Wave–Current Interactions in the Agulhas Retroflection: The Beluga Reefer Accident
Abstract
1. Introduction
2. Data and Methods
2.1. The Beluga Reefer Accident
2.2. Data Sets
2.2.1. Global Integrated Shipping Information System
2.2.2. Wave and Current Data
2.3. Methodology—Analysis of Sea States During Ship Accident
3. Results and Discussion
3.1. Crossing Seas
3.2. Wave–Current Interactions
3.3. Two-Dimensional Wave Spectrum
3.4. Mechanistic Interpretation of the Accident
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- UNCTAD. Review of Maritime Transport 2024; UNCTAD: Geneva, Switzerland, 2024. [Google Scholar]
- Cao, Y.; Wang, X.; Wang, Y.; Fan, S.; Wang, H.; Yang, Z.; Liu, Z.; Wang, J.; Shi, R. Analysis of factors affecting the severity of marine accidents using a data-driven Bayesian network. Ocean Eng. 2023, 269, 113563. [Google Scholar] [CrossRef]
- Wang, X.; Xia, G.; Zhao, J.; Wang, J.; Yang, Z.; Loughney, S.; Fang, S.; Zhang, S.; Xing, Y.; Liu, Z. A novel method for the risk assessment of human evacuation from cruise ships in maritime transportation. Reliab. Eng. Syst. Saf. 2023, 230, 108887. [Google Scholar] [CrossRef]
- Ronca, V.; Uflaz, E.; Turan, O.; Bantan, H.; MacKinnon, S.N.; Lommi, A.; Pozzi, S.; Kurt, R.E.; Arslan, O.; Kurt, Y.B.; et al. Neurophysiological Assessment of An Innovative Maritime Safety System in Terms of Ship Operators’ Mental Workload, Stress, and Attention in the Full Mission Bridge Simulator. Brain Sci. 2023, 13, 1319. [Google Scholar] [CrossRef] [PubMed]
- Joseph, A.; Dalaklis, D. The international convention for the safety of life at sea: Highlighting interrelations of measures towards effective risk mitigation. J. Int. Marit. Saf. Environ. Aff. Shipp. 2021, 5, 1–11. [Google Scholar] [CrossRef]
- Marino, M.; Cavallaro, L.; Castro, E.; Musumeci, R.E.; Martignoni, M.; Roman, F.; Foti, E. Analysis on a database of ship accidents in port areas. Data Brief 2023, 48, 109127. [Google Scholar] [CrossRef]
- Kharif, C.; Pelinovsky, E.; Slunyaev, A. Rogue Waves in the Ocean; Springer Science & Business Media: Berlin, Germany, 2008. [Google Scholar]
- Rautenbach, C.; Barnes, M.A.; Wang, D.W.; Dykes, J. Southern African Wave Model Sensitivities and Accuracies. J. Mar. Sci. Eng. 2020, 8, 773. [Google Scholar] [CrossRef]
- Casas-Prat, M.; Hemer, M.A.; Dodet, G.; Morim, J.; Wang, X.L.; Mori, N.; Young, I.; Erikson, L.; Kamranzad, B.; Kumar, P.; et al. Wind-wave climate changes and their impacts. Nat. Rev. Earth Environ. 2024, 5, 23–42. [Google Scholar] [CrossRef]
- Ponce de León, S.; Guedes Soares, C. Numerical study of the effect of current on waves in the Agulhas Current Retroflection. Ocean Eng. 2022, 264, 112333. [Google Scholar] [CrossRef]
- South African Maritime Safety Authority. Annual Report; South African Maritime Safety Authority: Pretoria, South Africa, 2024. [Google Scholar]
- Salonen, N.; Rautenbach, C. Toward nearshore, bathymetry induced wave amplification in False Bay, South Africa. AIP Adv. 2021, 11, 075209. [Google Scholar] [CrossRef]
- Rouault, M.; Pohl, B.; Penven, P. Coastal oceanic climate change and variability from 1982 to 2009 around South Africa. Afr. J. Mar. Sci. 2010, 32, 237–246. [Google Scholar] [CrossRef]
- Soares, C.G.; Antão, P.; Bitner-Gregersen, E. Analysis of the Frequency of Ship Accidents Under Severe North Atlantic Weather. In Proceedings of the Design and Operation For Abnormal Conditions, London, UK, 6–7 November 2001; pp. 221–230. [Google Scholar]
- Toffoli, A.; Lefèvre, J.M.; Bitner-Gregersen, E.; Monbaliu, J. Towards the identification of warning criteria: Analysis of a ship accident database. Appl. Ocean Res. 2005, 27, 281–291. [Google Scholar] [CrossRef]
- Isle of Man Government Marine Administration. Johann Schulte—Casualty Investigation CA 63; Isle of Man Government Marine Administration: Douglas, Isle of Man, 2000. [Google Scholar]
- Federal Bureau for the Investigation of Maritime Accidents. Report on the Investigation into a Fatal Accident on Board Vlcc ARAFURA; Federal Bureau for the Investigation of Maritime Accidents: Brussels, Belgium, 2021. [Google Scholar]
- Khojasteh, D.; Tavakoli, S.; Dashtimanesh, A.; Dolatshah, A.; Huang, L.; Glamore, W.; Sadat-Noori, M.; Iglesias, G. Numerical analysis of shipping water impacting a step structure. Ocean Eng. 2020, 209, 107517. [Google Scholar] [CrossRef]
- Cao, Y.; Wang, X.; Yang, Z.; Wang, J.; Wang, H.; Liu, Z. Research in marine accidents: A bibliometric analysis, systematic review and future directions. Ocean Eng. 2023, 284, 115048. [Google Scholar] [CrossRef]
- Batalden, B.M.; Sydnes, A.K. Maritime safety and the ISM code: A study of investigated casualties and incidents. WMU J. Marit. Aff. 2014, 13, 3–25. [Google Scholar] [CrossRef]
- The Bahamas Maritime Authority. Marine Safety Investigation Report into a Man Overboard from Castillo De Valverde on 28 May 2020; The Bahamas Maritime Authority: Nassau, Bahamas, 2021. [Google Scholar]
- Ma, L.; Ma, X.; Wang, T.; Chen, L.; Lan, H. On the development and measurement of human factors complex network for maritime accidents: A case of ship groundings. Ocean Coast. Manag. 2024, 248, 106954. [Google Scholar] [CrossRef]
- Manuel, M.E. Maritime Risk and Organizational Learning, 4th ed.; CRC Press: London, UK, 2011. [Google Scholar]
- Veitch, J.; Rautenbach, C.; Hermes, J.; Reason, C. The Cape Point wave record, extreme events and the role of large-scale modes of climate variability. J. Mar. Syst. 2019, 198, 103185. [Google Scholar] [CrossRef]
- Grech, M.; Horberry, T.; Koester, T. Human Factors in the Maritime Domain, 1st ed.; CRC Press: Florida, CA, USA, 2019. [Google Scholar]
- Rusu, L.; Bernardino, M.; Guedes Soares, C. Modelling the influence of currents on wave propagation at the entrance of the Tagus estuary. Ocean Eng. 2011, 38, 1174–1183. [Google Scholar] [CrossRef]
- Hamann, R.; Sames, P.C. Updated and expanded casualty analysis of container vessels. Ship Technol. Res. 2022, 69, 158–169. [Google Scholar] [CrossRef]
- Li, H.; Zhou, K.; Zhang, C.; Bashir, M.; Yang, Z. Dynamic evolution of maritime accidents: Comparative analysis through data-driven Bayesian Networks. Ocean Eng. 2024, 303, 117736. [Google Scholar] [CrossRef]
- Antão, P.; Sun, S.; Teixeira, A.P.; Guedes Soares, C. Quantitative assessment of ship collision risk influencing factors from worldwide accident and fleet data. Reliab. Eng. Syst. Saf. 2023, 234, 109166. [Google Scholar] [CrossRef]
- International Maritime Organization. Casualty Investigation Code; International Maritime Organization: London, UK, 2008. [Google Scholar]
- Omonigbehin, O.; Eresanya, E.O.; Tao, A.; Setordjie, V.E.; Daramola, S.; Adebiyi, A. Long-Term Evolution of Significant Wave Height in the Eastern Tropical Atlantic between 1940 and 2022 Using the ERA5 Dataset. J. Mar. Sci. Eng. 2024, 12, 714. [Google Scholar] [CrossRef]
- Sreelakshmi, S.; Bhaskaran, P.K. Wind-generated wave climate variability in the Indian Ocean using ERA-5 dataset. Ocean Eng. 2020, 209, 107486. [Google Scholar] [CrossRef]
- Eveloy, V.; Ahmad, S.; Masood, H.; Islam, M.D. Investigation of the resource characteristics, capacity factors and levelized cost of wind and solar power generation in the United Arab Emirates based on ERA-5 reanalysis. Energy Rep. 2025, 13, 2277–2306. [Google Scholar] [CrossRef]
- Lellouche, J.M.; Greiner, E.; Le Galloudec, O.; Garric, G.; Regnier, C.; Drevillon, M.; Benkiran, M.; Testut, C.E.; Bourdalle-Badie, R.; Gasparin, F.; et al. Recent updates to the Copernicus Marine Service global ocean monitoring and forecasting real-time 1/12° high-resolution system. Ocean Sci. 2018, 14, 1093–1126. [Google Scholar] [CrossRef]
- Wepener, V.; Degger, N. Chapter 5—South Africa. In World Seas: An Environmental Evaluation, 2nd ed.; Sheppard, C., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 101–119. [Google Scholar]
- World Meteorological Organization. Guide to Wave Analysis and Forecasting; World Meteorological Organization: Geneva, Switzerland, 1998. [Google Scholar]
- Camus, P.; Losada, I.; Izaguirre, C.; Espejo, A.; Menéndez, M.; Pérez, J. Statistical wave climate projections for coastal impact assessments. Earth’s Future 2017, 5, 918–933. [Google Scholar] [CrossRef]
- Yuan, X.; Patoux, J.; Li, C. Satellite-based midlatitude cyclone statistics over the Southern Ocean: 2. Tracks and surface fluxes. J. Geophys. Res. Atmos. 2009, 114, D04106. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Costa, S.; Oliveira, T.C.A.; Abdolali, A. Wind-wave steepness offshore the North American east coast. J. Ocean Eng. Sci. 2025; in press. [Google Scholar] [CrossRef]
- Onorato, M.; Residori, S.; Bortolozzo, U.; Montina, A.; Arecchi, F.T. Rogue waves and their generating mechanisms in different physical contexts. Phys. Rep. 2013, 528, 47–89. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, X.-M. Global ship accidents and ocean swell-related sea states. Nat. Hazards Earth Syst. Sci. 2017, 17, 2041–2051. [Google Scholar] [CrossRef]
- Rosa-Santos, P.; Taveira-Pinto, F.; Veloso-Gomes, F. Experimental evaluation of the tension mooring effect on the response of moored ships. Coast. Eng. 2014, 85, 60–71. [Google Scholar] [CrossRef]
- Calvino, C.; Dabrowski, T.; Dias, F. Current interaction in large-scale wave models with an application to Ireland. Cont. Shelf Res. 2022, 245, 104798. [Google Scholar] [CrossRef]
- Cavaleri, L.; Bertotti, L.; Torrisi, L.; Bitner-Gregersen, E.; Serio, M.; Onorato, M. Rogue waves in crossing seas: The Louis Majesty accident. J. Geophys. Res. Ocean. 2012, 117, C00J10. [Google Scholar] [CrossRef]
- Quilfen, Y.; Yurovskaya, M.; Chapron, B.; Ardhuin, F. Storm waves focusing and steepening in the Agulhas current: Satellite observations and modeling. Remote Sens. Environ. 2018, 216, 561–571. [Google Scholar] [CrossRef]
Grid Point | Latitude (°S) | Longitude (°E) | Distance to Accident Site (km) |
---|---|---|---|
Q11 | −32.50 | 29.00 | 45.95 |
Q21 | −32.50 | 29.50 | 44.98 |
Q12 | −32.00 | 29.00 | 29.64 |
Q22 | −32.00 | 29.50 | 28.10 |
Parameter | Formulation |
---|---|
Significant Wave Height, Hs (m) | |
Mean Wave Period, Tm (s) | |
Wave Direction (°) | |
Wind Direction (°) | |
Wind Speed (m/s) | |
Wave Steepness, S | |
Current Speed | |
Current Direction | |
Cross-Seas, Δθ | ∣θ_wind – θ_swell∣ |
2d wave spectrum, S (f, θ) | E (f) ⋅ D (f, θ) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Setordjie, V.E.; Tao, A.; Lin, S.; Zheng, J. Wave–Current Interactions in the Agulhas Retroflection: The Beluga Reefer Accident. J. Mar. Sci. Eng. 2025, 13, 1275. https://doi.org/10.3390/jmse13071275
Setordjie VE, Tao A, Lin S, Zheng J. Wave–Current Interactions in the Agulhas Retroflection: The Beluga Reefer Accident. Journal of Marine Science and Engineering. 2025; 13(7):1275. https://doi.org/10.3390/jmse13071275
Chicago/Turabian StyleSetordjie, Victor Edem, Aifeng Tao, Shuhan Lin, and Jinhai Zheng. 2025. "Wave–Current Interactions in the Agulhas Retroflection: The Beluga Reefer Accident" Journal of Marine Science and Engineering 13, no. 7: 1275. https://doi.org/10.3390/jmse13071275
APA StyleSetordjie, V. E., Tao, A., Lin, S., & Zheng, J. (2025). Wave–Current Interactions in the Agulhas Retroflection: The Beluga Reefer Accident. Journal of Marine Science and Engineering, 13(7), 1275. https://doi.org/10.3390/jmse13071275