A Virtual-Beacon-Based Calibration Method for Precise Acoustic Positioning of Deep-Sea Sensing Networks
Abstract
1. Introduction
2. Methods
2.1. Dynamic Single-Difference Positioning
- Geometric path length (m) between the target and beacon j at known coordinates , computed under the assumed propagation model (Section 3.1).
- Transducer/electronics fixed range bias (m): equivalent path length representing fixed Tx/Rx electronics delays and signal-processing latencies particular to beacon j.
- Clock-synchronization range error (m): residual range error arising from epoch-constant transmit/receive timing misalignment between beacon j and the timing reference. If the relative timing offset is (s), then .
- Sound-speed modeling contribution (m): bias introduced when the assumed propagation speed differs from the true path-integrated water-column sound speed. Because the induced error scales with distance, is typically approximately proportional to under small fractional speed errors (), i.e., to first order.
- Random measurement noise (m): zero-mean stochastic residual capturing timing jitter, unresolved multipath, and unmodeled effects after quality control.
2.2. Spatial Position Dilution of Precision
2.2.1. Linearized Observation Model
2.2.2. PDOP for Non-Differential Measurements
2.2.3. PDOP for Single-Difference Observations
2.2.4. Optimal Choice of Reference Beacon
2.3. Aided Depth Fixing Method Based on Virtual Beacon Construction
Algorithm 1: Virtual-Beacon-Aided Depth Inversion |
3. Simulation Experiments and Results
3.1. Simulation Environment, Propagation Model, and Error Metrics
3.2. Dynamic Single-Difference Positioning
3.2.1. Case I—Random Noise + Constant Range Bias
3.2.2. Case II—Random Noise + Range Bias + Clock Offset
3.2.3. Case III—Random Noise + Range Bias + Clock Offset + Sound-Speed Measurement Error
3.3. Full–Depth PDOP, HDOP, VDOP Distributions
3.4. Virtual-Beacon-Aided Depth Fixing
4. Discussion
4.1. Error-Cancellation Capability of the Single-Difference Solver
4.2. Geometry Strength Versus Differencing Strategy
4.3. Reference-Buoy Selection in a Radiation Array
4.4. Virtual-Beacon Depth Fixing Under Case III Errors
4.5. Recommended Calibration Workflow
4.6. Limitations and Future Work
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bürgmann, R.; Chadwell, D. Seafloor geodesy. Annu. Rev. Earth Planet. Sci. 2014, 42, 509–534. [Google Scholar] [CrossRef]
- McLellan, B.C. Sustainability assessment of deep ocean resources. Procedia Environ. Sci. 2015, 28, 502–508. [Google Scholar] [CrossRef]
- Lakeman, J.B.; Rose, A.; Pointon, K.D.; Browning, D.J.; Lovell, K.V.; Waring, S.C.; Horsfall, J.A. The direct borohydride fuel cell for UUV propulsion power. J. Power Sources 2006, 162, 765–772. [Google Scholar] [CrossRef]
- Saeed, N.; Celik, A.; Al-Naffouri, T.Y.; Alouini, M.S. Underwater optical wireless communications, networking, and localization: A survey. Ad Hoc Netw. 2019, 94, 101935. [Google Scholar] [CrossRef]
- Drazen, J.C. Potential spatial intersection between high-seas fisheries and deep-sea mining in international waters. Mar. Policy 2021, 129, 104564. [Google Scholar]
- Paull, L.; Saeedi, S.; Seto, M.; Li, H. AUV navigation and localization: A review. IEEE J. Ocean. Eng. 2014, 39, 131–149. [Google Scholar] [CrossRef]
- Chen, X.; Xie, Z.; Eun, Y.; Bettens, A.; Wu, X. An observation model from linear interpolation for quaternion-based attitude estimation. IEEE Trans. Instrum. Meas. 2023, 72, 8501312. [Google Scholar] [CrossRef]
- Ma, T.; Ding, S.; Li, Y.; Fan, J. A review of terrain-aided navigation for underwater vehicles. Ocean. Eng. 2023, 281, 114779. [Google Scholar] [CrossRef]
- Zhuang, Y.; Sun, X.; Li, Y.; Huai, J.; Hua, L.; Yang, X.; Cao, X.; Zhang, P.; Cao, Y.; Qi, L.; et al. Multi-sensor integrated navigation/positioning systems using data fusion: From analytics-based to learning-based approaches. Inf. Fusion 2023, 95, 62–90. [Google Scholar] [CrossRef]
- Zhao, Y.; Jiang, F.T.W.; Zhou, Y.; Zheng, Q. Spatial-temporal multi-path clusters joint equalisation for deep-sea acoustic communication in large delay-spread channels. IEEE Internet Things J. 2024, 12, 5642–5654. [Google Scholar] [CrossRef]
- Zheng, G.; Zhang, H.M.; Fenf, L.; Zhao, J.H. An adaptive simplification method of SVP based on area difference. Acta Geod. Cartogr. Sin. 2018, 47, 1415–1423. [Google Scholar]
- Takahashi, N.; Futa, K.; Tsuchiya, T.; Kikuchi, T. Calculation of eigenray with equi-sound-speed division of sound speed profile. Acoust. Sci. Technol. 2000, 21, 153–161. [Google Scholar] [CrossRef]
- Yaroshchuk, I.; Kosheleva, A.; Lazaryuk, A.; Dolgikh, G.; Pivovarov, A.; Samchenko, A.; Shvyrev, A.; Gulin, O.; Korotchenko, R. Estimation of seawater hydrophysical characteristics from thermistor strings and CTD data in the Sea of Japan shelf zone. J. Mar. Sci. Eng. 2023, 11, 1204. [Google Scholar] [CrossRef]
- Howe, B.M.; Miksis-Olds, J.; Rehm, E.; Sagen, H.; Worcester, P.F.; Haralabus, G. Observing the oceans acoustically. Front. Mar. Sci. 2019, 6, 426. [Google Scholar] [CrossRef]
- Wong, A.P.; Wijffels, S.E.; Riser, S.C.; Pouliquen, S.; Hosoda, S.; Roemmich, D.; Gilson, J.; Johnson, G.C.; Martini, K.; Murphy, D.J.; et al. Argo data 1999–2019: Two million temperature-salinity profiles and subsurface velocity observations from a global array of profiling floats. Front. Mar. Sci. 2020, 7, 700. [Google Scholar] [CrossRef]
- Chen, G.; Liu, Y.; Liu, Y.; Tian, Z.; Li, M. Adjustment of transceiver lever-arm offset and sound-speed bias for GNSS-acoustic positioning. Remote Sens. 2019, 11, 1606. [Google Scholar] [CrossRef]
- Li, M.; Liu, Y.; Liu, Y.; Chen, G.; Tang, Q.; Feng, Y.; Zhang, L.; Wen, Y. Impact of sound-travel-time modelling on sequential GNSS-acoustic seafloor positioning under various survey configurations. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5802011. [Google Scholar]
- Sakic, P.; Ballu, V.; Royer, J.-Y. A multi-observation least-squares inversion for GNSS-acoustic seafloor positioning. Remote Sens. 2020, 12, 448. [Google Scholar] [CrossRef]
- Okamoto, A.; Sasano, M.; Kim, K.; Fujiwara, T. Position error correction method using circle Hough transform for AUV navigation. Trans. Navig. 2023, 8, 11–20. [Google Scholar]
- Wu, Y.; Ma, X.; Yan, S.; Yuan, D.; Li, J.; Li, Y. Doppler difference aided long-baseline navigation for a fast-moving underwater vehicle. In Proceedings. IEEE OCEANS; IEEE: Piscataway, NJ, USA, 2019; pp. 1–6. [Google Scholar]
- Sun, Z.; Wang, Z.; Nie, Z. A stochastic model for precise GNSS/acoustic underwater positioning based on transmission loss of signal intensity. Gps Solut. 2023, 27, 202. [Google Scholar] [CrossRef]
- Zhao, C.; Thies, P.R.; Johanning, L. Offshore inspection mission modelling for an ASV/ROV system. Ocean. Eng. 2022, 259, 111899. [Google Scholar] [CrossRef]
- Li, X.; Wang, Y.; Qi, B.; Hao, Y. Long-baseline acoustic localization based on track-before-detect in complex underwater environments. IEEE Trans. Geosci. Remote Sens. 2023, 61, 4205214. [Google Scholar] [CrossRef]
- Liu, Y.; Li, M.; Liu, Y.; Chen, G.; Tang, Q.; Feng, Y.; Wen, Y. Sequential GNSS-acoustic seafloor point positioning with modelling of sound-speed variation. J. Geod. 2023, 97, 115. [Google Scholar] [CrossRef]
- Jiang, W.; Diamant, R. Long-range underwater acoustic channel estimation. IEEE Trans. Wirel. Commun. 2023, 22, 6267–6282. [Google Scholar] [CrossRef]
- Zhang, G.; Yi, G.; Wei, Z.; Xie, Y.; Qi, Z. A novel positional calibration method for an underwater acoustic beacon array based on the equivalent virtual long baseline positioning model. J. Mar. Sci. Eng. 2024, 12, 825. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, Z.; Li, Y.; Tong, J. A passive acoustic positioning algorithm based on virtual long baseline matrix window. J. Navigation 2019, 72, 193–206. [Google Scholar] [CrossRef]
- Ashraf, S.; Gao, M.; Chen, Z.; Naeem, H.; Ahmed, T. CED-OR based opportunistic routing mechanism for underwater wireless sensor networks. Wirel. Pers. Commun. 2022, 125, 487–511. [Google Scholar] [CrossRef]
Method | Horizontal (m) | Vertical (m) | 3-D (m) |
---|---|---|---|
ND | 0.351 ± 0.094 | 1.537 ± 0.033 | 1.580 ± 0.024 |
DSD-C | 0.207 ± 0.121 | 0.013 ± 0.909 | 0.781 ± 0.523 |
DSD-E | 0.211 ± 0.123 | 0.023 ± 0.913 | 0.787 ± 0.523 |
Method | Horizontal (m) | Vertical (m) | 3-D (m) |
---|---|---|---|
ND | 0.678 ± 0.097 | 3.150 ± 0.023 | |
DSD-C | 0.207 ± 0.121 | 0.781 ± 0.523 | |
DSD-E | 0.211 ± 0.123 | 0.787 ± 0.523 |
Method | Horizontal (m) | Vertical (m) | 3-D (m) |
---|---|---|---|
ND | 1.969 ± 0.115 | 6.201 ± 0.024 | |
DSD-C | 0.200 ± 0.116 | 3.072 ± 0.770 | |
DSD-E | 0.204 ± 0.116 | 3.083 ± 0.774 |
Method | Vertical (m) | Method | Vertical (m) |
---|---|---|---|
ND | 5.879 ± 0.040 | DSD-C | 3.072 ± 0.782 |
DSD-E | 3.062 ± 0.776 | VB | 2.770 ± 0.140 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Y.; Shen, B.; Yao, B.; Wu, W. A Virtual-Beacon-Based Calibration Method for Precise Acoustic Positioning of Deep-Sea Sensing Networks. J. Mar. Sci. Eng. 2025, 13, 1422. https://doi.org/10.3390/jmse13081422
Zhu Y, Shen B, Yao B, Wu W. A Virtual-Beacon-Based Calibration Method for Precise Acoustic Positioning of Deep-Sea Sensing Networks. Journal of Marine Science and Engineering. 2025; 13(8):1422. https://doi.org/10.3390/jmse13081422
Chicago/Turabian StyleZhu, Yuqi, Binjian Shen, Biyuan Yao, and Wei Wu. 2025. "A Virtual-Beacon-Based Calibration Method for Precise Acoustic Positioning of Deep-Sea Sensing Networks" Journal of Marine Science and Engineering 13, no. 8: 1422. https://doi.org/10.3390/jmse13081422
APA StyleZhu, Y., Shen, B., Yao, B., & Wu, W. (2025). A Virtual-Beacon-Based Calibration Method for Precise Acoustic Positioning of Deep-Sea Sensing Networks. Journal of Marine Science and Engineering, 13(8), 1422. https://doi.org/10.3390/jmse13081422