Numerical Analysis of Cavitation Suppression on a NACA 0018 Hydrofoil Using a Surface Cavity
Abstract
1. Introduction
2. Scaling Law
- is the freestream static pressure,
- is the vapor pressure of the liquid,
- is the fluid density,
- is the freestream velocity.
2.1. Simplified Scaling Relation
2.2. Lift Coefficient Scaling
2.3. Drag Coefficient Scaling
2.4. Need for Empirical Correlations
- under constant and ,
- ,
- decreasing quadratically in ,
- showing exponential dependence on .
2.5. Plain Hydrofoil Performance
2.6. Modified Hydrofoil Performance
2.7. Physical Interpretation of Groove Effects
- 1.
- A reduction in capacity length of 28% observed as grooves capture tip leakage vortices (TLV), generating secondary counter-rotating vortices that reduce TLV strength by 30% [34]:
- 2.
- Grooves create local pressure rise zones that delay cavitation inception by [36]:
- 3.
- Lift enhancement and drag reduction observed due to preservation of the leading-edge suction pressure distribution and a reduction of lift hysteresis of 40% during cavitation cycles [35]. The modified drag equation reduces the drag induced by cavitation by lowering the oscillation amplitude of the cavity.
3. Numerical Section
3.1. Governing Equations
3.2. Computational Domain and Mesh
3.3. Turbulence Model: k--
3.4. Cavitation Model: Schnerr–Sauer
3.5. Numerical Scheme and Convergence
3.6. Validation
4. Results
4.1. Contours of Velocity and Vapor Fraction
4.2. Forces and Monitor Points
Frequency Spectrum
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AOA | Angle of attack |
Drag coefficient | |
Lift coefficient | |
Coefficient of pressure | |
Cavitation number | |
Lift-to-drag-ratio |
References
- Knapp, R.T.; Daily, J.W.; Hammitt, F.G. Cavitation; McGraw-Hill: New York, NY, USA, 1970. [Google Scholar]
- Blake, W.K. Mechanics of Flow-Induced Sound and Vibration; Academic Press: New York, NY, USA, 1986; Volume I & II. [Google Scholar]
- Tulin, M.P. Supercavitating flow past foils and struts. In Proceedings of the NPL Symposium on Cavitation Hydrodynamics, London, UK, 14–17 September 1955. [Google Scholar]
- Shen, Y.T.; Eppler, R. Wing section for hydrofoils. J. Ship Res. 1981, 25, 191–200. [Google Scholar] [CrossRef]
- Achkinadze, A.S. Supercavitating Propellers; NATO RTO EN-010; NATO Research and Technology Organisation: Neuilly-sur-Seine Cedex, France, 2001. [Google Scholar]
- Amromin, E.; Kopriva, J.; Arndt, R.E.A.; Wosnik, M. Hydrofoil drag reduction by partial cavitation. ASME J. Fluids Eng. 2006, 128, 931–936. [Google Scholar] [CrossRef]
- Amromin, E.L. Design approach for cavitation tolerant hydrofoils and blades. J. Fluids Struct. 2014, 45, 96–106. [Google Scholar] [CrossRef]
- Kopriva, J.; Amromin, E.L.; Arndt, R.E.A. Improvement of hydrofoil performance by partial ventilated cavitation in steady flow and periodic gusts. ASME J. Fluids Eng. 2008, 130, 031301. [Google Scholar] [CrossRef]
- Olsman, W.F.J.; Colonius, T. Numerical simulation of flow over an airfoil with a cavity. AIAA J. 2011, 49, 143–149. [Google Scholar] [CrossRef]
- Olsman, W.F.J.; Willems, J.F.H.; Hirschberg, A.; Colonius, T.; Trieling, R.R. Flow around an NACA0018 airfoil with a cavity and its dynamical response to acoustic forcing. Exp. Fluids 2011, 51, 493–509. [Google Scholar] [CrossRef]
- Kasper, J. Vortex Wing Design. U.S. Patent No. 3,831,885, 1974. [Google Scholar]
- Kruppa, C. Wind tunnel tests on vortex wings. J. Aircr. 1977, 14, 789–795. [Google Scholar]
- Saffman, P.G.; Sheffield, J.S. Trapped vortices in inviscid flow. J. Fluid Mech. 1977, 82, 1–15. [Google Scholar]
- Rossow, V.J. Aerodynamics of Trapped Vortices; NASA TM-78489; NASA: Ames, CA, USA, 1978. [Google Scholar]
- Fletcher, C.A.J.; Stewart, I. Cavity flows on airfoils. AIAA J. 1986, 24, 345–352. [Google Scholar]
- Rockwell, D.; Naudascher, E. Self-sustained oscillations of flow past cavities. J. Fluid Mech. 1978, 86, 401–430. [Google Scholar]
- Gharib, M.; Roshko, A. The effect of flow oscillations on cavity drag. J. Fluid Mech. 1987, 177, 501–530. [Google Scholar] [CrossRef]
- Sun, A.; Wang, K.; Zhang, L.; Zhang, X.; Liu, S.; Jing, Z.; Li, J. Influence of blades with surface grooves on aerodynamic performance of H-type vertical axis wind turbine. Energy Sources Part A Recover. Util. Environ. Eff. 2025, 47, 2398–2416. [Google Scholar] [CrossRef]
- Kopriva, J.; Amromin, E.L.; Arndt, R.E.A.; Kovinskaya, S.I.; Wosnik, M. High performance partially cavitating hydrofoils. J. Ship Res. 2007, 51, 313–325. [Google Scholar] [CrossRef]
- Gutierrez, J.; Rubio-Clemente, A.; Chica, E. Comparative study of the cavitation resistance of traditional and high-lift hydrofoils. Int. J. Appl. Sci. Eng. 2022, 19, 2021470. [Google Scholar] [CrossRef]
- Kadivar, E.; el Moctar, O. Boundary layer instability control in the unsteady cloud cavitating flow. IOP Conf. Ser. Earth Environ. Sci. 2019, 240, 062061. [Google Scholar] [CrossRef]
- Kumar, P.; Chatterjee, D.; Bakshi, S. Experimental investigation of cavitating structures in the near wake of a cylinder. Int. J. Multiph. Flow 2017, 89, 207–217. [Google Scholar] [CrossRef]
- Kumar, P.; Kadivar, E.; el Moctar, O. Experimental investigation of passive cavitation control on a cylinder using proper orthogonal decomposition. Appl. Ocean Res. 2025, 158, 104569. [Google Scholar] [CrossRef]
- Kadivar, E.; el Moctar, O. Investigation of cloud cavitation passive control method for hydrofoils using cavitating-bubble generators (CGs). In Proceedings of the 10th International Symposium on Cavitation (CAV2018), Baltimore, MD, USA, 14–16 May 2018. [Google Scholar]
- Kadivar, E.; Timoshevskiy, M.V.; Pervunin, K.S.; el Moctar, O. Experimental and numerical study of the cavitation surge passive control around a semi-circular leading-edge flat plate. J. Mar. Sci. Technol. 2020, 25, 1010–1023. [Google Scholar] [CrossRef]
- Brennen, C.E. Cavitation and Bubble Dynamics; Oxford University Press: Oxford, UK, 1995. [Google Scholar]
- Franc, J.-P.; Michel, J.-M. Fundamentals of Cavitation; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Arndt, R.E.A. Cavitation in fluid machinery and hydraulic structures. Annu. Rev. Fluid Mech. 2002, 34, 143–175. [Google Scholar] [CrossRef]
- Wu, T.Y.; Cumberbatch, E. A note on the two-dimensional theory of partially cavitating hydrofoils. J. Fluid Mech. 1961, 10, 155–160. [Google Scholar]
- Fabula, A. Thin-airfoil theory applied to hydrofoils with a single finite cavity and arbitrary free-streamline detachment. J. Fluid Mech. 1962, 12, 227–240. [Google Scholar] [CrossRef]
- Kuiper, G. Theoretical and Experimental Investigations on the Flow Around Cavitating Hydrofoils. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 1981. [Google Scholar]
- Rogowski, K.; Piotrowski, M.; Marcin, A. Aerodynamic performance analysis of NACA 0018 airfoil at low Reynolds numbers. Adv. Sci. Technol. Res. J. 2025, 19, 136–150. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Danish, M.; Saha, K. Computational investigation of cavitating flow around two-dimensional NACA 4424 and MHKF-240 hydrofoil. Vibroeng. Procedia 2019, 29, 160–168. [Google Scholar] [CrossRef]
- Han, Y.; Liu, Y.; Tan, L. Method of variable-depth groove on vortex and cavitation suppression. Renew. Energy 2022, 195, 1169–1180. [Google Scholar]
- Kumar, P.; Reddy, S.R. Predicting cavitation control efficiency with passive controllers. ChemRxiv 2025. [Google Scholar] [CrossRef]
- Biswas, S.; Harish, R. Effect of unsteady cavitation on hydrodynamic performance of NACA 4412 hydrofoil with novel triangular slot. Heliyon 2025, 11, e42266. [Google Scholar] [CrossRef] [PubMed]
- Walters, D.K.; Leylek, J.H. A new model for boundary layer transition using a single-point RANS approach. J. Turbomach. 2004, 126, 193–202. [Google Scholar] [CrossRef]
- Schnerr, G.H.; Sauer, J. Physical and Numerical Modeling of Unsteady Cavitation Dynamics. In Proceedings of the 4th International Conference on Multiphase Flow, New Orleans, LA, USA, 27 May–1 June 2001. [Google Scholar]
- Shao, X.; Wang, Y.; Li, Z. Assessment of Improved Schnerr–Sauer Model in Cavitation Simulation Around a Hydrofoil. J. Harbin Eng. Univ. 2016, 37, 885–890. [Google Scholar]
- Eggert, C.A.; Rumsey, C.L. CFD Study of NACA 0018 Airfoil with Flow Control; NASA/TM–2017–219602; NASA: Ames, CA, USA, 2017. [Google Scholar]
Number of Nodes | Normalized Cavity Length | ||
---|---|---|---|
Coarse Mesh | 0.091 | 0.94 | 0.03 |
Medium Mesh | 0.086 | 0.88 | 0.05 |
Fine Mesh | 0.083 | 0.79 | 0.06 |
List | ||
---|---|---|
Reference | 0.077 | 0.82 |
Present work | 0.083 | 0.795 |
Cavitation Number | for Plain | Normalized Cavity Length for Plain |
---|---|---|
1.7 | 8.9 | 0.6 |
1.23 | 9.1 | 0.18 |
0.93 | 9.6 | 0.06 |
Cavitation Number | for Modified | Cavity Length for Modified |
---|---|---|
1.7 | 9.6 | 0.91 |
1.23 | 9.8 | 0.6 |
0.93 | 9.9 | 0.31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, P.; Kadivar, E.; el Moctar, O. Numerical Analysis of Cavitation Suppression on a NACA 0018 Hydrofoil Using a Surface Cavity. J. Mar. Sci. Eng. 2025, 13, 1517. https://doi.org/10.3390/jmse13081517
Kumar P, Kadivar E, el Moctar O. Numerical Analysis of Cavitation Suppression on a NACA 0018 Hydrofoil Using a Surface Cavity. Journal of Marine Science and Engineering. 2025; 13(8):1517. https://doi.org/10.3390/jmse13081517
Chicago/Turabian StyleKumar, Pankaj, Ebrahim Kadivar, and Ould el Moctar. 2025. "Numerical Analysis of Cavitation Suppression on a NACA 0018 Hydrofoil Using a Surface Cavity" Journal of Marine Science and Engineering 13, no. 8: 1517. https://doi.org/10.3390/jmse13081517
APA StyleKumar, P., Kadivar, E., & el Moctar, O. (2025). Numerical Analysis of Cavitation Suppression on a NACA 0018 Hydrofoil Using a Surface Cavity. Journal of Marine Science and Engineering, 13(8), 1517. https://doi.org/10.3390/jmse13081517