.J.; Jonker, M.; Schaffelke, B.; Sweatman, H. Coral–macroalgal phase shifts or reef resilience: Links with diversity and functional roles of herbivorous fishes on the Great Barrier Reef. Coral Reefs 2010, 29, 1005–1015. [Google Scholar] [CrossRef]
- Steneck, R.S. The ecology of coralline algal crusts: Convergent patterns and adaptive strategies. Annu. Rev. Ecol. Syst. 1986, 17, 273–303. [Google Scholar] [CrossRef]
- Teichert, S.; Steinbauer, M.; Kiessling, W. A possible link between coral reef success, crustose coralline algae and the evolution of herbivory. Sci. Rep. 2020, 10, 17748. [Google Scholar] [CrossRef]
- Teichert, S. Attached and free-living crustose coralline algae and their functional traits in the geological record and today. Facies 2024, 70, 8. [Google Scholar] [CrossRef]
- Jackson, J.B.C. Pleistocene perspectives on coral reef community structure. Am. Zool. 1992, 32, 719–731. [Google Scholar] [CrossRef]
- Zapalski, M.K.; Baird, A.H.; Bridge, T.; Jakubowicz, M.; Daniell, J. Unusual shallow water Devonian coral community from Queensland and its recent analogues from the inshore Great Barrier Reef. Coral Reefs 2021, 40, 417–431. [Google Scholar] [CrossRef]
- Godbold, A.; Clark, N.; Cunningham, E.T.; Bottjer, D.J.; Pandolfi, J.M. Temporal dynamics of Devonian reef communities: Insights into natural phase shifts and long-term resilience in the face of environmental variability. Palaeogeogr. Palaeoclimat. Palaeoecol. 2024, 648, 112264. [Google Scholar] [CrossRef]
- Bridge, T.C.; Baird, A.H.; Pandolfi, J.M.; McWilliam, M.J.; Zapalski, M.K. Functional consequences of Palaeozoic reef collapse. Sci. Rep. 2022, 12, 1386. [Google Scholar] [CrossRef]
- Bellwood, D.R.; Brandl, S.J.; McWilliam, M.; Streit, R.P.; Yan, H.F.; Tebbett, S.B. Studying functions on coral reefs: Past perspectives, current conundrums, and future potential. Coral Reefs 2024, 43, 281–297. [Google Scholar] [CrossRef]
- Arzey, A.K.; McGregor, H.V.; Clark, T.R.; Webster, J.M.; Lewis, S.E.; Mallela, J.; McKay, N.P.; Fahey, H.W.; Chakraborty, S.; Razak, T.B.; et al. Coral skeletal proxy records database for the Great Barrier Reef, Australia. Earth Syst. Sci. Data 2024, 16, 4869–4930. [Google Scholar] [CrossRef]
- Brodie, J.; Kroon, F.; Schaffelke, B.; Wolanski, E.; Lewis, S.; Devlin, M.; Bohnet, I.; Bainbridge, Z.; Waterhouse, J.; Davis, A. Terrestrial pollutant runoff to the Great Barrier Reef: An update of issues, priorities and management responses. Mar. Pollut. Bull. 2012, 65, 81–100. [Google Scholar] [CrossRef] [PubMed]
- De’ath, G.; Fabricius, K.E.; Sweatman, H.; Puotinen, M. The 27–year decline of coral cover on the Great Barrier Reef and its causes. Proc. Nat Acad. Sci. USA 2012, 109, 17995–17999. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.N.; Mongin, M.; Thompson, A.; Jonker, M.J.; De’ath, G.; Fabricius, K.E. Shifts in coralline algae, macroalgae, and coral juveniles in the Great Barrier Reef associated with present-day ocean acidification. Glob. Change Biol. 2020, 26, 2149–2160. [Google Scholar] [CrossRef]
- Dixon, A.M.; Puotinen, M.; Ramsay, H.A.; Beger, M. Coral Reef Exposure to Damaging Tropical Cyclone Waves in a Warming Climate. Earth’s Futur. 2022, 10, e2021EF002600. [Google Scholar] [CrossRef]
- Duke, N.C.; Canning, A.; Mackenzie, A. More intense severe tropical cyclones in recent decades cause greater impacts on mangroves bordering Australia’s Great Barrier Reef. In Oceanographic Processes of Coral Reefs: Physical and Biological Links in the Great Barrier Reef; Wolanski, E., Kingsford, M.J., Eds.; CRC Press: Boca Raton, FL, USA, 2024; pp. 226–253. [Google Scholar]
- Emslie, M.J.; Ceccarelli, D.M.; Logan, M.; Blandford, M.I.; Bray, P.; Campili, A.; Jonker, M.J.; Parker, J.G.; Prenzlau, T.; Sinclair-Taylor, T.H. Changing dynamics of Great Barrier Reef hard coral cover in the Anthropocene. Coral Reefs 2024, 43, 747–762. [Google Scholar] [CrossRef]
- Hopley, D.; Smithers, S.G.; Parnell, K. The Geomorphology of the Great Barrier Reef: Development, Diversity and Change; Cambridge University Press: Cambridge, UK, 2007; pp. 1–532. [Google Scholar]
- Wolanski, E.; Kingsford, M.; Lambrechts, J.; Marmorino, G. The physical oceanography of the Great Barrier Reef: A review, Chapter 2. In Oceanographic Processes of Coral Reefs: Physical and Biological Links in the Great Barrier Reef, 2nd ed.; Wolanski, E., Kingsford, M.J., Eds.; CRC Press: Boca Raton, FL, USA, 2024; pp. 9–34. [Google Scholar]
- Davies, P.J.; Symonds, P.A.; Feary, D.A.; Pigram, C.J. Horizontal plate motion: A key allocyclic factor in the evolution of the Great Barrier Reef. Science 1987, 238, 1697–1700. [Google Scholar] [CrossRef] [PubMed]
- Feary, D.A.; Davies, P.J.; Pigram, C.J.; Symonds, P.A. Climatic evolution and control on carbonate deposition in northeast Australia. Palaeogeogr. Palaeoclimat. Palaeoecol. 1991, 89, 341–361. [Google Scholar] [CrossRef]
- Copper, P. Silurian and Devonian reefs: 80 million years of global greenhouse between two ice ages. In Phanerozoic Reef Patterns; Kiessling, W., Flügel, E., Golonka, J., Eds.; SEPM Special Publication; SEPM Society for Sedimentary Geology: Tulsa, OK, USA, 2002; Volume 72, pp. 181–238. [Google Scholar]
- Copper, P.; Scotese, C.R. Megareefs in Middle Devonian Supergreenhouse Climates. In Extreme depositional environments: Mega end members in geologic time; Chan, M.A., Archer, A.W., Eds.; Geological Society of America Special Paper 370; Geological Society of America: Boulder, CO, USA, 2003; pp. 209–230. [Google Scholar]
- Webb, G.E. Latest Devonian and Early Carboniferous reefs: Depressed reef building after the middle Paleozoic collapse. In Phanerozoic Reef Patterns; Kiessling, W., Flügel, E., Golonka, J., Eds.; SEPM Special Publication; SEPM Society for Sedimentary Geology: Tulsa, OK, USA, 2002; Volume 72, pp. 239–269. [Google Scholar]
- Playford, P.E.; Lowry, D.C. Devonian reef complexes of the Canning Basin, Western Australia. Geol. Surv. West. Aust. Bull. 1966, 118, 1–150. [Google Scholar]
- Playford, P.E. Devonian ‘Great Barrier Reef’ of Canning Basin, Western Australia. Am. Ass. Petrol. Geol. Bull. 1980, 62, 814–840. [Google Scholar] [CrossRef]
- Playford, P.E.; Hurley, N.F.; Kerans, C.; Middleton, M.F. Reefal platform development, Devonian of the Canning Basin, Western Australia. In Controls on Carbonate Platform and Basin Development; Crevello, P.D., Wilson, J.L., Sarg, J.F., Read, J.F., Eds.; SEPM Special Publication; SEPM Society for Sedimentary Geology: Tulsa, OK, USA, 1989; Volume 44, pp. 187–202. [Google Scholar]
- Playford, P.E.; Hocking, R.M.; Cockbain, A.E. (Eds.) Devonian Reef Complexes of the Canning Basin, Western Australia; Bulletin 145; Geological Survey of Western Australia: Perth, WA, Australia, 2009; Volume 444, pp. 415–440. [Google Scholar]
- Sepkoski, J.J. Patterns of Phanerozoic extinction: A perspective from global data bases. In Global Events and Event Stratigraphy in the Phanerozoic; Walliser, O.H., Ed.; Springer: Berlin/Heidelberg, Germany, 1996; pp. 35–51. [Google Scholar]
- Johnson, M.E. Islands in Deep Time, Ancient Landscapes Lost and Found; Columbia University Press: New York, NY, USA, 2023; pp. 1–294. [Google Scholar]
- Porter, S.M. Calcite and aragonite seas and the de novo acquisition of carbonate skeletons. Geobiology 2010, 8, 256–277. [Google Scholar] [CrossRef]
- Sandberg, P.A. An oscillating trend in Phanerozoic non-skeletal carbonate mineralogy. Nature 1983, 305, 19–22. [Google Scholar] [CrossRef]
- Vérard, C.; Hochard, C.; Baumgartner, P.O.; Stampfli, G.M. 3D palaeogeographic reconstructions of the Phanerozoic versus sea-level and Sr-ratio variations. J. Palaeogeogr. 2015, 4, 64–84. [Google Scholar] [CrossRef]
- Scotese, C.R.; Song, H.; Mills, B.J.; van der Meer, D.G. Phanerozoic paleotemperatures: The earth’s changing climate during the last 540 million years. Earth-Sci. Rev. 2021, 215, 103503. [Google Scholar] [CrossRef]
- Kiessling, W. Secular variations in the Phanerozoic reef system. In Phanerozoic Reef Patterns; Kiessling, W., Flügel, E., Golonka, J., Eds.; SEPM: Tulsa, OK, USA, 2002; pp. 625–690. [Google Scholar]
- Webb, G.E. Biologically induced carbonate Precipitation in reefs through time, Chapter 5. In Sedimentology of Ancient Reef the History and Systems; Stanley, G.D., Jr., Ed.; Academic/Plenum Publishers: New York, NY, USA, 2001; pp. 159–203. [Google Scholar]
- Riding, R.; Liang, L. Geobiology of microbial carbonates: Metazoan and seawater saturation state influences on secular trends during the Phanerozoic. Palaeogeog. Palaeoclimat. Palaeoecol. 2005, 219, 101–115. [Google Scholar] [CrossRef]
- Cohen, K.M.; Finney, S.C.; Gibbard, P.L.; Fan, J.-X. The ICS International Chronostratigraphic Chart. Episodes 2013, 35, 199–204. [Google Scholar] [CrossRef]
- Heckel, P.H. Carbonate buildups in the geologic record: A review. In Reefs in Time and Space; Laporte, L.F., Ed.; SEPM Special Publication; SEPM Society for Sedimentary Geology: Tulsa, OK, USA, 1974; Volume 18, pp. 90–155. [Google Scholar]
- Stanley, G.D., Jr. (Ed.) Introduction to reef ecosystems and their evolution, Chapter 1. In The History and Sedimentology of Ancient Reef Systems; Academic/Plenum Publishers: New York, NY, USA, 2001; pp. 1–39. [Google Scholar]
- Riding, R. Structure and composition of organic reefs and carbonate mud mounds: Concepts and categories. Earth-Sci. Rev. 2002, 58, 163–231. [Google Scholar] [CrossRef]
- Hubbard, D.K.; Gill, I.P.; Burke, R.B. The role of framework in modern reefs and its application to ancient systems. In The History and Sedimentology of Ancient Reef Systems; Stanley, G.D., Jr., Ed.; Academic/Plenum Publishers: New York, NY, USA, 2001; pp. 351–388. [Google Scholar]
- Kleypas, J.A.; Buddemeier, R.W.; Gattuso, J.-P. The future of coral reefs in an age of global change. Int. J. Earth Sci. 2001, 90, 426–437. [Google Scholar] [CrossRef]
- Hopley, D.; Smithers, S. Geomorphology of coral reefs with special reference to the Great Barrier Reef. In The Great Barrier Reef: Biology, Environment and Management; Hutchings, P., Kingsford, M., Hoegh-Guldberg, O., Eds.; CSIRO Publishing: Canberra, Australia, 2008; pp. 9–24. [Google Scholar]
- Wolfe, K.; Anthony, K.; Babcock, R.C.; Bay, L.; Bourne, D.G.; Burrows, D.; Byrne, M.; Deaker, D.J.; Diaz-Pulido, G.; Frade, P.R.; et al. Priority species to support the functional integrity of coral reefs. In Oceanography and Marine Biology, An Annual Review; Hawkins, S.J., Allcock, A.L., Bates, A.E., Evans, A.J., Firth, L.B., McQuaid, C.D., Russell, B.D., Smith, I.P., Swearer, S.E., Todd, P.A., Eds.; CRC Press: Boca Raton, FL, USA, 2021; Volume 58, pp. 179–318. ISBN 978-0-367-36794-7. [Google Scholar]
- Perry, C.T.; Spencer, T.; Kench, P.S. Carbonate budgets and reef production states: A geomorphic perspective on the ecological phase-shift concept. Coral Reefs 2008, 27, 853–866. [Google Scholar] [CrossRef]
- De Carlo, T.M.; Cohen, A.L. Dissepiments, density bands and signatures of thermal stress in Porites skeletons. Coral Reefs 2017, 36, 749–761. [Google Scholar] [CrossRef]
- Connell, J.H. Diversity in tropical rain forests and coral reefs. Science 1978, 199, 1302–1310. [Google Scholar] [CrossRef] [PubMed]
- Yu, K.-F.; Zhao, J.-X.; Roff, G.; Lybolt, M.; Feng, Y.-X.; Clark, T.; Li, S. High-precision U-series ages of transported coral blocks on Heron Reef (southern Great Barrier Reef) and storm activity during the past century. Palaeogeogr. Palaeoclim. Palaeoecol. 2012, 337–338, 23–36. [Google Scholar] [CrossRef]
- Clark, T.R.; Zhao, J.X.; Roff, G.; Feng, Y.-X.; Done, T.J.; Nothdurft, L.D.; Pandolfi, J.M. Discerning the timing and cause of historical mortality events in modern Porites from the Great Barrier Reef. Geochim Cosmochim Acta 2014, 138, 57–80. [Google Scholar] [CrossRef]
- Chen, T.; Li, S.; Zhao, J.X.; Feng, Y.X. Uranium-thorium dating of coral mortality and community shift in a highly disturbed inshore reef (Weizhou Island, northern South China Sea). Sci. Tot. Environ. 2021, 752, 141866. [Google Scholar] [CrossRef] [PubMed]
- Hendy, E.J.; Gagan, M.K.; Alibert, C.A.; McCulloch, M.T.; Lough, J.M.; Isdale, P.J. Abrupt decrease in tropical Pacific sea surface salinity at end of Little Ice Age. Science 2002, 295, 1511–1514. [Google Scholar] [CrossRef]
- Lough, J.M.; Lewis, S.E.; Cantin, N.E. Freshwater impacts in the central Great Barrier Reef: 1648–2011. Coral Reefs 2015, 34, 739–751. [Google Scholar] [CrossRef]
- Saha, N.; Webb, G.E.; Zhao, J.-X. Coral skeletal geochemistry as a monitor of inshore water quality. Sci. Tot. Environ. 2016, 566–567, 652–684. [Google Scholar] [CrossRef]
- Felis, T. Extending the Instrumental Record of Ocean-Atmosphere Variability into the Last Interglacial Using Tropical Corals. Oceanography 2020, 33, 68–79. [Google Scholar] [CrossRef]
- Thompson, D.M. Environmental records from coral skeletons: A decade of novel insights and innovation. Wiley Interdiscip. Rev. Clim. Chang. 2022, 13, e745. [Google Scholar] [CrossRef]
- Shirai, K.; Sowa, K.; Watanabe, T.; Sano, Y.; Nakamura, T.; Clode, P. Visualization of sub-daily skeletal growth patterns in massive Porites corals grown in Sr-enriched seawater. J. Struct. Biol. 2012, 180, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Mohtar, A.M.; Hughen, K.A.; Goodkin, N.F.; Streanga, I.-M.; Ramos, R.D.; Samanta, D.; Cervino, J.; Switzera, A.D. Coral-based proxy calibrations constrain ENSO-driven sea surface temperature and salinity gradients in the Western Pacific Warm Pool. Palaeogeogr. Palaeoclimat. Palaeoecol. 2021, 561, 110037. [Google Scholar] [CrossRef]
- Rodriguez-Ramirez, A.; Grove, C.A.; Zinke, J.; Pandolfi, J.M.; Zhao, J.X. Coral luminescence identifies the pacific decadal oscillation as a primary driver of river runoff variability impacting the southern Great Barrier Reef. PLoS ONE 2014, 9, e84305. [Google Scholar] [CrossRef]
- Abram, N.J.; Hargreaves, J.A.; Wright, N.M.; Thirumalai, K.; Ummenhofer, C.C.; England, M.H. Palaeoclimate perspectives on the Indian Ocean Dipole. Quat. Sci. Rev. 2020, 237, 106302. [Google Scholar] [CrossRef]
- Chappell, J.; Omura, A.; Esat, T.; McCulloch, M.; Pandolfi, J.; Ota, Y.; Pillans, B. Reconciliation of late Quaternary sea levels derived from coral terraces at Huon Peninsula with deep sea oxygen isotope records. Earth Planet. Sci. Lett. 1996, 141, 227–236. [Google Scholar] [CrossRef]
- Roehl, P.O.; Choquette, P.W. Carbonate Petroleum Reservoirs; Springer: New York, NY, USA, 1985; pp. 1–622. [Google Scholar]
- Macintyre, I.G.; Marshall, J.F. Submarine lithification in coral reefs: Some facts and misconceptions. In Proceedings of the 6th International Coral Reef Symposium, Townsville, Australia, 8–12 August 1988; Choat, J.H., Ed.; 1988; Volume 1, pp. 263–272. [Google Scholar]
- Harrington, L.; Fabricius, K.; De’ath, G.; Negri, A. Recognition and selection of settlement substrata determine post-settlement survival in corals. Ecology 2004, 85, 3428–3437. [Google Scholar] [CrossRef]
- Madin, J.S.; Dell, A.I.; Madin, E.M.P.; Nash, M.C. Spatial variation in mechanical properties of coral reef substrate and implications for coral colony integrity. Coral Reefs 2013, 32, 173–179. [Google Scholar] [CrossRef]
- Ceccarelli, D.M.; McLeod, I.M.; Boström-Einarsson, L.; Bryan, S.E.; Chartrand, K.M.; Emslie, M.J.; Gibbs, M.T.; Rivero, M.G.; Hein, M.Y.; Heyward, A.; et al. Substrate stabilisation and small structures in coral restoration: State of knowledge, and considerations for management and implementation. PLoS ONE 2020, 15, e0240846. [Google Scholar] [CrossRef]
- Webb, G.E.; Baker, J.C.; Jell, J.S. Inferred syngenetic textural evolution in Holocene cryptic reefal microbialites, Heron Reef, Great Barrier Reef, Australia. Geology 1998, 26, 355–358. [Google Scholar] [CrossRef]
- Nothdurft, L.D.; Webb, G.E. Earliest diagenesis in scleractinian coral skeletons: Implications for palaeoclimate-sensitive geochemical archives. Facies 2009, 55, 161–201. [Google Scholar] [CrossRef]
- Westphal, H.; Heindel, K.; Brandano, M.; Peckmann, J. Genesis of microbialites as contemporaneous framework components of deglacial coral reefs, Tahiti (IODP 310). Facies 2010, 56, 337–352. [Google Scholar] [CrossRef]
- Braga, J.C.; Puga-Bernabeua, A.; Heindel, K.; Patterson, M.A.; Birgeld, D.; Peckmann, J.; Sanchez-Almazo, I.M.; Webster, J.M.; Yokoyama, Y.; Riding, R. Microbialites in Last Glacial Maximum and deglacial reefs of the Great Barrier Reef (IODP Expedition 325, NE Australia). Palaeogeogr. Palaeoclimat. Palaeoecol. 2019, 514, 1–17. [Google Scholar] [CrossRef]
- Nash, M.C.; Troitzsch, U.; Opdyke, B.N.; Trafford, J.M.; Russell, B.D.; Kline, D.I. First discovery of dolomite and magnesite in living coralline algae and its geobiological Implications. Biogeosciences 2011, 8, 3331–3340. [Google Scholar] [CrossRef]
- Cornwall, C.E.; Carlot, J.; Branson, O.; Courtney, T.A.; Harvey, B.P.; Perry, C.T.; Andersson, A.J.; Diaz-Pulido, G.; Johnson, M.D.; Kennedy, E.; et al. Crustose coralline algae can contribute more than corals to coral reef carbonate production. Commun. Earth Environ. 2023, 4, 105. [Google Scholar] [CrossRef]
- Maxwell, W.G.H.; Jell, J.S.; McKellar, R.G. Differentiation of carbonate sediments on the Heron Island Reef. J. Sedim. Petrol. 1964, 34, 294–308. [Google Scholar] [CrossRef]
- Scoffin, T.P.; Tudhope, A.W. Sedimentary environments of the Central Region of the Great Barrier Reef of Australia. Coral Reefs 1985, 4, 81–93. [Google Scholar] [CrossRef]
- Dawson, J.L.; Smithers, S.G. Carbonate sediment production, transport, and supply to a coral cay at Raine Reef, northern Great Barrier Reef, Australia: A facies approach. J. Sed. Res. 2014, 84, 1120–1138. [Google Scholar] [CrossRef]
- Kench, P.S. Effects of environmental and climatic changes on coral reef islands. Ann. Rev. Mar. Sci. 2025, 17, 301–324. [Google Scholar] [CrossRef]
- Ladd, H.S. The problem of coral reefs. Sci. Mon. 1949, 69, 297–305. [Google Scholar]
- Blanchon, P.; Jones, B.; Kalbfleisch, W. Anatomy of a fringing reef around Grand Cayman; storm rubble, not coral framework. J. Sediment. Res. 1997, 67, 1–16. [Google Scholar] [CrossRef]
- Hubbard, D.K.; Burke, R.B.; Gill, I.P. Where’s the reef: The role of framework in the Holocene. Carbonates Evaporites 1998, 13, 3–9. [Google Scholar] [CrossRef]
- Braithwaite, C.J.R.; Montaggioni, L.F.; Camoin, G.F.; Dalmasso, H.; Dullo, W.-C.; Mangini, A. Origins and development of Holocene coral reefs: A revisited model based on reef boreholes in the Seychelles, Indian Ocean. Int. J. Earth Sci. 2000, 89, 431–445. [Google Scholar] [CrossRef]
- Riegl, B. Inhibition of reef framework by frequent disturbance: Examples from the Arabian Gulf, South Africa, and the Cayman Islands. Palaeogeog. Palaeoclimat. Palaeoecol. 2001, 175, 79–101. [Google Scholar] [CrossRef]
- Grotzinger, J.P. Introduction to Precambrian reefs. In Reefs, Canada and Adjacent Areas; Geldsetzer, H.H.J., James, N.P., Tebbutt, G.E., Eds.; Canadian Society of Petroleum Geologists: Calgary, AB, Canada, 1989; Volume 13, pp. 9–12. [Google Scholar]
- Schlager, W. Benthic carbonate factories of the Phanerozoic. Int. J. Earth Sci. 2003, 92, 445–464. [Google Scholar] [CrossRef]
- Hallock, P.; Schlager, W. Nutrient excess and the demise of coral reefs and carbonate platforms. Palaios 1986, 1, 389–398. [Google Scholar] [CrossRef]
- Riding, R. Temporal variation in calcification in marine cyanobacteria. J. Geol. Soc. 1992, 149, 979–989. [Google Scholar] [CrossRef]
- Riding, R.; Liang, L.; Braga, J.C. Millennial-scale ocean acidification and late Quaternary decline of cryptic bacterial crusts in tropical reefs. Geobiology 2014, 12, 387–405. [Google Scholar] [CrossRef]
- Reijmer, J.J.G. Marine carbonate factories: Review and update. Sedimentology 2021, 68, 1729–1796. [Google Scholar] [CrossRef]
- Rasser, M.W.; Riegl, B. Holocene coral reef rubble and its binding agents. Coral Reefs 2002, 21, 57–72. [Google Scholar] [CrossRef]
- Blanchon, P.; Richards, S.; Bernal, J.P.; Cerdeira-Estrada, S.; Ibarra, M.S.; Corona-Martínez, L.; Martell-Dubois, R. Retrograde accretion of a Caribbean fringing reef controlled by hurricanes and sea-level rise. Front. Earth Sci. 2017, 5, 78. [Google Scholar] [CrossRef]
- Wolfe, K.; Kenyon, T.M.; Mumby, P.J. The biology and ecology of coral rubble and implications for the future of coral reefs. Coral Reefs 2021, 40, 1769–1806. [Google Scholar] [CrossRef]
- Kenyon, T.M.; Doropoulos, C.; Wolfe, K.; Webb, G.E.; Dove, S.; Harris, D.; Mumby, P.J. Coral rubble dynamics in the Anthropocene and implications for reef recovery. Limnol. Oceanogr. 2023, 68, 110–147. [Google Scholar] [CrossRef]
- Kenyon, T.M.; Mumby, P.J.; Webb, G.E.; Dove, S.; Newman, S.P.; Doropoulos, C. Trajectories and agents of binding in stabilized and unstabilized coral rubble across environmental gradients. Ecosphere 2025, 16, e70195. [Google Scholar] [CrossRef]
- Littler, M.M.; Doty, M.S. Ecological components structuring the seaward edges of tropical Pacific reefs: The distribution, communities, and productivity of Porolithon. J. Ecol. 1975, 63, 117–129. [Google Scholar] [CrossRef]
- Adey, W.H. Algal ridges of the Caribbean Sea and West Indies. Phycologia 1978, 17, 361–367. [Google Scholar] [CrossRef]
- Insalaco, E. The descriptive nomenclature and classification of growth fabrics in fossil scleractinian reefs. Sediment. Geol. 1998, 118, 159–186. [Google Scholar] [CrossRef]
- Webb, G.E. Was Phanerozoic reef history controlled by the distribution of non-enzymatically secreted reef carbonates (microbial carbonates and biologically induced cement)? Sedimentology 1996, 43, 947–971. [Google Scholar] [CrossRef]
- Dunham, R.J. Classification of carbonate rocks according to depositional texture. In Classification of Carbonate Rocks; Ham, W.E., Ed.; American Association of Petroleum Geologists: Tulsa, OK, USA, 1962; Volume 1, pp. 108–121. [Google Scholar]
- Embry, A.F.; Klovan, J.E. A Late Devonian reef tract on northeastern Banks Island, Northwest Territories. Bull. Can. Pet. Geol. 1971, 33, 730–781. [Google Scholar]
- Wulff, J.L. Sponge-mediated coral reef growth and rejuvenation. Coral Reefs 1984, 3, 157–163. [Google Scholar] [CrossRef]
- Wahlman, G.P. Upper Carboniferous-lower Permian (Bashkirian-Kungurian) mounds and reefs. In Phanerozoic Reef Patterns; Kiessling, W., Flügel, E., Golonka, J., Eds.; SEPM Special Publication; SEPM Society for Sedimentary Geology: Tulsa, OK, USA, 2002; Volume 72, pp. 271–338. [Google Scholar]
- De Bakker, D.M.; Perry, C.T.; Magaña-Gallegos, E.; Pérez-Cervantes, E.; Alvarez-Filip, L. Fine-grained sediment production by endolithic sponges on Caribbean coral reefs. Limnol. Oceanogr. 2024, 69, 2015–2028. [Google Scholar] [CrossRef]
- McCutcheon, J.; Nothdurft, L.D.; Webb, G.E.; Paterson, D.; Southam, G. Beachrock formation via microbial dissolution and re-precipitation of carbonate minerals. Mar. Geol. 2016, 382, 122–135. [Google Scholar] [CrossRef]
- Scoffin, T.P.; Stearn, C.W.; Boucher, D.; Frydl, P.; Hawkins, C.M.; Hunter, I.G. Calcium carbonate budget of a fringing reef on the west coast of Barbados: Part II, Erosion, sediments and internal structure. Bull. Mar. Sci. 1980, 30, 475–508. [Google Scholar]
- Yarlett, R.T.; Perry, C.T.; Wilson, R.W. Quantifying production rates and size fractions of parrotfish-derived sediment: A key functional role on Maldivian coral reefs. Ecol. Evol. 2021, 11, 16250–16265. [Google Scholar] [CrossRef] [PubMed]
- Hughes, T.P.; Rodrigues, M.J.; Bellwood, D.R.; Ceccarelli, D.; Hoegh-Guldberg, O.; McCook, L.; Moltschaniwskyj, N.; Pratchett, M.S.; Steneck, R.S.; Willis, B. Phase Shifts, Herbivory, and the Resilience of Coral Reefs to Climate Change. Curr. Biol. 2007, 17, 360–365. [Google Scholar] [CrossRef] [PubMed]
- MacNeil, A.J.; Jones, B. Stromatoporoid growth forms and Devonian reef fabrics in the Upper Devonian Alexandra Reef System, Canada—Insight on the challenges of applying Devonian reef facies models. Sedimentology 2016, 63, 1425–1457. [Google Scholar] [CrossRef]
- Riding, R.; Virgone, A. Hybrid Carbonates: In situ abiotic, microbial and skeletal co-precipitates. Earth-Sci. Rev. 2020, 208, 103300. [Google Scholar] [CrossRef]
- Szilagyi, Z.; Webster, J.M.; Patterson, M.A.; Hips, K.; Riding, R.; Foley, M.; Humblet, M.; Yokoyama, Y.; Liang, L.; Gischler, E.; et al. Controls on the spatio-temporal distribution of microbialite crusts on the Great Barrier Reef over the past 30,000 years. Mar. Geol. 2020, 429, 106312. [Google Scholar] [CrossRef]
- Hubbard, D.K. Reef biology and geology—Not just a matter of scale. In Coral Reefs in the Anthropocene; Birkeland, C., Ed.; Springer: Dordrecht, The Netherlands, 2015; pp. 43–66. [Google Scholar] [CrossRef]
- Camoin, G.F.; Montaggioni, L.F. High energy coralgal-stromatolite frameworks from Holocene reefs (Tahiti, French Polynesia). Sedimentology 1994, 41, 655–676. [Google Scholar] [CrossRef]
- Tsien, H.H. Ancient reefs and reef carbonates. In Proceedings of the 4th International Coral Symposium; Gomez, E.D., Birkeland, C.E., Eds.; University of Philippines: Manila, Philippines, 1981; Volume 1, pp. 601–609. [Google Scholar]
- Wilson, J.L. Carbonate Facies in Geologic History; Springer: New York, NY, USA, 1975; pp. 1–471. [Google Scholar]
- Jell, J.S.; Flood, P.G. Guide to the Geology of Reefs of the Capricorn and Bunker Groups, Great Barrier Reef Province, with Special Reference to Heron Reef; Department of Geology, University of Queensland: Brisbane, QLD, Australia, 1978; Volume 8, pp. 1–85. [Google Scholar]
- Jell, J.S.; Webb, G.E. Geology of Heron Island and adjacent reefs, Great Barrier Reef, Australia. Episodes 2012, 35, 110–119. [Google Scholar] [CrossRef]
- Playford, P.E. Platform-margin and marginal slope relationships in Devonian reef complexes of the Canning Basin. In The Canning Basin, Proceedings of the Geological Society of Australia and Petroleum Exploration Society of Australia Symposium, Perth, WA, Australia, 27–29 June 1984; Purcell, P.G., Ed.; Geological Society of Australia and Petroleum Exploration Society of Australia: Perth, WA, Australia, 1984; pp. 189–215. [Google Scholar]
- Davies, P.J.; Marshall, J.F.; Hopley, D. Relationships between reef growth and sea level in the Great Barrier Reef. In Proceedings of the Fifth International Coral Reef Congress, Tahiti, France, 27 May–1 June 1985; Gabrie, C., Toffart, J.L., Salvat, B., Eds.; Antenne Museum-Ephe: Moorea, France, 1985; Volume 3, pp. 95–103. [Google Scholar]
- Neumann, A.C.; Macintyre, I.G. Reef response to sea level rise: Keep up catch up or give up. In Proceedings of the Fifth International Coral Reef Congress, Tahiti, France, 27 May–1 June 1985; Gabrie, C., Toffart, J.L., Salvat, B., Eds.; Antenne Museum-Ephe: Moorea, France, 1985; Volume 3, pp. 105–110. [Google Scholar]
- Blanchon, P. Reef demise and back-stepping during the last interglacial, northeast Yucatan. Coral Reefs 2010, 29, 481–498. [Google Scholar] [CrossRef]
- Maxwell, W.G.H. Atlas of the Great Barrier Reef; Elsevier: Amsterdam, The Netherlands, 1968; pp. 1–258. [Google Scholar]
- Braithwaite, C.J.; Dalmasso, H.; Gilmour, M.A.; Harkness, D.D.; Henderson, G.M.; Kay, R.L.F.; Kroon, D.; Montaggioni, L.F.; Wilson, P.A. The Great Barrier Reef: The chronological record from a new borehole. J. Sediment. Res. 2004, 74, 298–310. [Google Scholar] [CrossRef]
- Lehrmann, D.J.; Goldhammer, R.K. Secular Variation in Parasequence and Facies Stacking Patterns of Platform Carbonates: A Guide to Application of Stacking-Patterns Analysis in Strata of Diverse Ages and Settings. In Advances in Carbonate Sequence Stratigraphy: Application to Reservoirs, Outcrops and Models; Harris, P.M., Simo, J.A., Eds.; SEPM Special Publication; SEPM Society for Sedimentary Geology: Tulsa, OK, USA, 1999; Volume 63, pp. 187–225. [Google Scholar] [CrossRef]
- Woodroffe, C.D.; Webster, J.M. Coral reefs and sea-level change. Mar. Geol. 2014, 352, 248–267. [Google Scholar] [CrossRef]
- Toscano, M.A.; Lundberg, J. Submerged Late Pleistocene reefs on the tectonically stable S.E. Florida margin: High-precision geochronology, stratigraphy, resolution of Substage 5a sea-level elevation, and orbital forcing. Quat. Sci. Rev. 1999, 18, 753–767. [Google Scholar] [CrossRef]
- Lidz, B.H. Pleistocene Corals of the Florida Keys: Architects of Imposing Reefs—Why? J. Coast. Res. 2006, 224, 750–759. [Google Scholar] [CrossRef]
- Muhs, D.R.; Simmons, K.R.; Schumann, R.R.; Halley, R.B. Sea-level history of the past two interglacial periods: New evidence from U-series dating of reef corals from south Florida. Quat. Sci. Rev. 2011, 30, 570–590. [Google Scholar] [CrossRef]
- Church, J.A.; Clark, P.U.; Cazenave, A.; Gregory, J.M.; Jevrejeva, S.; Levermann, A.; Merrifield, M.A.; Milne, G.A.; Nerem, R.S.; Nunn, P.D.; et al. Sea Level Change. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I; Stocker, T.F., Qin, D., Plattner, G.-K., Tognor, M., Allen, S.K., Boschung, J., Nauels, A., Zia, Y., Bex, V., Midgley, P.M., Eds.; Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013; pp. 1137–1216. [Google Scholar]
- Van Wagoner, J.C.; Posamentier, H.W.; Mitchum, R.M.; Vail, P.R.; Sarg, J.F.; Loutit, T.S.; Hardenbol, J. An overview of sequence stratigraphy and key definitions. In Sea Level Changes––An Integrated Approach; Wilgus, C.K., Hastings, B.S., Kendall, C.G.S.C., Posamentier, H.W., Ross, C.A., Van Wagoner, J.C., Eds.; SEPM Special Publication; SEPM Society for Sedimentary Geology: Tulsa, OK, USA, 1988; Volume 42, pp. 39–45. [Google Scholar]
- Symonds, P.A.; Davies, P.J.; Parisi, A. Structure and stratigraphy of the Central Great Barrier Reef. Bur. Min. Resour. J. Austral. Geol. Geophys. 1983, 8, 277–291. [Google Scholar]
- Larcombe, P.; Woolfe, K.J. Increased sediment supply to the Great Barrier Reef will not increase sediment accumulation at most coral reefs. Coral Reefs 1999, 18, 163–169. [Google Scholar] [CrossRef]
- Smithers, S.; Larcombe, P. Late Holocene initiation and growth of a nearshore turbid-zone coral reef: Paluma Shoals, central Great Barrier Reef, Australia. Coral Reefs 2003, 22, 499–505. [Google Scholar] [CrossRef]
- Perry, C.T.; Smithers, S.G.; Gulliver, P.; Browne, N.K. Evidence of very rapid reef accretion and reef growth under high turbidity and terrigenous sedimentation. Geology 2012, 40, 719–722. [Google Scholar] [CrossRef]
- Sansoleimani, A.; Webb, G.E.; Harris, D.L.; Phinn, S.R.; Roelfsema, C.M. Antecedent topography and active tectonic controls on Holocene reef geomorphology in the Great Barrier Reef. Geomorphology 2022, 413, 108354. [Google Scholar] [CrossRef]
- Deep Reef Explorer. Available online: www.deepreef.org/2010/07/06/3dgbr-bathy/ (accessed on 28 March 2025).
- Marshall, J.F.; Davies, P.J. Last interglacial reef growth beneath modern reefs in the southern Great Barrier Reef. Nature 1984, 307, 44–46. [Google Scholar] [CrossRef]
- Webster, J.M.; Davies, P.J. Coral variation in two deep drill cores: Significance for the Pleistocene development of the Great Barrier Reef. Sed. Geol. 2003, 159, 61–80. [Google Scholar] [CrossRef]
- Richards, H.C.; Hill, D. Great Barrier Reef bores, 1926 and 1937. Descriptions, analyses and interpretations. Rep. Great Barrier Reef Com. 1942, 5, 1–111. [Google Scholar]
- Derrington, S.S. Completion Report: H.B.R. No. 1 Bore, Wreck Island, Queensland; Petroleum Search Subsidy Acts Publication No. 4; Bureau of Mineral Resources, Geology and Geophysics, Commonwealth of Australia: Canberra, Australia, 1960; pp. 1–14. [Google Scholar]
- McKenzie, J.A.; Davies, P.J.; Palmer-Julson, A.A.; Betzler, C.G.; Brachert, T.C.; Chen, M.-P.P.; Crumière, J.-P.; Dix, G.R.; Droxler, A.W.; Feary, D.A.; et al. Proceedings of the Ocean Drilling Program, Scientific Results, Northeast Australian Margin; Ocean Drilling Program: College Station, TX, USA, 1993; Volume 132–133, pp. 1–903. [Google Scholar]
- Davies, P.J.; Symonds, P.A.; Feary, D.A.; Pigram, C.J. The evolution of the carbonate platforms of northeast Australia. In Controls on Carbonate Platform and Basin Development; Crevello, P.D., Wilson, J.L., Sarg, J.F., Read, J.F., Eds.; SEPM Special Publication; Society of Economic Paleontologists and Mineralogists: Tulsa, OK, USA, 1989; Volume 44, pp. 233–258. [Google Scholar]
- Betzler, C. Ecological controls on geometries of carbonate platforms: Miocene/ Pliocene shallow-water microfaunas and carbonate biofacies from the Queensland Plateau (NE Australia). Facies 1997, 37, 147–166. [Google Scholar] [CrossRef]
- Betzler, C.; Hübscher, C.; Lindhorst, S.; Lüdmann, T.; Hincke, C.; Beaman, R.J.; Webster, J.M. Seismic stratigraphic and sedimentary record of a partial carbonate platform drowning, Queensland Plateau, north-east Australia. Mar. Geol. 2024, 470, 107255. [Google Scholar] [CrossRef]
- Ehrenberg, S.N.N.; McArthur, J.M.M.; Thirlwall, M.F.F. Growth, demise, and dolomitization of Miocene carbonate platforms on the Marion Plateau, offshore NE Australia. J. Sediment. Res. 2006, 76, 91–116. [Google Scholar] [CrossRef]
- Isern, A.R.; McKenzie, J.A.; Feary, D.A. The role of sea-surface temperature as a control on carbonate platform development in the western Coral Sea. Palaeogeogr. Palaeoclimat. Palaeoecol. 1996, 124, 247–272. [Google Scholar] [CrossRef]
- Petrick, B.; Reuning, L.; Auderset, A.; Pfeiffer, M.; Auer, G.; Schwark, L. High sea surface temperatures were a prerequisite for the development and expansion of the Great Barrier Reef. Sci. Adv. 2024, 10, eado2058. [Google Scholar] [CrossRef]
- Petrick, B.; Reuning, L.; Pfeiffer, M.; Auer, G.; Schwark, L. Impact of the Late Miocene Cooling on the loss of coral reefs in the Central Indo-Pacific. Clim. Past 2025, 21, 405–417. [Google Scholar] [CrossRef]
- Dubois, N.; Kindler, P.; Spezzaferri, S.; Coric, S. The initiation of the southern central Great Barrier Reef: New multiproxy data from Pleistocene distal sediments from the Marion Plateau (NE Australia). Mar. Geol. 2008, 250, 223–233. [Google Scholar] [CrossRef]
- Paleomap Project, Christopher, R. Scotese. Available online: www.scotese.com (accessed on 5 August 2024).
- Scotese, C.R. An atlas of Phanerozoic paleogeographic maps: The seas come in and the seas go out. Annu. Rev. Earth Planet. Sci. 2021, 49, 679–728. [Google Scholar] [CrossRef]
- Tcherepanov, E.N.; Droxler, A.W.; Dickens, G.R.; Bentley, S.J.; Peterson, L.C.; Beaufort, L.; Daniell, J. Neogene evolution of the mixed carbonate- siliciclastic system in the Gulf of Papua. J. Geophys. Res. 2008, 113, F01S21. [Google Scholar] [CrossRef]
- Tcherepanov, E.N.; Droxler, A.W.; Lapointe, P.; Mohn, K. Carbonate seismic stratigraphy of the Gulf of Papua mixed depositional system: Neogene stratigraphic signature and eustatic control. Basin Res. 2008, 20, 185–209. [Google Scholar] [CrossRef]
- Pigram, C.J.; Davies, P.J.; Feary, D.A.; Symonds, P.A. Tectonic controls on carbonate platform evolution in southern Papua New Guinea: Passive margin to foreland basin. Geology 1989, 17, 199–202. [Google Scholar] [CrossRef]
- DiCaprio, L.; Müller, R.D.; Gurnis, M. A dynamic process for drowning carbonate reefs on the northeastern Australian margin. Geology 2010, 38, 11–14. [Google Scholar] [CrossRef]
- Jell, J.S. Eastern continental margin, sect. 8.3. In Geology of Queensland; Jell, P.A., Ed.; Geological Survey of Queensland: Brisbane, QLD, Australia, 2013; pp. 606–629. [Google Scholar]
- Quigley, M.C.; Clark, D.; Sandiford, M.J.G.S. Tectonic geomorphology of Australia. Geol. Soc. Lond. Spec. Publ. 2010, 346, 243–265. [Google Scholar] [CrossRef]
- Dechnik, B.; Webster, J.M.; Webb, G.E.; Nothdurft, L.; Dutton, A.; Braga, J.C.; Zhao, J.-X.; Duce, S.; Sadler, J. The evolution of the Great Barrier Reef during the Last Interglacial Period. Glob. Planet. Chang. 2017, 149, 53–71. [Google Scholar] [CrossRef]
- Salas-Saavedra, M.; Dechnik, B.; Webb, G.E.; Webster, J.M.; Zhao, J.-x.; Nothdurft, L.D.; Clark, T.R.; Graham, T.; Duce, S. Holocene reef growth over irregular Pleistocene karst confirms major influence of hydrodynamic factors on Holocene reef development. Quat. Sci. Rev. 2018, 180, 157–176. [Google Scholar] [CrossRef]
- Dechnik, B.; Webster, J.M.; Davies, P.J.; Braga, J.-C.; Reimer, P.J. Holocene “turn-on” and evolution of the Southern Great Barrier Reef: Revisiting reef cores from the Capricorn Bunker Group. Mar. Geol. 2015, 363, 174–190. [Google Scholar] [CrossRef]
- Kleypas, J.A.; Hopley, D. Reef development across a broad continental shelf, southern Great Barrier Reef, Australia. In Proceedings of the 7th International Coral Reef Symposium, Guam, Micronesia, 22–27 June 1992; Richmond, R.H., Ed.; University of Guam Press: Gaum, Micronesia; Volume 2, pp. 1129–1141. [Google Scholar]
- Rynn, J.M.W. Commentary on Seismic Risk Estimates and Related Uncertainties for Northeastern Australia (Queensland and Northeastern New South Wales); Special Paper Report; University of Queensland: Brisbane, QLD, Australia, 1989; pp. 1–90. [Google Scholar]
- Sansoleimani, A.; Webb, G.E.; Harris, D.L.; Phinn, S.R.; Roelfsema, C.M. The impact of neotectonics on the geomorphology of the northern Great Barrier Reef. Coral Reefs 2025, 44, 775–789. [Google Scholar] [CrossRef]
- Murray-Wallace, C.; Belperio, A. The last interglacial shoreline in Australia—A review. Quat. Sci. Rev. 1991, 10, 441–461. [Google Scholar] [CrossRef]
- Sandiford, M. The tilting continent: A new constraint on the dynamic topographic field from Australia. Earth Planet. Sci. Lett. 2007, 261, 152–163. [Google Scholar] [CrossRef]
- Rovere, A.; Pico, T.; Richards, F.D.; O’Leary, M.J.; Mitrovica, J.X.; Goodwin, I.D.; Austermann, J.; Latychev, K. Influence of reef isostasy, dynamic topography, and glacial isostatic adjustment on sea-level records in Northeastern Australia. Com. Earth Environ. 2023, 4, 328. [Google Scholar] [CrossRef]
- Lin, Y.; Whitehouse, P.L.; Hibbert, F.D.; Woodroffe, S.A.; Hinestrosa, G.; Webster, J.M. Relative sea level response to mixed carbonate-siliciclastic sediment loading along the Great Barrier Reef margin. Earth Planet. Sci. Lett. 2023, 607, 118066. [Google Scholar] [CrossRef]
- Hopley, D. The Geomorphology of the Great Barrier Reef: Quaternary Development of Coral Reefs; John Wiley: New York, NY, USA, 1982; pp. 1–453. [Google Scholar]
- Mory, A.J.; Beere, G.M. Geology of the Onshore Bonaparte and Ord Basins in Western Australia. Geological Survey of Western Australia: Bulletin; State Printing Division: Nashville, TN, USA, 1988; Volume 134, pp. 1–184. [Google Scholar]
- Yule, C.T.G.; Daniell, J.; Edwards, D.S.; Rollet, N.; Roberts, E.M. Reconciling the onshore/offshore stratigraphy of the Canning Basin and implications for petroleum prospectivity. Aust. J. Earth Sci. 2023, 70, 691–715. [Google Scholar] [CrossRef]
- Lehmann, P.R. The stratigraphy, palaeogeography and petroleum potential of the Lower to lower Upper Devonian sequence in the Canning Basin. In The Canning Basin, W.A., Proceedings of the Geological Society of Australia and Petroleum Exploration Society of Australia Symposium, Perth, WA, Australia, 27–29 June 1984; Purcell, P.G., Ed.; Geological Society of Australia and Petroleum Exploration Society of Australia: Perth, WA, Australia, 1984; pp. 253–275. [Google Scholar]
- Begg, J. Structuring and controls on Devonian reef development on the north-west Barbwire and adjacent terraces, Canning Basin. APPEA J. 1987, 27, 137–151. [Google Scholar] [CrossRef]
- Wallace, M.W. Origin of dolomitization on the Barbwire Terrace, Canning Basin, Western Australia. Sedimentology 1990, 37, 105–122. [Google Scholar] [CrossRef]
- Spaak, G.; Edwards, D.S.; Allen, H.J.; Grotheer, H.; Summons, R.E.; Coolen, M.J.L.; Grice, K. Extent and persistence of photic zone euxinia in Middle–Late Devonian seas—Insights from the Canning Basin and implications for petroleum source rock formation. Mar. Petrol. Geol. 2018, 93, 33–56. [Google Scholar] [CrossRef]
- Hardman, E.T. Report on the Geology of the Kimberley District, Western Australia; Western Australian Parliamentary Papers number 31 of 1884; Government Printer: Perth, WA, Australia, 1884. [Google Scholar]
- Wade, A. Petroleum Prospects Kimberley District of Western Australia and Northern Territory; Commonwealth of Australia: Melbourne, Australia, 1924; pp. 1–63. [Google Scholar]
- Kerans, C. Petrology of Devonian and Carboniferous Carbonates of the Canning and Bonaparte Basins; Report 12; Western Australia Mining and Petroleum Research Institute: Perth, WA, Australia, 1985; pp. 1–203. ISBN 0730900731. [Google Scholar]
- Moors, H.T.; Gardner, W.E.; Davis, J. Geology of the Blina oilfield. In The Canning Basin, W.A., Proceedings of the Geological Society of Australia and Petroleum Exploration Society of Australia Symposium, Perth, WA, Australia, 27–29 June 1984; Purcell, P.G., Ed.; Geological Society of Australia and Petroleum Exploration Society of Australia: Perth, WA, Australia, 1984; pp. 277–283. [Google Scholar]
- Wallace, M.W.; Middleton, H.A.; Johns, B.; Marshallsea, S. Hydrocarbons and Mississippi Valley-type sulfides in the Devonian Reef Complexes of the eastern Lennard Shelf, Canning Basin, Western Australia. In The Sedimentary Basins of Western Australia, Volume 3; Keep, M., Moss, S.J., Eds.; Petroleum Exploration Society of Australia: Perth, WA, Australia, 2002; pp. 1–21. [Google Scholar]
- Brown, S.A.; Boserio, I.M.; Jackson, K.S.; Spence, K.W. The geological evolution of the Canning Basin; implications for petroleum exploration. In The Canning Basin W.A.: Proceedings of the Geological Society of Australia/Petroleum Exploration Society of Australia Canning Basin Symposium, Perth, W.A.; Purcell, P.G., Ed.; Geological Society of Australia/Petroleum Exploration Society of Australia: Perth, WA, Australia, 1984; pp. 85–96. [Google Scholar]
- Drummond, B.J.; Etheridge, M.A.; Davies, P.J.; Middleton, M.F. Half-graben model for the structural evolution of the Fitzroy Trough, Canning Basin, and implications for resource exploration. APEA J. 1988, 28, 76–86. [Google Scholar] [CrossRef]
- Mory, A.J.; Haines, P.A. A Paleozoic Perspective of Western Australia. In Proceedings of the West Australian Basins Symposium 2013, Perth, WA, Australia, 18–21 August 2013; Petroleum Exploration Society of Australia: Perth, WA, Australia, 2013; pp. 1–25. [Google Scholar]
- Jell, J.S. Lower and Middle Devonian of Queensland, Australia. In Devonian of the World; McMillan, N.J., Embry, A.F., Glass, D.J., Eds.; Canadian Society of Petroleum Geologists: Calgary, AB, Canada, 1988; Volume 1, pp. 755–772. [Google Scholar]
- Webby, B.D.; Zhen, Y.Y. Silurian and Devonian clathrodictyids and other stromatoporoids from the Broken River region, North Queensland. Alcheringa 1997, 21, 1–56. [Google Scholar] [CrossRef]
- Jell, J.S.; Zhen, Y.Y. Middle Devonian rugose coral biostratigraphy of the Fanning River Group, north Queensland, Australia. Cour. Forschungsinst. Senckenberg. 1994, 172, 1–6. [Google Scholar]
- Zhen, Y.-Y. Succession of coral associations during a Givetian transgressive-regressive cycle in Queensland. Acta Palaeont. Pol. 1996, 41, 59–88. [Google Scholar]
- Zhen, Y.Y.; Wright, A.J.; Jell, J.S. Rugose coral diversifications and migrations in the Devonian of Australasia. Hist. Biol. 2001, 15, 61–76. [Google Scholar] [CrossRef]
- Henderson, R.A.; Withnall, I.W. Broken River Province. In Geology of Queensland; Jell, P.A., Ed.; Geological Survey of Queensland: Brisbane, QLD, Australia, 2013; pp. 250–279. [Google Scholar]
- Henderson, R.A.; Donchak, P.J.T. Hodgkinson Province. In Geology of Queensland; Jell, P.A., Ed.; Geological Survey of Queensland: Brisbane, QLD, Australia, 2013; pp. 229–249. [Google Scholar]
- Becker, R.T.; Marshall, J.E.A.; Da Silva, A.-C.; Agterberg, F.P.; Gradstein, F.M.; Ogg, J.G. The Devonian Period. In Geologic Time Scale 2020, 1st ed.; Gradstein, F.M., Ogg, J.G., Schmitz, M.D., Ogg, G.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; Volume 2, pp. 733–810. [Google Scholar] [CrossRef]
- Brugger, J.; Hofmann, M.; Petri, S.; Feulner, G. On the sensitivity of the Devonian climate to continental configuration, vegetation cover, orbital configuration, CO2 concentration, and insolation. Paleoceanogr. Paleoclimat. 2019, 34, 1375–1398. [Google Scholar] [CrossRef]
- Chen, B.; Ma, X.; Mills, B.J.W.; Qie, W.; Joachimski, M.M.; Shen, S.; Wang, C.; Xu, H.; Wang, X. Devonian paleoclimate and its drivers: A reassessment based on a new conodont δ18O record from South China. Earth-Sci. Rev. 2021, 222, 103814. [Google Scholar] [CrossRef]
- Algeo, T.J.; Berner, R.; Maynard, J.; Scheckler, S. Late Devonian oceanic anoxic events and biotic crises: “Rooted” in the evolution of vascular plants. GSA Today 1995, 5, 64–66. [Google Scholar]
- Algeo, T.J.; Scheckler, S. Land plant evolution and weathering rate changes in the Devonian. J. Earth Sci. 2010, 21, 75–78. [Google Scholar] [CrossRef]
- Davies, N.S.; Gibling, M.R. Cambrian to Devonian evolution of alluvial systems: The sedimentological impact of the earliest land plants. Earth-Sci. Rev. 2010, 98, 171–200. [Google Scholar] [CrossRef]
- Capel, E.; Cleal, C.J.; Xue, J.; Monnet, C.; Servais, T.; Cascales-Miñana, B. The Silurian-Devonian terrestrial revolution: Diversity patterns and sampling bias of the vascular plant macrofossil record. Earth Sci. Rev. 2022, 231, 104085. [Google Scholar] [CrossRef]
- Long, J.A. The Rise of Fishes; University of New South Wales Press: Sydney, Australia, 1995; pp. 1–223. [Google Scholar]
- Dahl, T.W.; Hammarlund, E.U.; Anbar, A.D.; Bond, D.P.G.; Gill, B.C.; Gordon, G.W.; Knoll, A.H.; Nielsen, A.T.; Schovsbo, N.H.; Canfield, D.E. Devonian rise in atmospheric oxygen correlated to the radiations of terrestrial plants and large predatory fish. Proc. Natl. Acad. Sci. USA 2010, 107, 17911–17915. [Google Scholar] [CrossRef]
- Clack, J.A. Devonian climate change, breathing, and the origin of the tetrapod stem group. Integr. Compar. Biol. 2007, 47, 510–523. [Google Scholar] [CrossRef]
- Becker, R.T.; Kaiser, S.I.; Aretz, M. Review of chrono-, litho- and biostratigraphy across the global Hangenberg crisis and Devonian–Carboniferous boundary. Geol. Soc. Lond. Spec. Publ. 2016, 423, 355–386. [Google Scholar] [CrossRef]
- Kaiser, S.I.; Becker, R.T.; Aretz, M. The global Hangenberg Crisis (Devonian-Carboniferous transition): Review of a first order mass extinction. In Devonian Climate, Sea Level and Evolutionary Events; Becker, R.T., Konigshof, P., Brett, C.E., Eds.; Special Publications; Geological Society: London, UK, 2016; Volume 423, pp. 387–437. [Google Scholar] [CrossRef]
- Carmichael, S.K.; Waters, J.A.; Konigshof, P.; Suttner, T.J.; Kido, E. Paleogeography and paleoenvironments of the Late Devonian Kellwasser Event: A review of its sedimentological and geochemical expression. Glob. Planet. Chang. 2019, 183, 102984. [Google Scholar] [CrossRef]
- Kabanov, P.; Hauck, T.E.; Gouwy, S.A.; Grasby, S.E.; van der Boon, A. Oceanic anoxic events, photic-zone euxinia, and controversy of sea-level fluctuations during the Middle-Late Devonian. Earth-Sci. Rev. 2023, 241, 104415. [Google Scholar] [CrossRef]
- Playford, P.E.; Cockbain, A.E. Revised Stratigraphic and Facies Nomenclature in Devonian Reef Complexes of the Canning Basin; Annual Report for 1975; Geological Survey of Western Australia: Perth, WA, Australia, 1976; pp. 52–56. [Google Scholar]
- George, A.D.; Seyedmehdi, Z.; Chow, N. Late Devonian–Early Carboniferous tectonostratigraphic framework for northern Canning Basin carbonate platform evolution. In Sedimentary Basins of Western Australia IV: Proceedings of the Petroleum Exploration Society of Australia Symposium; Keep, M., Moss, S.J., Eds.; Petroleum Exploration Society of Australia: Perth, WA, Australia, 2013; pp. 1–16. [Google Scholar]
- Playton, T.E.; Kerans, C. Late Devonian carbonate margins and foreslopes of the Lennard Shelf, Canning Casin, Western Australia, part a: Development during backstepping and the aggradation-to-progradation transition. J. Sed. Res. 2015, 85, 1334–1361. [Google Scholar] [CrossRef]
- Playton, T.E.; Kerans, C. Upper Devonian carbonate margins and foreslopes of the Lennard Shelf, Canning Basin, Western Australia, Part B: Development during progradation and across the Frasnian–Famennian biotic crisis. J. Sed. Res. 2015, 85, 1362–1392. [Google Scholar] [CrossRef]
- Shen, J.; Webb, G.E.; Jell, J.S. Platform margins, reef facies, and microbial carbonates; a comparison of Devonian reef complexes in the Canning Basin, Western Australia. Earth-Sci. Rev. 2008, 88, 33–59. [Google Scholar] [CrossRef]
- Shen, J.-W.; Zhao, N.; Young, A.; Mao, Y.-J.; Wang, Y. Upper Devonian reefs and microbialite at Maoying, South China—Implications for paleoenvironmental changes. Palaeogeogr. Palaeoclimat. Palaeoecol. 2017, 474, 98–112. [Google Scholar] [CrossRef]
- Hillbun, K.; Playton, T.E.; Katz, D.A.; Tohver, E.; Trinajstic, K.; Haines, P.W.; Hocking, R.M.; Roelofs, B.; Montgomery, P. Correlation and sequence stratigraphic interpretation of Upper Devonian carbonate slope facies using carbon isotope chemostratigraphy, Lennard Shelf, Canning Basin, Western Australia. In New Advances in Devonian Carbonates: Outcrop Analogs, Reservoirs, and Chronostratigraphy; Playton, T.E., Kerans, C., Weissenberger, J.A.W., Eds.; SEPM Special Publication; Society of Economic Paleontologists and Mineralogists: Tulsa, OK, USA, 2016; Volume 107, pp. 248–301. [Google Scholar] [CrossRef]
- George, A.D.; Trinajstic, K.M.; Chow, N. Frasnian reef evolution and palaeogeography, SE Lennard Shelf, Canning Basin, Australia. In Devonian Change: Case Studies in Palaeogeography and Palaeoecology; Konighsof, P., Ed.; Special Publications; Geological Society: London, UK, 2009; Volume 314, pp. 73–107. [Google Scholar] [CrossRef]
- Playton, T.E.; Hocking, R.M.; Tohver, E.; Hillbun, K.; Haines, P.W.; Trinajstic, K.M.; Roelofs, B.; Katz, D.A.; Kirschvink, J.L.; Grice, K.; et al. Integrated stratigraphic correlation of Upper Devonian platform-to-basin carbonate sequences, Lennard Shelf, Canning Basin, Western Australia: Advances in carbonate margin-to-slope sequence stratigraphy and stacking patters. In New Advances in Devonian Carbonates: Outcrop Analogs, Reservoirs, and Chronostratigraphy; Playton, T.E., Kerans, C., Weissenberger, J., Eds.; Special Publication; SEPM (Society for Sedimentary Geology): Tulsa, OK, USA, 2016; Volume 107. [Google Scholar] [CrossRef]
- Klapper, G. Upper Devonian conodonts in the Canning Basin, Appendix 1. In Devonian Reef Complexes of the Canning Basin, Western Australia; Playford, P.E., Hocking, R.M., Cockbain, A.E., Eds.; Bulletin 145; Geological Survey of Western Australia: Perth, WA, Australia, 2009; pp. 405–413. [Google Scholar]
- Becker, R.T.; House, M.R. Devonian ammonoid biostratigraphy of the Canning Basin, Appendix 2. In Devonian Reef Complexes of the Canning Basin, Western Australia; Playford, P.E., Hocking, R.M., Cockbain, A.E., Eds.; Bulletin 145; Geological Survey of Western Australia: Perth, WA, Australia, 2009; pp. 415–439. [Google Scholar]
- Trinajstic, K.; George, A.D. Microvertebrate biostratigraphy of Upper Devonian (Frasnian) carbonate rocks in the Canning and Carnarvon basins of Western Australia. Palaeontology 2009, 52, 641–659. [Google Scholar] [CrossRef]
- Read, J.F. Carbonate cycles, Pillara Formation (Devonian), Canning Basin, Western Australia. Canad. Petrol. Geol. Bull. 1973, 21, 38–51. [Google Scholar]
- Brownlaw, R.L.S.; Hocking, R.M.; Jell, J.S. High frequency sea-level fluctuations in the Pillara Limestone, Guppy Hills, Lennard Shelf, northwestern Australia. Hist. Biol. 1996, 11, 187–212. [Google Scholar] [CrossRef]
- Brownlaw, R.L.S.; Hearn, S.J.; Jell, J.S. Spectral analysis of the back-reef limestones of the ‘Devonian Great Barrier Reef’, Western Australia. Proc. R. Soc. Qld. 1998, 107, 99–107. [Google Scholar]
- Ferguson, I.J.; Da Silva, A.-C.; Chow, N.; George, A.D. Interplay of eustatic, tectonic and autogenic controls on a late Devonian carbonate platform, northern Canning Basin, Australia. Basin Res. 2019, 33, 312–341. [Google Scholar] [CrossRef]
- Holmes, A.E.; Christie-Blick, N. Origin of sedimentary cycles in mixed carbonate-siliciclastic systems: An example from the Canning Basin, Western Australia. In Carbonate Sequence Stratigraphy; Loucks, R.G., Sarg, J.F., Eds.; American Association of Petroleum Geologists: Tulsa, OK, USA, 1993; Volume 57, pp. 181–212. [Google Scholar]
- George, A.D.; Chow, N.; Trinajstic, K.M. Syndepositional fault control on lower Frasnian platform evolution, Lennard Shelf, Canning Basin, Australia. Geology 2009, 37, 331–334. [Google Scholar] [CrossRef]
- Southgate, P.N.; Kennard, J.M.; Jackson, M.J.; O’Brien, P.E.; Sexton, M.J. Reciprocal lowstand clastic and highstand carbonate sedimentation, subsurface Devonian reef complex, Canning Basin, Western Australia. In Carbonate Sequence Stratigraphy; Loucks, R.G., Sarg, J.F., Eds.; American Association of Petroleum Geologists: Tulsa, OK, USA, 1993; Volume 57, pp. 157–179. [Google Scholar] [CrossRef]
- George, A.D.; Playford, P.E.; Powell, C.M.; Tornatora, P.M. Lithofacies and sequence development on an Upper Devonian mixed carbonate-siliciclastic fore-reef slope, Canning Basin, Western Australia. Sedimentology 1997, 44, 843–867. [Google Scholar] [CrossRef]
- Ward, W.B. Tectonic control on backstepping sequences revealed by mapping of Frasnian backstepped platforms, Devonian reef Complexes, Napier Range, Canning Basin, Western Australia. In Advances in Carbonate Sequence Stratigraphy: Application to Reservoirs, Outcrops and Models; Harris, P.M., Simo, J.A., Eds.; SEPM Special Publication; Society of Economic Paleontologists and Mineralogists: Tulsa, OK, USA, 1999; Volume 63, pp. 47–74. [Google Scholar]
- Chow, N.; George, A.D.; Trinajstic, K.M. Tectonic control on development of a Frasnian–Famennian (Late Devonian) palaeokarst surface, Canning Basin reef complexes, northwestern Australia. Aust. J. Earth Sci. 2004, 51, 911–917. [Google Scholar] [CrossRef]
- Chow, N.; George, A.D.; Trinajstic, K.M.; Chen, J.-Q. Stratal architecture and platform evolution of an early Frasnian syn-tectonic carbonate platform, Canning Basin, Australia. Sedimentology 2013, 60, 1583–1620. [Google Scholar] [CrossRef]
- Playford, P.E. Devonian reef complexes of the Canning Basin, Western Australia. In Geological Society of Australia, 5th Australian Geological Convention, Perth, Field Excursion Guidebook; Geological Society of Australia: Perth, WA, Australia, 1981; pp. 1–64. [Google Scholar]
- George, A.D.; Playford, P.E.; Powell, C.M. Platform-margin collapse during Famennian reef evolution, Canning Basin, Western Australia. Geology 1995, 23, 691–694. [Google Scholar] [CrossRef]
- Frost, E.L., III; Kerans, C. Platform-margin trajectory as a control on syndepositional fracture patterns, Canning Basin, Western Australia. J. Sed. Res. 2009, 79, 44–55. [Google Scholar] [CrossRef]
- Frost, E.L., III; Kerans, C. Controls on syndepositional fracture patterns, Devonian reef complexes, Canning Basin, Western Australia. J. Struct. Geol. 2010, 32, 1231–1249. [Google Scholar] [CrossRef]
- Johnson, M.E.; Webb, G.E. Outer rocky shores of the Mowanbini Archipelago, Devonian Reef Complex, Canning Basin, Western Australia. J. Geol. 2007, 115, 583–600. [Google Scholar] [CrossRef]
- Playford, P.E. Palaeokarst, pseudokarst, and sequence stratigraphy in Devonian reef complexes of the Canning Basin, Western Australia. In The Sedimentary Basins of Western Australia, Volume 3, Proceedings of the Petroleum Exploration Society of Australia Symposium: Perth, WA, Australia, 20–23 October 2002; Keep, M., Moss, S.J., Eds.; Petroleum Exploration Society of Australia: Perth, WA, Australia, 2002; pp. 763–793. [Google Scholar]
- Johnson, M.E.; Webb, G.E.; Baarli, B.G.; Walsh, D.R. Upper Devonian shoal-water delta integrated with cyclic backreef facies off the Mowanbini Archipelago (Canning Basin), Western Australia. Facies 2013, 59, 991–1009. [Google Scholar] [CrossRef]
- Baarli, G.; Webb, G.E.; Johnson, M.E.; Cook, A.G.; Walsh, D.R. Shoal-water dynamics and coastal biozones in a sheltered island setting: Upper Devonian Pillara Limestone (Western Australia). Lethaia 2016, 49, 507–523. [Google Scholar] [CrossRef]
- Waterhouse, J.; Gruber, R.; Logan, M.; Petus, C.; Howley, C.; Lewis, S.; Tracey, D.; James, C.; Mellors, J.; Tonin, H.; et al. Marine Monitoring Program: Annual Report for Inshore Water Quality Monitoring 2019–20. In Report for the Great Barrier Reef Marine Park Authority; Great Barrier Reef Marine Park Authority: Townsville, QLD, Australia, 2021; pp. 1–13. Available online: https://hdl.handle.net/11017/3826 (accessed on 4 May 2025).
- Saha, N.; Rodriguez-Ramirez, A.; Nguyen, A.D.; Clark, T.R.; Zhao, J.; Webb, G.E. Seasonal to decadal scale influence of environmental drivers on Ba/Ca and Y/Ca in coral aragonite from the southern Great Barrier Reef. Sci. Total Environ. 2018, 639, 1099–1109. [Google Scholar] [CrossRef]
- Wolff, N.H.; Wong, A.; Vitolo, R.; Stolberg, K.; Anthony, K.R.N.; Mumby, P.J. Temporal clustering of tropical cyclones on the Great Barrier Reef and its ecological importance. Coral Reefs 2016, 35, 613–623. [Google Scholar] [CrossRef]
- Humblet, M.; Potts, D.C.; Webster, J.M.; Braga, J.C.; Iryu, Y.; Yokoyama, Y.; Bourillot, R.; Séard, C.; Droxler, A.; Fujita, K.; et al. Late glacial to deglacial variation of coralgal assemblages in the Great Barrier Reef, Australia. Glob. Planet. Chang. 2019, 174, 70–91. [Google Scholar] [CrossRef]
- Sloss, C.R.; Murray-Wallace, C.V.; Jones, B.G. Holocene sea-level change on the southeast coast of Australia: A review. Holocene 2007, 17, 999–1014. [Google Scholar] [CrossRef]
- Lewis, S.E.; Sloss, C.R.; Murray-Wallace, C.V.; Woodroffe, C.D.; Smithers, S.G. Postglacial sea-level changes around the Australian margin: A review. Quat. Sci. Rev. 2013, 74, 115–138. [Google Scholar] [CrossRef]
- Leonard, N.D.; Lepore, M.L.; Zhao, J.x.; Rodriguez-Ramirez, A.; Butler, I.R.; Clark, T.R.; Roff, G.; McCook, L.; Nguyen, A.D.; Feng, Y.-x.; et al. Re-evaluating mid-Holocene reef “turn-off” on the inshore Southern Great Barrier Reef. Quat. Sci. Rev. 2020, 244, 106518. [Google Scholar] [CrossRef]
- Leonard, N.D.; Welsh, K.J.; Clark, T.R.; Feng, Y.x.; Pandolfi, J.M. New evidence for “far-field” Holocene sea level oscillations and links to global climate records. Earth Planet. Sci. Lett. 2018, 487, 67–73. [Google Scholar] [CrossRef]
- Leonard, N.D.; Zhao, J.-x.; Welsh, K.J.; Feng, Y.-x.; Smithers, S.G.; Pandolfi, J.M.; Clark, T.R. Holocene sea level instability in the southern Great Barrier Reef, Australia: High-precision U-Th dating of fossil microatolls. Coral Reefs 2016, 35, 625–639. [Google Scholar] [CrossRef]
- Perry, C.T.; Smithers, S.G. Evidence for the episodic “turn on” and “turn off” of turbid-zone coral reefs during the late Holocene sea-level highstand. Geology 2010, 38, 119–122. [Google Scholar] [CrossRef]
- Perry, C.; Smithers, S. Cycles of coral reef ’turn-on’, rapid growth and ’turn-off’ over the past 8500 years: A context for understanding modern ecological states and trajectories. Glob. Change Biol. 2011, 17, 76–86. [Google Scholar] [CrossRef]
- Dechnik, B.; Webster, J.M.; Webb, G.E.; Nothdurft, L.; Zhao, J.X. Successive phases of Holocene reef flat development: Evidence from the mid-to outer Great Barrier reef. Palaeogeogr. Palaeoclim. Palaeoecol. 2017, 466, 221–230. [Google Scholar] [CrossRef]
- Toth, L.T.; Aronson, R.B. The 4.2-ka event, ENSO, and coral-reef development. Clim. Past 2018, 15, 105–119. [Google Scholar] [CrossRef]
- Felis, T.; McGregor, H.V.; Linsley, B.K.; Tudhope, A.W.; Gagan, M.K.; Suzuki, A.; Inoue, M.; Thomas, A.L.; Esat, T.M.; Thompson, W.G.; et al. Intensification of the meridional temperature gradient in the Great Barrier Reef following the Last Glacial Maximum. Nat. Commun. 2014, 5, 4102. [Google Scholar] [CrossRef]
- Brenner, L.D.; Linsley, B.K.; Webster, J.M.; Potts, D.; Felis, T.; Gagan, M.K.; Inoue, M.; McGregor, H.; Suzuki, A.; Tudhope, A.; et al. Coral Record of Younger Dryas Chronozone Warmth on the Great Barrier Reef. Paleoceanogr. Paleoclimat. 2020, 35, e2020PA003962. [Google Scholar] [CrossRef]
- Sadler, J.; Webb, G.E.; Leonard, N.D.; Nothdurft, L.D.; Clark, T.R. Reef core insights into mid-Holocene water temperatures of the southern Great Barrier Reef. Paleoceanography 2016, 31, 1395–1408. [Google Scholar] [CrossRef]
- Gagan, M.K.; Ayliffe, L.K.; Hopley, D.; Cali, J.A.; Mortimer, G.E.; Chappell, J.; McCulloch, M.T.; Head, M.J. Temperature and surface-ocean water balance of the mid-Holocene tropical Western Pacific. Science 1998, 279, 1014–1018. [Google Scholar] [CrossRef]
- McCulloch, M.; Mortimer, G.; Esat, T.; Li, X.H.; Pillans, B.; Chappell, J. High resolution windows into early Holocene climate: Sr/Ca coral records from the Huon Peninsula. Earth Planet. Sci. Lett. 1996, 138, 169–178. [Google Scholar] [CrossRef]
- Abram, N.J.; McGregor, H.V.; Gagan, M.K.; Hantoro, W.S.; Suwargadi, B.W. Oscillations in the southern extent of the Indo-Pacific Warm Pool during the mid-Holocene. Quat. Sci. Rev. 2009, 28, 2794–2803. [Google Scholar] [CrossRef]
- Roche, R.C.; Perry, C.T.; Smithers, S.G.; Leng, M.J.; Grove, C.A.; Sloane, H.J.; Unsworth, C.E. Mid-Holocene Sea surface conditions and riverine influence on the inshore Great Barrier Reef. Holocene 2014, 24, 885–897. [Google Scholar] [CrossRef]
- Lough, J.M.; Llewellyn, L.E.; Lewis, S.E.; Turney, C.S.M.; Palmer, J.G.; Cook, C.G.; Hogg, A.G. Evidence for suppressed mid-Holocene northeastern Australian monsoon variability from coral luminescence. Paleoceanography 2014, 29, 581–594. [Google Scholar] [CrossRef]
- Hua, Q.; Webb, G.E.; Zhao, J.-X.; Nothdurft, L.D.; Lybolt, M.; Price, G.J.; Opdyke, B.N. Large variations in the Holocene marine radiocarbon reservoir effect reflect ocean circulation and climatic changes. Earth Planet. Sci. Lett. 2015, 422, 33–44. [Google Scholar] [CrossRef]
- Hua, Q.; Ulm, S.; Yu, K.; Clark, T.R.; Nothdurft, L.D.; Leonard, N.D.; Pandolfi, J.M.; Jacobsen, G.E.; Zhao, J.-X. Temporal variability in the Holocene marine radiocarbon reservoir effect for the Tropical and South Pacific. Quat. Sci. Rev. 2020, 249, 106613. [Google Scholar] [CrossRef]
- McNeil, M.; Nothdurft, L.; Erler, D.; Hua, Q.; Webster, J.M. Variations in mid- to late Holocene nitrogen supply to northern Great Barrier Reef Halimeda macroalgal bioherms. Paleoceanogr. Paleoclimat. 2021, 36, e2020PA003871. [Google Scholar] [CrossRef]
- Denniston, R.F.; Wyrwoll, K.-H.; Polyak, V.J.; Brown, J.R.; Asmerom, Y.; Wanamaker, A.D., Jr.; LaPointe, Z.; Ellerbroek, R.; Barthelmes, M.; Cleary, D. A stalagmite record of Holocene Indonesian–Australian summer monsoon variability from the Australian tropics. Quat. Sci. Rev. 2013, 78, 155–168. [Google Scholar] [CrossRef]
- Salas-Saavedra, M.; Webb, G.E.; Sanborn, K.L.; Zhao, J.-x.; Webster, J.M.; Nothdurft, L.D.; Nguyen, A. Holocene microbialite geochemistry records > 6000 years of secular influence of terrigenous flux on water quality for the southern Great Barrier Reef. Chem. Geol. 2022, 604, 120871. [Google Scholar] [CrossRef]
- Sanborn, K.L.; Webster, J.M.; Erler, D.; Webb, G.E.; Salas-Saavedra, M.; Yokoyama, Y. The impact of elevated nutrients on the Holocene evolution of the Great Barrier Reef. Quat. Sci. Rev. 2024, 332, 108636. [Google Scholar] [CrossRef]
- Nott, J.; Forsyth, A. Punctuated global tropical cyclone activity over the past 5000 years. Geophys. Res. Lett. 2012, 39, L14703. [Google Scholar] [CrossRef]
- Ryan, E.J.; Smithers, S.G.; Lewis, S.E.; Clark, T.R.; Zhao, J.-X. The influence of sea level and cyclones on Holocene reef flat development: Middle Island, central Great Barrier Reef. Coral Reefs 2016, 35, 805–818. [Google Scholar] [CrossRef]
- Hardie, L.A. Secular variation in seawater chemistry: An explanation for the coupled secular variation in the mineralogies of marine limestones and potash evaporites over the past 600 m.y. Geology 1996, 24, 279–283. [Google Scholar] [CrossRef]
- Balthasar, U.; Cusack, M. Aragonite-calcite seas—Quantifying the gray area. Geology 2015, 43, 99–102. [Google Scholar] [CrossRef]
- Stanley, M.S.; Hardie, L.A. Secular oscillations in the carbonate mineralogy of reef-building and sediment-producing organisms driven by tectonically forced shifts in seawater chemistry. Palaeogeogr. Palaeoclimat. Palaeoecol. 1998, 144, 3–19. [Google Scholar] [CrossRef]
- De Vleeschouwer, D.; Percival, L.M.E.; Wichern, N.M.A.; Batenburg, S.J. Pre-Cenozoic cyclostratigraphy and palaeoclimate responses to astronomical forcing. Nat. Rev. Earth Environ. 2024, 5, 59–74. [Google Scholar] [CrossRef]
- Caputo, M.V. Late Devonian glaciation in South America. Palaeogeogr. Palaeoclimat. Palaeoecol. 1985, 51, 291–317. [Google Scholar] [CrossRef]
- Caputo, M.V.; de Melo, J.H.G.; Streel, M.; Isbell, J.L. Late Devonian and Early Carboniferous glacial records of South America. In Resolving the Late Paleozoic Ice Age in Time and Space; Fielding, C.R., Frank, T.D., Isbell, J.L., Eds.; Geological Society of America: Ithaca, NY, USA, 2008; Volume 441, pp. 161–174. [Google Scholar]
- McGhee, G.R. The search for sedimentary evidence of glaciation during the Frasnian/Famennian (Late Devonian) biodiversity crisis. Sediment. Rec. 2014, 12, 4–8. [Google Scholar] [CrossRef]
- Veizer, J.; Prokoph, A. Temperatures and oxygen isotopic composition of Phanerozoic oceans. Earth-Sci. Rev. 2015, 146, 92–104. [Google Scholar] [CrossRef]
- Shaviv, N.J.; Svensmark, H.; Veizer, J. The Phanerozoic climate. Ann. N. Y. Acad. Sci. 2023, 1519, 7–19. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.X.; Powell, C. An outline of the palaeogeographic evolution of the Australasian region since the beginning of the Neoproterozoic. Earth-Sci. Rev. 2001, 53, 237–277. [Google Scholar] [CrossRef]
- Hocking, R.M.; Copp, I.A.; Playford, P.E.; Kempton, R.H. The Cadjebut Formation: A Givetian evaporitic precursor to Devonian reef complexes of the Lennard Shelf, Canning Basin, Western Australia. In Geological Survey of Western Australia: Annual Review 1995–96; Nowak, I.R., Ed.; Geological Survey of Western Australia: Perth, WA, Australia, 1996; Volume 1, pp. 48–55. [Google Scholar]
- Marsaglia, K.M.; Klein, G.D. The paleogeography of Paleozoic and Mesozoic storm depositional systems. J. Geol. 1983, 91, 117–141. [Google Scholar] [CrossRef]
- Lu, M.; Lu, Y.-H.; Ikejiri, T.; Sun, D.; Carroll, R.; Blair, E.H.; Algeo, T.J.; Sun, Y. Periodic oceanic euxinia and terrestrial fluxes linked to astronomical forcing during the Late Devonian Frasnian–Famennian mass extinction. Earth Planet. Sci. Lett. 2021, 562, 116839. [Google Scholar] [CrossRef]
- Handford, C.R.; Loucks, R.G. Carbonate depositional sequences and systems tracts—Responses of carbonate platforms to relative sea-level changes. In Carbonate Sequence Stratigraphy, Recent Developments and Applications; Loucks, R.G., Sarg, J.F., Eds.; AAPG Memoir; American Association of Petroleum Geologists: Tulsa, OK, USA, 1993; Volume 57, pp. 3–41. [Google Scholar]
- Flügel, E. Microfacies of Carbonate Rocks, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 1–924. [Google Scholar]
- Pitcher, C.R.; Doherty, P.; Arnold, P.; Hooper, J.; Gribble, N.; Bartlett, C.; Browne, M.; Campbell, N.; Cannard, T.; Cappo, M.; et al. Seabed Biodiversity on the Continental Shelf of the Great Barrier Reef World Heritage Area; AIMS/CSIRO/QM/QDPI CRC Reef Research Task Final Report; CSIRO Marine and Atmospheric Research: Caberra, Australia, 2007; pp. 1–320. [Google Scholar]
- GBRMPA. Great Barrier Reef Outlook Report 2014; Great Barrier Reef Marine Park Authority: Townsville, QLD, Australia, 2019; pp. 1–354. [Google Scholar]
- Perry, C.T.; Hepburn, L.J. Syn-depositional alteration of coral reef framework through bioerosion, encrustation and cementation: Taphonomic signatures of reef accretion and reef depositional events. Earth-Sci. Rev. 2008, 86, 106–144. [Google Scholar] [CrossRef]
- Orme, G.R.; Flood, P.G.; Ewart, A. An investigation of the sediments and physiography of Lady Musgrave Reef—A preliminary account. In Proceedings of the Second International Symposium on Coral Reefs, Brisbane, QLD, Australia, 22 June–2 July 1974; Volume 2, pp. 371–386. [Google Scholar]
- Mather, P.; Bennett, I. (Eds.) A Coral Reef Handbook, 3rd ed.; Surrey Beatty & Sons Pty Ltd.: Chipping Norton, NSW, Australia, 1993; pp. 1–264. [Google Scholar]
- Hamylton, S.; Carvalho, R.C.; Duce, S.; Roelfsema, C.M.; Vila-Concejo, A. Linking pattern to process in reef sediment dynamics at Lady Musgrave Island, southern Great Barrier Reef. Sedimentology 2016, 63, 1634–1650. [Google Scholar] [CrossRef]
- Tanner, J.E.; Connell, J.H. Coral community data Heron Island, Great Barrier Reef 1962–2016. Sci. Data 2022, 9, 617. [Google Scholar] [CrossRef]
- McNeil, M.; Firn, J.; Nothdurft, L.D.; Pearse, A.R.; Webster, J.M.; Pitcher, C.R. Inter-reef Halimeda algal habitats within the Great Barrier Reef support a distinct biotic community and high biodiversity. Nat. Ecol. Evol. 2021, 5, 647–655. [Google Scholar] [CrossRef]
- Sanborn, K.L.; Webster, J.M.; Webb, G.E.; Braga, J.C.; Humblet, M.; Nothdurft, L.; Patterson, M.A.; Dechnik, B.; Warner, S.; Graham, T. A new model of Holocene reef initiation and growth in response to sea-level rise on the Southern Great Barrier Reef. Sediment. Geol. 2020, 397, 105556. [Google Scholar] [CrossRef]
- De’ath, G.; Fabricius, K.E. Water quality as a regional driver of coral biodiversity and macroalgae on the Great Barrier Reef. Ecol. Appl. 2010, 20, 840–850. [Google Scholar] [CrossRef] [PubMed]
- González-Rivero, M.; Bongaerts, P.; Beijbom, O.; Pizarro, O.; Friedman, A.; Rodriguez-Ramirez, A.; Upcroft, B.; Laffoley, D.; Kline, D.; Bailhache, C.; et al. The Catlin Seaview Survey—Kilometre-scale seascape assessment, and monitoring of coral reef ecosystems. Aquat. Conserv. Mar. Freshw. Ecosyst. 2014, 24, 184–198. [Google Scholar] [CrossRef]
- Roelfsema, C.M.; Kovacs, E.; Stetner, D.; Phinn, S.R. Georeferenced benthic photoquadrats captured annually from 2002-2017, distributed over Heron Reef flat and slope areas. PANGAEA 2018, 894801. [Google Scholar] [CrossRef]
- Roelfsema, C.M.; Kovacs, E.; Markey, K.; Vercelloni, J.; Rodriguez-Ramirez, A.; Lopez-Marcano, S.; Gonzalez-Rivero, M.; Hoegh-Guldberg, O.; Phinn, S.R. Benthic and coral reef community field data for Heron Reef, Southern Great Barrier Reef, Australia, 2002–2018. Sci. Data 2021, 8, 84. [Google Scholar] [CrossRef]
- Phinn, S.R.; Roelfsema, C.M.; Mumby, P.J. Multi-scale image segmentation for mapping coral reef geomorphic and benthic community zone. Int. J. Remote Sens. 2012, 33, 3768–3797. [Google Scholar] [CrossRef]
- Hamylton, S.M. Mapping coral reef environments: A review of historical methods, recent advances and future opportunities. Prog. Phys. Geogr. 2017, 41, 803–833. [Google Scholar] [CrossRef]
- Hamylton, S.M.; Duce, S.; Vila-Concejo, A.; Roelfsema, C.M.; Phinn, S.R.; Carvalho, R.C.; Shaw, E.C.; Joyce, K.E. Estimating regional coral reef calcium carbonate production from remotely sensed seafloor maps. Remote Sens. Environ. 2017, 201, 88–98. [Google Scholar] [CrossRef]
- Barve, S.; Webster, J.M.; Chandra, R. Reef-Insight: A framework for reef habitat mapping with clustering methods using remote sensing. Information 2023, 14, 373. [Google Scholar] [CrossRef]
- Carrasco Rivera, D.E.; Diederiks, F.F.; Hammerman, N.M.; Staples, T.; Kovacs, E.; Markey, K.; Roelfsema, C.M. Remote Sensing Reveals Multidecadal Trends in Coral Cover at Heron Reef, Australia. Remote Sens. 2025, 17, 1286. [Google Scholar] [CrossRef]
- Braga, J.C.; Aguirre, J. Coralline algae indicate Pleistocene evolution from deep, open platform to outer barrier reef environments in the northern Great Barrier Reef margin. Coral Reefs 2004, 23, 547–558. [Google Scholar] [CrossRef]
- McCaffrey, J.; Wallace, M.W.; Gallagher, S.J. A Cenozoic Great Barrier Reef on Australia’s North West Shelf. Glob. Planet. Chang. 2020, 184, 1030148. [Google Scholar] [CrossRef]
- McCaffrey, J.; Wallace, M.W.; Gallagher, S.J.; Averes, T.; Fabian, S.G.; Lindhorst, K.; Reuning, L.; Krastel, S. The Rowley Shoals atolls: Remnants of a Miocene great barrier reef on the north-west Australian margin. Glob. Planet. Chang. 2025, 245, 104688. [Google Scholar] [CrossRef]
- Williams, C.; Paumard, V.; Webster, J.M.; Leonard, J.; Salles, T.; O’Leary, M.; Lang, S. Environmental controls on the resilience of Scott Reefs since the Miocene (North West Shelf, Australia): Insights from 3D seismic data. Mar. Pet. Geol. 2023, 151, 106188. [Google Scholar] [CrossRef]
- Flood, P.G. Geological history of the reef. In A Coral Reef Handbook, 3rd ed.; Mather, P., Bennett, I., Eds.; Surrey Beatty & Sons Pty Ltd.: Chipping Norton, NSW, Australia, 1993; pp. 3–6. [Google Scholar]
- Palmieri, V. Correlation and environmental trends of the subsurface Tertiary Capricorn Basin. Rep. Geol. Surv. Qld. 1974, 86, 1–14. [Google Scholar]
- Maxwell, W.G.H. Sediments of the Great Barrier Reef Province. In Biology and Geology of Coral Reefs, Vol. 3, Geology 1; Jones, O.A., Endean, R., Eds.; Academic Press: New York, NY, USA, 1973; pp. 299–345. [Google Scholar]
- Orme, G.R. Aspects of sedimentation in the coral reef environment. In Biology and Geology of Coral Reefs, Vol. 4, Geology 2; Jones, O.A., Endean, R., Eds.; Academic Press: New York, NY, USA, 1973; pp. 129–182. [Google Scholar]
- Doo, S.S.; Hamylton, S.; Finfer, J.; Byrne, M. Spatial and temporal variation in reef-scale carbonate storage of large benthic foraminifera: A case study on One Tree Reef. Coral Reefs 2017, 36, 293–303. [Google Scholar] [CrossRef]
- Veron, J.E.N. Corals of the World; Australian Institute of Marine Sciences: Townsville, QLD, Australia, 2000; Volume 1–3, pp. 1–1382. [Google Scholar]
- DeVantier, L.M.; De’ath, G.; Turak, E.; Done, T.J.; Fabricius, K.E. Species richness and community structure of reef-building corals on the nearshore Great Barrier Reef. Coral Reefs 2006, 25, 329–340. [Google Scholar] [CrossRef]
- Done, T.J. Patterns in the distribution of coral communities across the central Great Barrier Reef. Coral Reefs 1982, 1, 95–107. [Google Scholar] [CrossRef]
- Bridge, T.C.L.; Done, T.J.; Friedman, A.; Beaman, R.J.; Williams, S.B.; Pizarro, O.; Webster, J.M. Variability in mesophotic coral reef communities along the Great Barrier Reef. Mar. Ecol. Prog Ser. 2011, 428, 63–75. [Google Scholar] [CrossRef]
- Frade, P.R.; Bongaerts, P.; Englebert, N.; Rogers, A.; Gonzalez-Rivero, M.; Hoegh-Guldberg, O. Deep reefs of the Great Barrier Reef offer limited thermal refuge during mass coral bleaching. Nat. Commun. 2018, 9, 3447. [Google Scholar] [CrossRef]
- Fabricius, K.; De’ath, G. Environmental factors associated with the spatial distribution of crustose coralline algae on the Great Barrier Reef. Coral Reefs 2001, 19, 303–309. [Google Scholar] [CrossRef]
- Hurrey, L.P.; Pitcher, C.R.; Lovelock, C.E.; Schmidt, S. Macroalgal species richness and assemblage composition of the Great Barrier Reef seabed. Mar. Ecol. Prog. Ser. 2013, 492, 69–83. [Google Scholar] [CrossRef]
- Dean, A.J.; Steneck, R.S.; Tager, D.; Pandolfi, J.M. Distribution, abundance and diversity of crustose coralline algae on the Great Barrier Reef. Coral Reefs 2015, 34, 581–594. [Google Scholar] [CrossRef]
- Marshall, J.F.; Davies, P.J. Halimeda bioherms of the northern Great Barrier Reef. Coral Reefs 1988, 6, 139–148. [Google Scholar] [CrossRef]
- Orme, G.R.; Salama, M.S. Form and seismic stratigraphy of Halimeda banks in part of the northern Great Barrier Reef Province. Coral Reefs 1988, 6, 131–137. [Google Scholar] [CrossRef]
- Rees, S.A.; Opdyke, B.N.; Wilson, P.A.; Henstock, T.J. Significance of Halimeda bioherms to the global carbonate budget based on a geological sediment budget for the Northern Great Barrier Reef, Australia. Coral Reefs 2007, 26, 177–188. [Google Scholar] [CrossRef]
- Vila-Concejo, A.; Hamylton, S.M.; Webster, J.M.; Duce, S.J.; Fellowes, T.E. Lagoon infilling by coral reef sand aprons as a proxy for carbonate sediment productivity. Geology 2022, 50, 1427–1431. [Google Scholar] [CrossRef]
- Bellwood, D.R. Production and reworking of sediment by parrotfishes (family Scaridae) on the Great Barrier Reef, Australia. Mar. Biol. 1996, 125, 795–800. [Google Scholar] [CrossRef]
- Lange, I.D.; Perry, C.T.; Alvarez-Filip, L. Carbonate budgets as indicators of functional reef “health”: A critical review of data underpinning census-based methods and current knowledge gaps. Ecol. Indic. 2020, 110, 105857. [Google Scholar] [CrossRef]
- Yamano, H.; Miyajima, T.; Koike, I. Importance of foraminifera for the formation and maintenance of a coral sand cay: Green Island, Australia. Coral Reefs 2000, 19, 51–58. [Google Scholar] [CrossRef]
- Montaggioni, L.F.; Camoin, G.F. Stromatolites associated with coralgal communities in Holocene high energy reefs. Geology 1993, 21, 149–152. [Google Scholar] [CrossRef]
- Webb, G.E.; Nothdurft, L.D.; Zhao, J.-X.; Opdyke, B.; Price, G. Significance of shallow core transects for reef models and sea-level curves, Heron Reef, Great Barrier Reef. Sedimentology 2016, 63, 1396–1424. [Google Scholar] [CrossRef]
- Marino, G.; Rohling, E.J.; Rodríguez-Sanz, L.; Grant, K.M.; Heslop, D.; Roberts, A.P.; Stanford, J.D.; Yu, J. Bipolar seesaw control on last interglacial sea level. Nature 2015, 522, 197–201. [Google Scholar] [CrossRef] [PubMed]
- Meziere, Z.; Popovic, I.; Prata, K.; Ryan, I.; Pandolfi, J.; Riginos, C. Exploring coral speciation: Multiple sympatric Stylophora pistillata taxa along a divergence continuum on the Great Barrier Reef. Evol. Appl. 2024, 17, e13644. [Google Scholar] [CrossRef] [PubMed]
- Tribollet, A.; Golubic, S. Cross-shelf differences in the pattern and pace of bioerosion of experimental carbonate substrates exposed for 3 years on the northern Great Barrier Reef, Australia. Coral Reefs 2005, 24, 422–434. [Google Scholar] [CrossRef]
- Schönberg, C.H.L. Small-scale distribution of Great Barrier Reef bioeroding sponges in shallow water. Ophelia 2001, 55, 39–54. [Google Scholar] [CrossRef]
- Copp, I.A. Subsurface Facies Analysis of Devonian Reef Complexes, Lennard Shelf, Canning Basin Western Australia; Geological Survey of Western Australia Bulletin: Perth, Australia, 2000; Volume 58, pp. 1–127. [Google Scholar]
- Wood, R. Palaeoecology of a Late Devonian back reef, Canning Basin, Western Australia. Palaeontology 2000, 43, 671–703. [Google Scholar] [CrossRef]
- Stephens, N.P.; Sumner, D.Y. Famennian microbial reef facies, Napier and Oscar Ranges, Canning Basin, Western Australia. Sedimentology 2003, 50, 1283–1302. [Google Scholar] [CrossRef]
- Cockbain, A.E. Stromatoporoids from the Devonian Reef Complexes, Canning Basin, Western Australia; Geological Survey of Western Australia Bulletin: Perth, Australia, 1984; Volume 129, pp. 1–108. [Google Scholar]
- Hill, D.; Jell, J.S. Devonian Corals from the Canning Basin, Western Australia; Geological Survey of Western Australia Bulletin: Perth, WA, Australia, 1970; Volume 123, pp. 1–158. [Google Scholar]
- Brownlaw, R.L.S.; Jell, J.S. Middle and Upper Devonian rugose corals from the Canning Basin, Western Australia. Assoc. Australas. Paleontol. Mem. 2008, 35, 1–126. [Google Scholar]
- Wray, J.L. Upper Devonian Calcareous Algae from the Canning Basin, Western Australia; Professional Contributions of the Colorado School of Mines: Golden, CO, USA, 1967; Volume 3, p. 49. [Google Scholar]
- Veevers, J.J. Devonian Brachiopods from the Fitzroy Basin, Western Australia; Bulletin Department of National Development/Bureau of Mineral Resources, Geology and Geophysics: Canberra, Australia, 1959; Volume 45, pp. 1–173. [Google Scholar]
- Grey, K. Devonian Atrypid Brachiopods from the Reef Complexes of the Canning Basin; Bulletin Geological Survey of Western Australia: Perth, Australia, 1978; Volume 5, pp. 1–70. [Google Scholar]
- Cook, A.G.; Blodgett, R.B.; Becker, R.T. Late Devonian gastropods from the Canning Basin, Western Australia. Alcheringa 2003, 27, 181–207. [Google Scholar] [CrossRef]
- Playford, P.E.; Cockbain, A.E.; Druce, E.C.; Wray, J.L. Devonian stromatolites from the Canning Basin, Western Australia. In Stromatolites; Walter, M.R., Ed.; Elsevier: Amsterdam, The Netherlands, 1976; Developments in Sedimentology Volume 20, pp. 543–563. [Google Scholar]
- George, A.D. Deep-water stromatolites, Canning Basin, northwestern Australia. Palaios 1999, 14, 493–505. [Google Scholar] [CrossRef]
- Rigby, J.K. Late Devonian Sponges of Western Australia; Bulletin Geological Survey of Western Australia: Perth, WA, Australia, 1986; Volume 18, pp. 1–59. [Google Scholar]
- Reitner, J.; Gautret, P.; Maurin, F.; Neuweiler, F. Automicrites in a modern marine microbialite. Formation model via organic matrices (Lizard Island, Great Barrier Reef, Australia). In Biomineralization 93: Proceedings of the 7th International Symposium on Biomineralization; Allemand, D., Cuif, J.-P., Eds.; Bulletin de l’Institut océanographique, Numéro spécial 14; Institut océanographique: Monaco, 1995; pp. 237–263. [Google Scholar]
- Ma, X.; Gong, Y.; Chen, D.; Racki, G.; Chen, X.; Liao, W. The late Devonian Frasnian-Famennian event in South China—Patterns and causes of extinctions, sea level changes, and isotope variations. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2016, 448, 224–244. [Google Scholar] [CrossRef]
- Stephens, N.P.; Sumner, D.Y. Late Devonian carbon isotope stratigraphy and sea level fluctuations, Canning Basin, Western Australia. Palaeogeogr. Palaeoclimat. Palaeoecol. 2003, 19, 203–219. [Google Scholar] [CrossRef]
- George, A.D.; Chow, N. The depositional record of the Frasnian/Famennian boundary interval in a fore-reef succession, Canning Basin, Western Australia. Palaeogeogr. Palaeoclimat. Palaeoecol. 2002, 181, 347–374. [Google Scholar] [CrossRef]
- Benn, C.J. Facies changes and development of a carbonate platform, east Pillara Range. In The Canning Basin, W.A., Proceedings of the Geological Society of Australia and Petroleum Exploration Society of Australia Symposium, Perth, WA, Australia, 27–29 June 1984; Purcell, P.G., Ed.; Geological Society of Australia and Petroleum Exploration Society of Australia: Perth, WA, Australia, 1984; pp. 223–228. [Google Scholar]
- Pratt, B.R. Epiphyton and Renalcis: Diagenetic microfossils from calcification of coccoid blue-green algae. J. Sed. Petrol. 1984, 54, 948–971. [Google Scholar] [CrossRef]
- Stephens, N.P.; Sumner, D.Y. Renalcids as Fossilized Biofilm Clusters. Palaios 2002, 17, 225–236. [Google Scholar] [CrossRef]
- Feng, Q.; Gong, Y.-M.; Riding, R. Mid-Late Devonian calcified marine algae and cyanobacteria, South China. J. Paleont. 2010, 84, 569–587. [Google Scholar] [CrossRef]
- Hall, W.D.M. The stratigraphic and structural development of the Givetian–Frasnian reef complex, Limestone Billy Hills, Western Pillara Range, W.A. In The Canning Basin, W.A., Proceedings of the Geological Society of Australia and Petroleum Exploration Society of Australia Symposium, Perth, WA, Australia, 27–29 June 1984; Purcell, P.G., Ed.; Geological Society of Australia and Petroleum Exploration Society of Australia: Perth, WA, Australia, 1984; pp. 215–222. [Google Scholar]
- Webb, G.E. Famennian mud-mounds in the proximal fore-reef slope, Canning Basin, Western Australia. Sed. Geol. 2001, 144, 295–315. [Google Scholar] [CrossRef]
- Cooper, R.W.; Hall, W.D.W.; Styles, G.R. The Devonian Stratigraphy of the Central Pillara Range. In The Canning Basin, W.A., Proceedings of the Geological Society of Australia and Petroleum Exploration Society of Australia Symposium, Perth, WA, Australia, 27–29 June 1984; Purcell, P.G., Ed.; Geological Society of Australia and Petroleum Exploration Society of Australia: Perth, WA, Australia, 1984; pp. 229–234. [Google Scholar]
- Zapalski, M.K.; Nowicki, J.; Jakubowicz, M.; Berkowski, B. Tabulate corals across the Frasnian/Famennian boundary: Architectural turnover and its possible relation to ancient photosymbiosis. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2017, 487, 416–429. [Google Scholar] [CrossRef]
- Wood, R.; Oppenheimer, C. Spur and groove morphology from a Late Devonian reef. Sed. Geol. 2000, 133, 185–193. [Google Scholar] [CrossRef]
- Diaz, M.R.; Eberli, G.P.; Blackwelder, P.; Phillips, B.; Swart, P.K. Microbially mediated organomineralization in the formation of ooids. Geology 2017, 45, 771–774. [Google Scholar] [CrossRef]
- Li, F.; Yan, J.; Burne, R.V.; Chen, Z.-Q.; Algeo, T.J.; Zhang, W.; Tian, L.; Gan, Y.; Liu, K.; Xie, S. Paleo-seawater REE compositions and microbial signatures preserved in laminae of Lower Triassic ooids. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2017, 486, 96–107. [Google Scholar] [CrossRef]
- Batchelor, M.T.; Burne, R.V.; Henry, B.I.; Li, F.; Paul, J. A biofilm and organomineralisation model for the growth and limiting size of ooids. Sci. Rep. 2018, 8, 559. [Google Scholar] [CrossRef]
- Adams, E.W.; Hasler, C.-A. The intrinsic effect of shape on the retrogradation motif and timing of drowning of carbonate patch reef systems (Lower Frasnian, Bugle Gap, Canning Basin, Western Australia). Sedimentology 2010, 57, 956–984. [Google Scholar] [CrossRef]
- Shen, J.-W.; Webb, G.E.; Qing, H. Microbial mounds prior to the Frasnian-Famennian mass extinctions, Hantang, Guilin, South China. Sedimentology 2010, 57, 1615–1639. [Google Scholar] [CrossRef]
- Chow, N.; George, A.D. Tepee-shaped agglutinated microbialites: An example from a Famennian carbonate platform on the Lennard Shelf, northern Canning Basin, Western Australia. Sedimentology 2004, 51, 253–265. [Google Scholar] [CrossRef]
- Long, J.A.; Trinajstic, K. The Late Devonian Gogo Formation Lägerstatte—Exceptional preservation and diversity in early vertebrates. Ann. Rev. Earth Plane. Sci. 2010, 38, 665–680. [Google Scholar] [CrossRef]
- Trinajstic, K.; Briggs, D.E.G.; Long, J.A. The Gogo Formation Lagerstätte: A view of Australia’s first great barrier reef. J. Geol. Soc. 2022, 179, jgs2021-105. [Google Scholar] [CrossRef]
- Aitchison, J.C. Devonian (Frasnian) radiolarians from Gogo Formation, Canning Basin, Western Australia. Palaeontogr. A 1993, 228, 105–128. [Google Scholar]
- Briggs, D.E.; Rolfe, W.I.; Butler, P.D.; Liston, J.J.; Ingham, J.K. Phyllocarid crustaceans from the Upper Devonian Gogo Formation, Western Australia. J. Syst. Palaeont. 2011, 9, 399–424. [Google Scholar] [CrossRef]
- Tetlie, O.E.; Braddy, S.J.; Butler, P.D.; Briggs, D.E.G. A new eurypterid (Chelicerata: Eurypterida) from the Upper Devonian Gogo Formation of Western Australia, with a review of the Rhenopteridae. Palaeontology 2004, 47, 801–809. [Google Scholar] [CrossRef]
- Long, J.A.; Trinajstic, K.M. A review of recent discoveries of exceptionally preserved fossil fishes from the Gogo sites (Late Devonian, Western Australia). Earth Environ. Sci. Trans. R. Soc. Edinb. 2018, 108, 111–117. [Google Scholar] [CrossRef]
- Trinajstic, K.; Marshall, C.; Long, J.; Bifield, K. Exceptional preservation of nerve and muscle tissues in Late Devonian placoderm fish and their evolutionary implications. Biol. Lett. 2007, 3, 197–200. [Google Scholar] [CrossRef]
- Long, J.A.; Trinajstic, K.; Young, G.C.; Senden, T. Live birth in the Devonian period. Nature 2008, 453, 650–652. [Google Scholar] [CrossRef]
- Tulipani, S.; Grice, K.; Greenwood, P.F.; Haines, P.W.; Sauer, P.E.; Schimmelmann, A.; Summons, R.E.; Foster, C.B.; Böttcher, M.E.; Playton, T.; et al. Changes of palaeoenvironmental conditions recorded in Late Devonian reef systems from the Canning Basin, Western Australia: A biomarker and stable isotope approach. Gondwana Res. 2015, 28, 1500–1515. [Google Scholar] [CrossRef]
- Viohl, G. Die Solnhofener Plattenkalke—Entstehung und Lebensräume. Archaeopteryx 1998, 16, 37–68. [Google Scholar]
- Munnecke, A.; Westphal, H.; Kölbl-Ebert, M. Diagenesis of plattenkalk: Examples from the Solnhofen area (Upper Jurassic, southern Germany). Sedimentology 2008, 55, 1931–1946. [Google Scholar] [CrossRef]
- Barthel, K.W.; Swinburne, N.H.M.; Morris, S.C. Solnhofen, A Study in Mesozoic Palaeontology; Cambridge University Press: Cambridge, UK, 1994; pp. 1–246. [Google Scholar]
- Richards, F.D.; Kalnins, L.M.; Watts, A.B.; Cohen, B.E.; Beaman, R.J. The morphology of the Tasmantid Seamounts: Inter-actions between tectonic inheritance and magmatic evolution. Geochem. Geophys. Geosyst. 2018, 19, 3870–3891. [Google Scholar] [CrossRef]
- Johnson, M.E. Ecology of Intertidal Rocky Shores Related to Examples of Coastal Geology across Phanerozoic Time. J. Mar. Sci. Eng. 2024, 12, 1399. [Google Scholar] [CrossRef]
- Yokoyama, Y.; Webster, J.M.; Cotterill, C.; Braga, J.C.; Jovane, L.; Mills, H.; Morgan, S.; Suzuki, A. IODP Expedition 325 Scientists IODP Expedition 325: Great Barrier Reef reveals past sea-level, climate and environmental change since the last ice age. Sci. Drill. 2011, 12, 32–45. [Google Scholar] [CrossRef]
- Cuif, J.-P. The Rugosa–Scleractinia gap re-examined through microstructural and biochemical evidence: A tribute to H.C. Wang. Palaeoworld 2014, 23, 1–14. [Google Scholar] [CrossRef]
- Webb, G.E. Morphological variation and homoplasy: The challenge of Paleozoic coral systematics. Paleontol. Soc. Pap. 1996, 1, 135–157. [Google Scholar] [CrossRef]
- Coates, A.G.; Jackson, J.B.C. Clonal growth, algal symbiosis, and reef formation by corals. Paleobiology 1987, 13, 363–378. [Google Scholar] [CrossRef]
- Majchrzyk, A.; Jakubowicz, M.; Berkowski, B.; Król, J.J.; Zatón, M.; Zapalski, M.K. Modern-type reef in ancient time—Palaeoecology of a Middle Devonian coral community from Mad`ene el Mrakib (Anti-Atlas, Morocco). Palaeogeogr. Palaeoclimat. Palaeoecol. 2024, 633, 111876. [Google Scholar] [CrossRef]
- Pearson, R.G. Recovery and recolonization of coral reefs. Mar. Ecol. Prog. Ser. 1981, 4, 105–122. [Google Scholar] [CrossRef]
- Adey, W.H.; Burke, R.B. Holocene bioherms (algal ridges and bank-barrier reefs) of the eastern Caribbean. Geol. Soc. Am. Bull. 1976, 87, 95–109. [Google Scholar] [CrossRef]
- Camoin, G.F.; Gautret, P.; Montaggioni, L.F.; Cabioch, G. Nature and environmental significance of microbialites in Quaternary reefs: The Tahiti paradox. Sed. Geol. 1999, 126, 271–304. [Google Scholar] [CrossRef]
- MacNeil, A.J.; Jones, B. Nutrient-gradient controls on Devonian reefs: Insight from the ramp-situated Alexandra Reef System (Frasnian), northwest territories, Canada. In Controls on Carbonate Platform and Reef Development; Lukasik, J., Simo, J.A.T., Eds.; SEPM Special Publication; Society of Economic Paleontologists and Mineralogists: Tulsa, OK, USA, 2008; Volume 89, pp. 271–289. [Google Scholar]
- Wood, R. The changing biology of reef-building. Palaios 1995, 10, 517–529. [Google Scholar] [CrossRef]
- Wood, R. The ecological evolution of reefs. Annu. Rev. Ecol. Syst. 1998, 29, 179–206. [Google Scholar] [CrossRef]
- Webb, G.E. Paleokarst, paleosol, and rocky-shore deposits at the Mississippian—Pennsylvanian unconformity, northwestern Arkansas. Geol. Soc. Am. Bull. 1994, 106, 634–648. [Google Scholar] [CrossRef]
- Taylor, P.D.; Wilson, M.A. Palaeoecology and evolution of marine hard substrate communities. Earth-Sci. Rev. 2003, 62, 1–103. [Google Scholar] [CrossRef]
- Kobluk, D.R.; James, N.P.; Pemberton, S.G. Initial diversification of macroboring ichnofossils and exploitation of the macroboring niche in the Lower Paleozoic. Paleobiology 1978, 4, 163–170. [Google Scholar] [CrossRef]
- Fagerstrom, J.A. Paleozoic brachiopod symbioses: Testing the limits of modern analogues in paleoecology. Geol. Soc. Am. Bull. 1996, 108, 1393–1403. [Google Scholar] [CrossRef]
- Steneck, R.S. Escalating herbivory and resulting adaptive trends in calcareous algal crusts. Paleobiology 1983, 9, 44–61. [Google Scholar] [CrossRef]
- Hallock, P. Coral reefs, carbonate sediments, nutrients, and global change, Chapter 11. In The History and Sedimentology of Ancient Reef Systems; Stanley, G.D., Jr., Ed.; Academic/Plenum Publishers: New York, NY, USA, 2001; pp. 387–427. [Google Scholar]
- Zapalski, M.K. Evidence of photosymbiosis in Palaeozoic tabulate corals. Proc. R. Soc. Lond. B Biol. Sci. 2014, 281, 20132663. [Google Scholar] [CrossRef] [PubMed]
- Majchrzyk, A.; Jakubowicz, M.; Bongaerts, P.; Zapalski, M.K. Different times, similar mechanism? Convergent patterns in light-induced phenotypic plasticity in Devonian and modern corals. Coral Reefs 2023, 42, 893–903. [Google Scholar] [CrossRef]
- Jung, J.; Zoppe, S.F.; Söte, T.; Moretti, S.; Duprey, N.N.; Foreman, A.D.; Wald, T.; Vonhof, H.; Haug, G.H.; Sigman, D.M.; et al. Coral photosymbiosis on Mid-Devonian reefs. Nature 2024, 636, 647–653. [Google Scholar] [CrossRef]
- Król, J.J.; Berkowski, B.; Denayer, J.; Zapalski, M.K. Deducing photosymbiosis in extinct heliolitid corals. Coral Reefs 2024, 43, 91–105. [Google Scholar] [CrossRef]
- Kershaw, S.; Munnecke, A.; Jarochowska, E. Understanding Palaeozoic stromatoporoid growth. Earth-Sci. Rev. 2018, 187, 53–76. [Google Scholar] [CrossRef]
- Kershaw, S.; Jeon, J. Stromatoporoids and extinctions: A review. Earth-Sci. Rev. 2024, 252, 104721. [Google Scholar] [CrossRef]
- Li, Y.-F.; Li, F.; Webb, G.E.; Chen, J. Intense intrusion of low-oxygen waters into mid-Cambrian surface ocean carbonate factories. Chem. Geol. 2024, 669, 122360. [Google Scholar] [CrossRef]
- Littler, M.M.; Littler, D.S.; Hanisak, M.D. Deep-water rhodolith distribution, productivity, and growth history at sites of formation and subsequent degradation. J. Exp. Mar. Biol. Ecol. 1991, 150, 163–182. [Google Scholar] [CrossRef]
- Wilson, M.E.J. Equatorial carbonates: An earth systems approach. Sedimentology 2012, 59, 1–31. [Google Scholar] [CrossRef]
- Hoegh-Guldberg, O. Low coral cover in a high-CO2 world. J. Geophys. Res. 2005, 110, C09S06. [Google Scholar] [CrossRef]
- Yokoyama, Y.; Esat, T.M.; Thompson, W.G.; Thomas, A.L.; Webster, J.M.; Miyairi, Y.; Sawada, C.; Aze, T.; Matsuzaki, H.; Okuno, J.; et al. Rapid glaciation and a twostep sea-level plunge into the Last Glacial Maximum. Nature 2018, 559, 603–607. [Google Scholar] [CrossRef]
- Purdy, E.G.; Gischler, E. The transient nature of the empty bucket model of reef sedimentation. Sed. Geol. 2005, 175, 35–47. [Google Scholar] [CrossRef]
- George, A.D.; Chow, N. Palaeokarst development in a lower Frasnian (Devonian) platform succession, Canning Basin, northwestern Australia. Aust. J. Earth Sci. 1999, 46, 905–913. [Google Scholar] [CrossRef]
- Backshall, D.G.; Barnett, J.; Davies, P.J.; Duncan, D.C.; Harvey, N.; Hopley, D.; Isdale, P.; Jennings, J.N.; Moss, R. Drowned dolines-the blue holes of the Pompey Reefs, Great Barrier Reef. BMR J. Aust. Geol. Geophys. 1979, 4, 99–109. [Google Scholar]
- Kershaw, S.; Munnecke, A.; Jarochowska, E.; Young, G. Palaeozoic stromatoporoid diagenesis: A synthesis. Facies 2021, 67, 20. [Google Scholar] [CrossRef]
- Wallace, M.W.; Kerans, C.; Playford, P.E.; McManus, A. Burial diagenesis in the Upper Devonian reef complexes of the Geikie Gorge Region, Canning Basin, Western Australia. Am. Assoc. Petrol. Geol. Bull. 1991, 75, 1018–1038. [Google Scholar] [CrossRef]
- Webb, G.E. Quantitative analysis and paleoecology of earliest Mississippian microbial reefs, Gudman Formation, Queensland, Australia: Not just post-disaster phenomena. J. Sed. Res. 2005, 75, 877–896. [Google Scholar] [CrossRef]
- Ladd, H.S. Recent reefs. Am. Assoc. Petrol. Geol. Bull. 1950, 34, 203–214. [Google Scholar] [CrossRef]
- Schlager, W. The paradox of drowned reefs and carbonate platforms. Geol. Soc. Am. Bull. 1981, 92, 197–211. [Google Scholar] [CrossRef]
- McNeil, M.A.; Webster, J.M.; Beaman, R.J.; Graham, T.L. New constraints on the spatial distribution and morphology of the Halimeda bioherms of the Great Barrier Reef, Australia. Coral Reefs 2016, 35, 1343–1355. [Google Scholar] [CrossRef]
- Whalen, M.T.; Day, J.; Eberli, G.P.; Homewood, P.W. Microbial carbonates as indicators of environmental change and biotic crises in carbonate systems: Examples from the Late Devonian, Alberta basin, Canada. Palaeogeogr. Palaeoclimat. Palaeoecol. 2002, 181, 127–151. [Google Scholar] [CrossRef]
- Riding, R. Calcified cyanobacteria. In Calcareous Algae and Stromatolites; Riding, R., Ed.; Springer: Berlin/Heidelberg, Germany, 1991; pp. 55–87. [Google Scholar]
- Arp, G.; Reimer, A.; Reitner, J. Photosynthesis-induced biofilm calcification and calcium concentrations in Phanerozoic oceans. Science 2001, 292, 1701–1704. [Google Scholar] [CrossRef]
- Dupraz, C.; Reid, R.P.; Braissant, O.; Decho, A.W.; Norman, R.S.; Visscher, P.T. Processes of carbonate precipitation in modern microbial mats. Earth-Sci. Rev. 2009, 96, 141–162. [Google Scholar] [CrossRef]
- Pratt, B.R. Calcification of cyanobacterial filaments: Girvanella and the origin of Lower Paleozoic lime mud. Geology 2001, 29, 763–766. [Google Scholar] [CrossRef]
- Saint Martin, J.-P. The Girvanella-like remains from Messinian marine deposits (Sardinia, Italy): Lagerstätten paradigm for microbial biota? Annal. Paléontol. 2010, 96, 33–50. [Google Scholar] [CrossRef]
- Zhang, H.S.; Dai, M.-Y.; Qi, Y.-A.; Han, L.-L.; Yin, Z.-L.; Chen, S.-H.; Lin, L.-B. Girvanella fossils from the Phanerozoic: Distribution, evolution and controlling factors. J. Palaeogeogr. 2024, 13, 924–938. [Google Scholar] [CrossRef]
- Kamenos, N.A.; Perna, G.; Gambi, M.C.; Micheli, F.; Kroeker, K.J. Coralline algae in a naturally acidified ecosystem persist by maintaining control of skeletal mineralogy and size. Proc. R. Soc. B 2016, 283, 20161159. [Google Scholar] [CrossRef]
- Cornwall, C.E.; Comeau, S.; McCulloch, M.T. Coralline algae elevate pH at the site of calcification under ocean acidification. Glob. Change Biol. 2017, 23, 4245–4256. [Google Scholar] [CrossRef] [PubMed]
- Kawahata, H.; Fujita, K.; Iguchi, A.; Inoue, M.; Iwasaki, S.; Kuroyanagi, A.; Maeda, A.; Manaka, T.; Moriya, K.; Takagi, H.; et al. Perspective on the response of marine calcifiers to global warming and ocean acidification—Behavior of corals and foraminifera in a high CO2 world “hot house”. Prog. Earth Planet. Sci. 2019, 6, 5. [Google Scholar] [CrossRef]
- Webb, G.E.; Kamber, B.S. Trace element geochemistry as a tool for interpreting microbialites. In Earliest Life on Earth: Habitats, Environments and Methods of Detection; Golding, S., Glickson, M., Eds.; Springer: Dordrecht, The Netherlands, 2011; pp. 127–170. [Google Scholar] [CrossRef]
- Ezaki, Y. Secular fluctuations in Palaeozoic and Mesozoic reef-forming organisms during greenhouse periods: Geobiological interrelations and consequences. Paleont. Res. 2009, 13, 23–38. [Google Scholar] [CrossRef]
- Riding, R. An atmospheric stimulus for cyanobacterial-bioinduced calcification ca. 350 million years ago? Palaios 2009, 24, 685–696. [Google Scholar] [CrossRef]
- Riding, R.; Liang, L.; Lee, J.-H.; Virgone, A. Influence of dissolved oxygen on secular patterns of marine microbial carbonate abundance during the past 490 Myr. Palaeogeog. Palaeoclimat. Palaeoecol. 2019, 514, 135–143. [Google Scholar] [CrossRef]
- Middelburg, J.J.; Soetaert, K.; Hagens, M. Ocean alkalinity, buffering and biogeochemical processes. Rev. Geophys. 2020, 58, e2019RG000681. [Google Scholar] [CrossRef]
- Farkaš, J.; Wallmann, K.; Mosley, L.; Staudigel, P.; Zheng, X.-Y.; Leyden, E.; Shao, Y.; Frýda, J.; Holmden, C.; Eisenhauer, A. Alkalinity and elemental cycles in present and past ocean: Insight from geochemical modeling and alkali and alkaline earth metal isotopes. In Treatise on Geochemistry, 3rd ed.; Elsevier Science: Amsterdam, The Netherlands, 2025; Volume 5, pp. 33–85. [Google Scholar] [CrossRef]
- Riding, R.; Liang, L. Seawater chemistry control of marine limestone accumulation over the past 550 million years. Rev. Española Micropaleont. 2005, 37, 1–11. [Google Scholar]
- Pratt, B.R. Stromatolite decline—A reconsideration. Geology 1982, 10, 512–515. [Google Scholar] [CrossRef]
- Griffin, K.M. Microbial reefs on a carbonate ramp: A case study from western North America with global perspective. In Cavalcade of Carbonates; Cooper, J.D., Ed.; Volume and Guidebook for Annual Meeting: SEPM, Pacific Section, Field Trip 3; Society of Economic Paleontologists and mineralogists: Tulsa, OK, USA, 1989; pp. 101–110. [Google Scholar]
- Hönisch, B.; Ridgwell, A.; Schmidt, D.N.; Thomas, E.; Gibbs, S.J.; Sluijs, A.; Zeebe, R.; Kump, L.; Martindale, R.C.; Greene, S.E.; et al. The geological record of ocean acidification. Science 2012, 335, 1058–1063. [Google Scholar] [CrossRef] [PubMed]
- Kiessling, W.; Simpson, C. On the potential for ocean acidification to be a general cause of ancient reef crises. Glob. Change Biol. 2011, 17, 56–67. [Google Scholar] [CrossRef]
- Rowland, S.M.; Gangloff, R.A. Structure and paleoecology of Lower Cambrian reefs. Palaios 1988, 3, 111–135. [Google Scholar] [CrossRef]
- Pratt, B.R.; James, N.P. Cryptalgal-metazoan bioherms of early Ordovician age in the St George Group, western Newfoundland. Sedimentology 1982, 29, 543–569. [Google Scholar] [CrossRef]
- Adams, A.E. Development of algal-foraminiferal-coral reefs in the Lower Carboniferous of Furness, northwest England. Lethaia 1984, 17, 233–249. [Google Scholar] [CrossRef]
- Mountjoy, E.W.; Jull, R.K. Fore-reef carbonate mud bioherms and associated reef margin, Upper Devonian, Ancient Wall reef complex, Alberta. Can. J. Earth Sci. 1978, 15, 1304–1325. [Google Scholar] [CrossRef]
- Mountjoy, E.W.; Riding, R. Foreslope stromatoporoid-renalcid bioherm with evidence of early cementation, Devonian Ancient Wall reef complex, Rocky Mountains. Sedimentology 1981, 28, 299–319. [Google Scholar] [CrossRef]
- Tsien, H.H. Paleoecology of algal-bearing facies in the Devonian (Couvinian to Frasnian) reef complexes of Belgium. Paleogeog. Palaeoclim. Palaeoecol. 1979, 27, 103–127. [Google Scholar] [CrossRef]
- Antoshkina, A.I. Organic buildups and reefs on the Palaeozoic carbonate platform margin, Pechora Urals, Russia. Sed. Geol. 1998, 118, 187–211. [Google Scholar] [CrossRef]
- Antoshkina, A.I. Palaeoenvironmental implications of Palaeomicrocodium in Upper Devonian microbial mounds of the Chernyshev Swell, Timan-northern Ural Region. Facies 2006, 52, 611–625. [Google Scholar] [CrossRef]
- Klimenko, S.S.; Anischenko, L.A.; Antoshkina, A.I. The Timan-Pechora sedimentary basin: Palaeozoic reef formations and petroleum systems, Chapter 13. In Arctic Petroleum Geology; Spencer, A.M., Embry, A.F., Gautier, D.L., Stoupakova, A.V., Sørensen, K., Eds.; Memoirs; Geological Society: London, UK, 2011; Volume 35, pp. 223–236. [Google Scholar] [CrossRef]
- Ulmishek, G.F. Upper Devonian-Tournaisian facies and oil resources of the Russian craton’s eastern margin. In Devonian of the World; McMillan, N.J., Embry, A.F., Glass, D.J., Eds.; Canadian Society of Petroleum Geologists: Calgary, AB, Canada, 1988; Volume 1, pp. 527–549. [Google Scholar]
- Shen, J.-W.; Webb, G.E.; Yang, H.-Q. Reply to the Discussion by Alex MacNeil on “Microbial mounds prior to the Frasnian–Famennian mass extinctions, Hantang, Guilin, South China” by Shen et al., Sedimentology, 57, 1615–1639. Sedimentology 2011, 58, 2066–2071. [Google Scholar] [CrossRef]
- Sprachta, S.; Camoin, G.; Golubic, S.; Le Campion, T. Microbialites in a modern lagoonal environment: Nature and distribution (Tikehau atoll, French Polynesia). Palaeogeogr. Palaeoclimatol. Palaeoecol. 2001, 175, 103–124. [Google Scholar] [CrossRef]
- Visscher, P.T.; Reid, R.P.; Bebout, B.M. Microscale observations of sulfate reduction: Correlation of microbial activity with lithified micritic laminae in modern marine stromatolites. Geology 2000, 28, 919–922. [Google Scholar] [CrossRef]
- Heindel, K.; Birgel, D.; Peckmann, J.; Kuhnert, H.; Westphal, H. Formation of deglacial microbialites in coral reefs off Tahiti (IODP 310) involving sulfate-reducing bacteria. Palaios 2010, 25, 618–635. [Google Scholar] [CrossRef]
- Nothdurft, L.D.; Webb, G.E.; Kamber, B.S. Rare earth element geochemistry of Late Devonian reefal carbonates, Canning Basin, Western Australia: Confirmation of a seawater REE proxy in ancient limestones. Geochim. Cosmochim. Acta 2004, 68, 263–283. [Google Scholar] [CrossRef]
- Della Porta, G.; Webb, G.E.; McDonald, I. REE patterns of microbial carbonate and cements from Sinemurian (Lower Jurassic) siliceous sponge mounds (Djebel Bou Dahar, High Atlas, Morocco). Chem. Geol. 2015, 400, 65–86. [Google Scholar] [CrossRef]
- Saha, N.; Webb, G.E.; Zhao, J.-X.; Lewis, S.E.; Nguyen, A.D.; Feng, Y. Spatiotemporal variation of rare earth elements from river to reef continuum aids monitoring of terrigenous sources in the Great Barrier Reef. Geochim. Cosmochim. Acta 2021, 299, 85–112. [Google Scholar] [CrossRef]
- Webb, G.E.; Kamber, B.S. Rare earth elements in Holocene reefal microbialites: A new shallow seawater proxy. Geochim. Cosmochim. Acta 2000, 64, 1557–1565. [Google Scholar] [CrossRef]
- Won, M.-Z. Review of family Entactiniidae (Radiolaria), and taxonomy and morphology of Entactiniidae in the late Devonian (Frasnian) Gogo Formation, Australia. Micropaleont 1997, 43, 333–369. [Google Scholar] [CrossRef]
- George, A.D.; Chow, N.; Trinajstic, K.M. Oxic facies and the Late Devonian mass extinction, Canning Basin, Australia. Geology 2014, 42, 327–330. [Google Scholar] [CrossRef]
- Chen, J.; Lu, Y.-H.; Sun, Y.-G.; Hogancamp, N.; Lu, M. Oceanic euxinia and seafloor oxygenation linked to continental weathering and influxes during the Late Devonian Frasnian–Famennian bio-crisis and Annulata bio-event. Chem. Geol. 2024, 662, 122213. [Google Scholar] [CrossRef]
- Riding, R. Phanerozoic reefal microbial carbonate abundance: Comparisons with metazoan diversity, mass extinction events, and seawater saturation state. Rev. Española Micropaleont. 2005, 37, 23–39. [Google Scholar]
- Jiang, Z.-P.; Tyrrell, T.; Hydes, D.J.; Dai, M.; Hartman, S.E. Variability of alkalinity and the alkalinity-salinity relationship in the tropical and subtropical surface ocean. Glob. Biogeochem. Cycles 2014, 28, 729–742. [Google Scholar] [CrossRef]
- Fry, C.H.; Tyrrell, T.; Haina, M.P.; Bates, N.R.; Achterberg, E.P. Analysis of global surface ocean alkalinity to determine controlling processes. Mar. Chem. 2015, 174, 46–57. [Google Scholar] [CrossRef]
- Joachimski, M.M.; Breisig, S.; Buggisch, W.; Talent, J.A.; Mawson, R.; Gereke, M.; Morrow, J.R.; Day, J.; Weddige, K. Devonian climate and reef evolution: Insights from oxygen isotopes in apatite. Earth Planet. Sci. Lett. 2009, 284, 599–609. [Google Scholar] [CrossRef]
- Playfair, J. Illustrations of the Huttonian Theory of the Earth; William Creech: Edinburgh, UK, 1802; p. 528. [Google Scholar]
- Kocsis, A.T.; Scotese, C.R. Mapping paleocoastlines and continental flooding during the Phanerozoic. Earth-Sci. Rev. 2021, 213, 103463. [Google Scholar] [CrossRef]
- Gough, D.O. Solar interior structure and luminosity variations. Solar Phys. 1981, 74, 21–34. [Google Scholar] [CrossRef]
- Weiss, A.M.; Martindale, R.C. Paleobiological traits that determined scleractinian coral survival and proliferation during the late Paleocene and early Eocene hyperthermals. Paleoceanogr. Paleoclimat. 2019, 34, 252–274. [Google Scholar] [CrossRef]
- Done, T.J. Phase shifts in coral reef communities and their ecological significance. Hydrobiologia 1992, 247, 121–132. [Google Scholar] [CrossRef]
- Espinel-Velasco, N.; Hoffmann, L.; Agüera, A.; Byrne, M.; Dupont, S.; Uthicke, S.; Webster, N.S.; Lamare, M. Effects of ocean acidification on the settlement and metamorphosis of marine invertebrate and fish larvae: A review. Mar. Ecol. Prog. Ser. 2018, 606, 237–257. [Google Scholar] [CrossRef]
- Kuffner, I.B.; Andersson, A.J.; Jokiel, P.L.; Rodgers, K.S.; Mackenzie, F.T. Decreased abundance of crustose coralline algae due to ocean acidification. Nat. Geosci. 2008, 1, 114–117. [Google Scholar] [CrossRef]
- Jokiel, P.L.; Rodgers, K.S.; Kuffner, I.B.; Andersson, A.J.; Cox, E.F.; Mackenzie, F.T. Ocean acidification and calcifying reef organisms: A mesocosm investigation. Coral Reefs 2008, 27, 473–483. [Google Scholar] [CrossRef]
Modern GBRP | DGBR CF1–2 | DGBR CF3 | DGBR CF4–5 | |
---|---|---|---|---|
dominant carbonate factory | scleractinian coral, crustose coralline algae, Halimeda, large benthic foraminifer, mollusk, microbial biofilm | massive, branching stromatoporoid, rugose coral, tabulate coral, brachiopod, crinoid, microbial biofilm | massive, branching stromatoporoid, calcimicrobes, microbial biofilm, rugose coral, brachiopod, crinoid mollusk | calcimicrobes, microbial biofilm mollusk |
functional constructors * | scleractinian coral, crustose coralline algae | massive, branching stromatoporoid, rugose coral, tabulate coral | massive, branching stromatoporoid, calcimicrobes | calcimicrobes, micritic microbialite, tabular stromatoporoid |
binders * | crustose coralline algae, scleractinian coral, micritic microbialite | none | calcimicrobes, marine cement micritic microbialite | calcimicrobes, marine cement micritic microbialite |
bafflers * | branching Acropora Halimeda | branching stromatoporoids and corals | branching stromatoporoids and corals | None (?) |
GBRP | DGBR | |
---|---|---|
plate tectonic setting | intracratonic rift | intracratonic rift |
movement through latitude | latitudinal stability | |
post rifting deposition | syn-rift deposition | |
latitude | mostly tropical | tropical |
climate | mostly icehouse | greenhouse |
mainly low | very high | |
parasequence amplitude | >100 m | m—10s m |
preferred mineralogy | aragonite | calcite |
modeled calcite saturation | low | high |
nutrients | oligotrophic | mesotrophic |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Webb, G.E. Australia’s Two Great Barrier Reefs: What Can ~360 Million Years of Change Teach Us? J. Mar. Sci. Eng. 2025, 13, 1582. https://doi.org/10.3390/jmse13081582
Webb GE. Australia’s Two Great Barrier Reefs: What Can ~360 Million Years of Change Teach Us? Journal of Marine Science and Engineering. 2025; 13(8):1582. https://doi.org/10.3390/jmse13081582
Chicago/Turabian StyleWebb, Gregory E. 2025. "Australia’s Two Great Barrier Reefs: What Can ~360 Million Years of Change Teach Us?" Journal of Marine Science and Engineering 13, no. 8: 1582. https://doi.org/10.3390/jmse13081582
APA StyleWebb, G. E. (2025). Australia’s Two Great Barrier Reefs: What Can ~360 Million Years of Change Teach Us? Journal of Marine Science and Engineering, 13(8), 1582. https://doi.org/10.3390/jmse13081582