Wave Height Forecasting in the Bay of Bengal Using Multivariate Hybrid Deep Learning Models
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Data
2.2. Convolutional Neural Networks (CNNs)
2.3. Long Short-Term Memory Networks (LSTMs)
2.4. Gated Recurrent Units (GRU)
2.5. Bidirectional LSTM (BiLSTM) and Bidirectional GRU (BiGRU)
2.6. Hybrid Deep Learning Models with CNN and RNN Components
2.7. Bayesian Optimization (BO)
2.8. Multicollinearity Analysis
2.9. Integrated Gradient
2.10. Evaluation of Model Performance
2.11. Models’ Network Design
2.12. Determining the Optimal Wind Input Variables
3. Results and Discussion
3.1. Determining the Optimal Time Steps
3.2. Optimization of Hybrid Models
3.3. Performance Evaluation of Univariate and Multivariate Models
3.4. Contribution of Each Input Variable in Wave Height Prediction
3.5. Evaluatin of Model Generalizability
3.6. Performance Evaluation of Hybrid Models for Different Locations
3.7. Performance Evaluation of Hybrid Models for Different Time Horizons
4. Conclusions
5. Limitations and Future Research
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Alfredo, C.S.; Adytia, D.A. Time Series Forecasting of Significant Wave Height Using GRU, CNN-GRU, and LSTM. J. RESTI (Rekayasa Sist. Dan Teknol. Inf.) 2022, 6, 776–781. [Google Scholar] [CrossRef]
- Jörges, C.; Berkenbrink, C.; Gottschalk, H.; Stumpe, B. Spatial Ocean Wave Height Prediction with CNN Mixed-Data Deep Neural Networks Using Random Field Simulated Bathymetry. Ocean Eng. 2023, 271, 113699. [Google Scholar] [CrossRef]
- Shen, W.; Ying, Z.; Zhao, Y.; Wang, X. Significant Wave Height Prediction in Monsoon Regions Based on the VMD-CNN-BiLSTM Model. Front. Mar. Sci. 2024, 11, 1503552. [Google Scholar] [CrossRef]
- Shuvo, S.D. Climatology of Frequency, Life Period, Energy and Speed for Tropical Disturbances and Cyclones over the Bay of Bengal. Dhaka Univ. J. Earth Environ. Sci. 2021, 10, 23–31. [Google Scholar] [CrossRef]
- Song, T.; Han, R.; Meng, F.; Wang, J.; Wei, W.; Peng, S. A Significant Wave Height Prediction Method Based on Deep Learning Combining the Correlation between Wind and Wind Waves. Front. Mar. Sci. 2022, 9, 983007. [Google Scholar] [CrossRef]
- Ding, T.; Wu, D.; Shen, L.; Liu, Q.; Zhang, X.; Li, Y. Prediction of Significant Wave Height Using a VMD-LSTM-Rolling Model in the South Sea of China. Front. Mar. Sci. 2024, 11, 1382248. [Google Scholar] [CrossRef]
- Tang, G.; Du, H.; Hu, X.; Wang, Y.; Claramunt, C.; Men, S. An EMD-PSO-LSSVM hybrid model for significant wave height prediction. Ocean Sci. Discuss. 2021. [Google Scholar] [CrossRef]
- Ji, Q.; Han, L.; Jiang, L.; Zhang, Y.; Xie, M.; Liu, Y. Short-term Prediction of the Significant Wave Height and Average Wave Period based on VMD-TCN-LSTM Algorithm. Ocean Sci. 2023, 19, 1561–1578. [Google Scholar] [CrossRef]
- Hao, P.; Li, S.; Yu, C.; Wu, G. A Prediction Model of Significant Wave Height in the South China Sea Based on Attention Mechanism. Front. Mar. Sci. 2022, 9, 895212. [Google Scholar] [CrossRef]
- Han, L.; Ji, Q.; Jia, X.; Liu, Y.; Han, G.; Lin, X. Significant Wave Height Prediction in the South China Sea Based on the ConvLSTM Algorithm. J. Mar. Sci. Eng. 2022, 10, 1683. [Google Scholar] [CrossRef]
- Domala, V.; Kim, T.W. A Univariate and Multivariate Machine Learning Approach for Prediction of Significant Wave Height. In Proceedings of the Oceans Conference Record (IEEE), Hampton Roads, VA, USA, 17–20 October 2022. [Google Scholar] [CrossRef]
- Cornejo-Bueno, L.; Nieto Borge, J.C.; Alexandre, E.; Hessner, K.; Salcedo-Sanz, S. Accurate Estimation of Significant Wave Height with Support Vector Regression Algorithms and Marine Radar Images. Coast. Eng. 2016, 114, 233–243. [Google Scholar] [CrossRef]
- Zhang, W.; Zhao, H.; Chen, G.; Yang, J. Assessing the Performance of SWAN Model for Wave Simulations in the Bay of Bengal. Ocean Eng. 2023, 285, 115295. [Google Scholar] [CrossRef]
- Lv, T.; Tao, A.; Li, Y.P.; Wang, G.; Zhu, Y.; Zheng, J. A New Framework for Selecting Observation Points and Reconstructing Wave Fields under Sparse Observations. Coastal Eng. 2025, 202, 104836. [Google Scholar] [CrossRef]
- Anusree, A.; Kumar, V.S. Mean Wave Direction and Wave Height in the ERA5 Reanalysis Dataset: Comparison with Measured Data in the Coastal Waters of India. Dyn. Atmos. Ocean. 2024, 107, 101478. [Google Scholar] [CrossRef]
- Shewalkar, A.; Nyavanandi, D.; Ludwig, S.A. Performance Evaluation of Deep Neural Networks Applied to Speech Recognition: Rnn, LSTM and GRU. J. Artif. Intell. Soft Comput. Res. 2019, 9, 235–245. [Google Scholar] [CrossRef]
- Guan, X. Wave Height Prediction Based on CNN-LSTM. In Proceedings of the 2020 2nd International Conference on Machine Learning, Big Data and Business Intelligence (MLBDBI), Taiyuan, China, 23–25 October 2020. [Google Scholar] [CrossRef]
- Yao, Z.; Wang, Z.; Wang, D.; Wu, J.; Chen, L. An Ensemble CNN-LSTM and GRU Adaptive Weighting Model Based Improved Sparrow Search Algorithm for Predicting Runoff Using Historical Meteorological and Runoff Data as Input. J. Hydrol. 2023, 625, 129977. [Google Scholar] [CrossRef]
- Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y. Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling. arXiv 2014, arXiv:1412.3555. [Google Scholar] [CrossRef]
- Alizadeh, M.J.; Nourani, V. Multivariate GRU and LSTM Models for Wave Forecasting and Hindcasting in the Southern Caspian Sea. Ocean Eng. 2024, 298, 117193. [Google Scholar] [CrossRef]
- Martina Maria Pushpam, P.; Felix Enigo, V.S. Forecasting Significant Wave Height Using RNN-LSTM Models. In Proceedings of the 2020 4th International Conference on Intelligent Computing and Control Systems (ICICCS), Madurai, India, 13–15 May 2020. [Google Scholar] [CrossRef]
- Yang, L.; Shami, A. On Hyperparameter Optimization of Machine Learning Algorithms: Theory and Practice. Neurocomputing 2020, 415, 295–316. [Google Scholar] [CrossRef]
- Li, X.; Zhou, S.; Wang, F. A CNN-BiGRU Sea Level Height Prediction Model Combined with Bayesian Optimization Algorithm. Ocean Eng. 2025, 315, 119849. [Google Scholar] [CrossRef]
- Snoek, J.; Larochelle, H.; Adams, R.P. Practical Bayesian Optimization of Machine Learning Algorithms. arXiv 2012, arXiv:1206.2944. [Google Scholar] [CrossRef]
- Shahriari, B.; Swersky, K.; Wang, Z.; Adams, R.P.; de Freitas, N. Taking the human out of the loop: A review of Bayesian optimization. Proc. IEEE 2016, 104, 148–175. [Google Scholar] [CrossRef]
- Zhang, Q.; Hu, W.; Liu, Z.; Tan, J. TBM Performance Prediction with Bayesian Optimization and Automated Machine Learning. Tunn. Undergr. Space Technol. 2020, 103, 103493. [Google Scholar] [CrossRef]
- Alin, A. Multicollinearity. Wiley Interdiscip. Rev. Comput. Stat. 2010, 2, 370–374. [Google Scholar] [CrossRef]
- Guan, L.; Yang, J.; Bell, J.M. Cross-Correlations between Weather Variables in Australia. Build. Environ. 2007, 42, 1054–1070. [Google Scholar] [CrossRef]
- Vu, D.H.; Muttaqi, K.M.; Agalgaonkar, A.P. A Variance Inflation Factor and Backward Elimination Based Robust Regression Model for Forecasting Monthly Electricity Demand Using Climatic Variables. Appl. Energy 2015, 140, 385–394. [Google Scholar] [CrossRef]
- Sikdar, S.; Bhattacharya, P.; Heese, K. Integrated Directional Gradients: Feature Interaction Attribution for Neural NLP Models. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, Virtual Event, 1–6 August 2021; pp. 865–878. [Google Scholar]
- Kim, J.S. A Novel Approach for Brain Connectivity Using Recurrent Neural Networks and Integrated Gradients. Comput. Biol. Med. 2025, 184, 109404. [Google Scholar] [CrossRef]
- Salah, H.; Elbessa, M. Using Machine Learning Techniques to Predict Significant Wave Height Compared with Parametric Methods. Eng. Appl. Sci. 2024, 9, 106–128. [Google Scholar] [CrossRef]
- Kara, A.B.; Wallcraft, A.J.; Metzger, E.J.; Hurlburt, H.E.; Fairall, C.W. Wind Stress Drag Coefficient over the Global Ocean. J. Clim. 2007, 20, 5856–5864. [Google Scholar] [CrossRef]
- Bragone, F.; Morozovska, K.; Rosén, T.; Laneryd, T.; Söderberg, D.; Markidis, S. Automatic Learning Analysis of Flow-Induced Birefringence in Cellulose Nanofibrils. J. Comput. Sci. 2025, 85, 102536. [Google Scholar] [CrossRef]
- Lee, S.; He, C.; Avestimehr, S. Achieving Small-Batch Accuracy with Large-Batch Scalability via Hessian-Aware Learning Rate Adjustment. Neural Netw. 2023, 158, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Bengio, Y. 9 Practical Recommendations for Gradient-Based Training of Deep Architectures. arXiv 2012, arXiv:1206.5533. [Google Scholar] [CrossRef]
- Limouni, T.; Yaagoubi, R.; Bouziane, K.; Guissi, K.; Baali, E.H. Univariate and Multivariate LSTM Models for One Step and Multistep PV Power Forecasting. Int. J. Renew. Energy Dev. 2022, 11, 815–828. [Google Scholar] [CrossRef]
- Ahmed, A.A.M.; Jui, S.J.J.; AL-Musaylh, M.S.; Raj, N.; Saha, R.; Deo, R.C.; Saha, S.K. Hybrid Deep Learning Model for Wave Height Prediction in Australia’s Wave Energy Region. Appl. Soft Comput. 2024, 150, 111003. [Google Scholar] [CrossRef]
- Li, Z.; Guo, F.; Zhang, X.; Guo, Y.; Zhang, Z. Analysis of Factors Influencing Significant Wave Height Retrieval and Performance Improvement in Spaceborne GNSS-R. GPS Solut. 2024, 28, 64. [Google Scholar] [CrossRef]
- Ranjbaran, G.; Recupero, D.R.; Roy, C.K.; Schneider, K.A. C-SHAP: A Hybrid Method for Fast and Efficient Interpretability. Appl. Sci. 2025, 15, 672. [Google Scholar] [CrossRef]
SWH + Wind Stress | SWH + Wind Shear Velocity | SWH + Wind Speed | Multivariate Model | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Time steps | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 |
R | 0.9781 | 0.9725 | 0.9773 | 0.9678 | 0.9737 | 0.9692 | 0.9647 | 0.9700 | 0.9574 | 0.9410 | 0.9773 | 0.9678 |
RMSE | 0.1677 | 0.1871 | 0.1704 | 0.2031 | 0.1837 | 0.1987 | 0.2116 | 0.1953 | 0.2324 | 0.2722 | 0.1704 | 0.2035 |
MAE | 0.1008 | 0.1089 | 0.0977 | 0.1242 | 0.1086 | 0.1202 | 0.1270 | 0.1153 | 0.1379 | 0.1669 | 0.1004 | 0.1236 |
Parameter | Search Interval | CNN-LSTM | CNN-BiLSTM | CNN-GRU | CNN-BiGRU |
---|---|---|---|---|---|
Number of CNN layers | [32, 128] | 1st layer: 96 2nd layer: 32 | 1st layer: 64 2nd layer: 64 | 1st layer: 128 2nd layer: 128 | 1st layer: 96 2nd layer: 32 |
Number of RNN layers | [32, 128] | 1st layer: 64 2nd layer: 128 | 1st layer: 32 2nd layer: 96 | 1st layer: 128 2nd layer: 128 | 1st layer: 64 2nd layer: 128 |
Learning rate | [1 × 10−5, 1 × 10−3] | 0.0003 | 0.00008 | 0.0009 | 0.0003 |
Dropout rate | [0.1, 0.5] | 0.1 | 0.1 | 0.1 | 0.1 |
Models | Initial Setting | Optimized Setting | Degree of Improvement (%) | |||||
---|---|---|---|---|---|---|---|---|
R | RMSE | MAE | R | RMSE | MAE | RMSE | MAE | |
CNN-LSTM | 0.9773 | 0.170 | 0.1004 | 0.9613 | 0.0450 | 0.0271 | 73.53 | 73.00 |
CNN-BiLSTM | 0.9821 | 0.1516 | 0.0893 | 0.9643 | 0.0434 | 0.0267 | 71.37 | 70.10 |
CNN-GRU | 0.9786 | 0.1659 | 0.0979 | 0.9739 | 0.0371 | 0.0221 | 77.63 | 77.42 |
CNN-BiGRU | 0.9834 | 0.1457 | 0.0848 | 0.9707 | 0.0395 | 0.0245 | 72.89 | 71.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thet, P.; Tao, A.; Lv, T.; Zheng, J. Wave Height Forecasting in the Bay of Bengal Using Multivariate Hybrid Deep Learning Models. J. Mar. Sci. Eng. 2025, 13, 1412. https://doi.org/10.3390/jmse13081412
Thet P, Tao A, Lv T, Zheng J. Wave Height Forecasting in the Bay of Bengal Using Multivariate Hybrid Deep Learning Models. Journal of Marine Science and Engineering. 2025; 13(8):1412. https://doi.org/10.3390/jmse13081412
Chicago/Turabian StyleThet, Phyusin, Aifeng Tao, Tao Lv, and Jinhai Zheng. 2025. "Wave Height Forecasting in the Bay of Bengal Using Multivariate Hybrid Deep Learning Models" Journal of Marine Science and Engineering 13, no. 8: 1412. https://doi.org/10.3390/jmse13081412
APA StyleThet, P., Tao, A., Lv, T., & Zheng, J. (2025). Wave Height Forecasting in the Bay of Bengal Using Multivariate Hybrid Deep Learning Models. Journal of Marine Science and Engineering, 13(8), 1412. https://doi.org/10.3390/jmse13081412