Early Perspectives on the Planned Brazilian Program to Address Ship-Sourced Pollution
Abstract
:1. Introduction
2. Project Description
3. Perspectives
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CMOP | Coupled Model for Oil Spill Prediction |
BJW | Brazil’s jurisdictional waters |
IBAMA | Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis |
MB | Marinha do Brasil |
MP | Ministério Público |
PyGNOME | General NOAA Operational Modeling Environment |
SISMOM | Sistema Multiusuário de detecção, previsão e monitoramento de derrame de Óleo no Mar |
STFM | Spill, Transport, and Fate Model |
1 | Funding Authority for Studies and Projects |
2 | Foundation for Science, Technology and Space Applications |
3 | Ministry of Science, Technology and Innovation |
4 | Brazilian Institute of Environment and Renewable Natural Resources |
5 | Brazilian Navy |
6 | Brazilian Public Prosecutor’s Office |
7 |
References
- Nobre, P.; Lemos, A.T.; Giarolla, E.; Camayo, R.; Namikawa, L.; Kampel, M.; Rudorff, N.; Bezerra, D.X.; Lorenzzetti, J.; Gomes, J.; et al. The 2019 Northeast Brazil oil spill: Scenarios. Ann. Braz. Acad. Sci. 2022, 94, e20210391. [Google Scholar] [CrossRef]
- Carreira, R.S.; Zanardi-Lamardo, E.; Massone, C.G.; Araujo, M.; Nobre, P.; Yogui, G.T. The mysterious oil spill in the northeastern coast of Brazil: Tracking offshore seawater and the need for improved vessel facilities. Ocean Coast. Res. 2022, 70, e22007. [Google Scholar] [CrossRef]
- Gonçalves, L.R.; Webster, D.G.; Young, O.; Polette, M.; Turra, A.R. The Brazilian Blue Amazon under threat: Why has the oil spill continued for so long? Ambiente Soc. 2020, 23, e0077. [Google Scholar] [CrossRef]
- Araujo, M.E.; Ramalho, C.W.; de Melo, P.W. Artisanal fishers, consumers and the environment: Immediate consequences of the oil spill in Pernambuco, Northeast Brazil. Cad. Saude Publica 2020, 36, e00230319. [Google Scholar] [CrossRef]
- Disner, G.R.; Torres, M. The environmental impacts of 2019 oil spill on the Brazilian coast: Overview. Rev. Bras. Gest. Ambient. Sustentabilidade 2020, 7, 241–255. [Google Scholar] [CrossRef]
- Magalhães, K.M.; Barros, K.V.S.; Lima, M.C.S.; Rocha-Barreira, C.A.; Filho, J.S.R.; Soares, M.O. Oil spill + COVID-19: A disastrous year for Brazilian seagrass conservation. Sci. Total Environ. 2020, 764, 142872. [Google Scholar] [CrossRef] [PubMed]
- Escobar, H. Mysterious oil spill threatens marine biodiversity haven in Brazil. Science 2019, 366, 672. [Google Scholar] [CrossRef]
- Soares, M.O.; Teixeira, C.E.P.; Bezerra, L.E.A.; Rossi, S.; Tavares, T.; Cavalcante, R.; Sills, J. Brazil oil spill response: Time for coordination. Science 2020, 367, 155. [Google Scholar] [CrossRef]
- Magris, R.A.; Giarrizzo, T. Mysterious oil spill in the Atlantic Ocean threatens marine biodiversity and local people in Brazil. Mar. Pollut. Bull. 2020, 153, 110961. [Google Scholar] [CrossRef]
- Azevedo, R.N.A.; Bezerra, K.M.; Nascimento, R.F.; Nelson, R.K.; Reddy, C.M.; Nascimento, A.P.; Oliveira, A.H.; Martins, L.L.; Cavalcante, R.M. Is there a similarity between the 2019 and 2022 oil spills that occurred on the coast of Ceara (northeast Brazil)? An analysis based on forensic environmental geochemistry. Environ. Pollut. 2022, 314, 120283. [Google Scholar] [CrossRef]
- Bastos, L.P.H.; Cavalcante, D.C. Fingerprinting an oil spill event (August of 2021) in the oceanic Fernando de Noronha archipelago using biomarkers and stable carbon isotopes. Mar. Pollut. Bull. 2022, 185, 114316. [Google Scholar] [CrossRef]
- Soares, M.O.; Brandão, D.B.; Teixeira, C.E.P.; Cavalcante, R.M.; de Oliveira, A.H.B.; Bezerra, L.E.A.; Barros, E.L. Déjà vu: New oil spill poses cumulative risks to protected coastal environments in the South Atlantic. Mar. Policy 2023, 155, 105764. [Google Scholar] [CrossRef]
- Zacharias, D.C.; Crespo, N.M.; da Silva, N.P.; da Rocha, R.P.; Gama, C.M.; e Silva, S.B.R.; Harari, J. Oil reaching the coast: Is Brazil on the route of international oceanic dumping? Mar. Pollut. Bull. 2023, 196, 115624. [Google Scholar] [CrossRef] [PubMed]
- Lemos, A.; Andrade, L.; Franklin, L.; Bezerra, D.; Ghisolfi, R.; Maita, R.; Nobre, P. Ship route oil spill modeling: A case study of the Northeast Brazil event, 2019. Appl. Sci. 2024, 14, 865. [Google Scholar] [CrossRef]
- Agência Brasil. MCTI Announces Actions for Sea Sciences and Antarctic Science Programs. 2022. Available online: https://www.gov.br/mcti/pt-br/acompanhe-o-mcti/noticias/2022/07/mcti-anuncia-acoes-para-programas-ciencia-no-mar-e-ciencia-antartica (accessed on 20 July 2024). (In Portuguese)
- Agência Brasil. Ibama, Inpe and Marinha Discuss the Execution of SisMOM. 2023. Available online: https://www.gov.br/ibama/pt-br/assuntos/noticias/2023/ibama-inpe-e-marinha-discutem-execucao-do-sismom (accessed on 20 July 2024). (In Portuguese)
- BRASIL. Diário Oficial da União. Ministério da Ciência, Tecnologia e Inovações; Financiadora de Estudos e Projetos: Brasília, DF, Brazil, 2022; Volume 105, p. 10. (In Portuguese) [Google Scholar]
- Mesinger, F.; Chou, S.C.; Gomes, J.L.; Jovic, D.; Bastos, P.; Bustamante, J.F.; Lazic, L.; Lyra, A.A.; Morelli, S.; Ristic, I.; et al. An upgraded version of the Eta model. Meteorol. Atmos. Phys. 2012, 116, 63–79. [Google Scholar] [CrossRef]
- Adcroft, A.; Anderson, W.; Balaji, V.; Blanton, C.; Bushuk, M.; Dufour, C.O.; Dunne, J.P.; Griffies, S.M.; Hallberg, R.; Harrison, M.J.; et al. The GFDL global ocean and sea ice model OM4.0: Model description and simulation features. J. Adv. Model. Earth Syst. 2019, 11, 3167–3211. [Google Scholar] [CrossRef]
- Villaret, C.; Hervouet, J.-M.; Kopmann, R.; Merkel, U.; Davies, A.G. Morphodynamic modeling using the Telemac finite-element system. Comput. Geosci. 2013, 53, 105–113. [Google Scholar] [CrossRef]
- Pekkanen, S.M.; Aoki, S.; Mittleman, J. Small Satellites, Big Data: Uncovering the Invisible in Maritime Security. Int. Secur. 2022, 47, 177–216. [Google Scholar] [CrossRef]
- Zacharias, D.C.; Gama, C.M.; Fornaro, A. Mysterious oil spill on Brazilian coast: Analysis and estimates. Mar. Pollut. Bull. 2021, 165, 112125. [Google Scholar] [CrossRef]
- Zacharias, D.C.; Gama, C.M.; Harari, J.; Rocha, R.P.; Fornaro, A. Mysterious oil spill on the Brazilian coast—Part 2: A probabilistic approach to fill gaps of uncertainties. Mar. Pollut. Bull. 2021, 173, 113085. [Google Scholar] [CrossRef]
- Chaturvedi, S.K. Study of synthetic aperture radar and automatic identification system for ship target detection. J. Ocean Eng. Sci. 2019, 4, 173–182. [Google Scholar] [CrossRef]
- Wackerman, C.C.; Friedman, K.S.; Pichel, W.G.; Clemente-Colón, P.; Li, X. Automatic Detection of Ships in RADARSAT-1 SAR Imagery. Can. J. Remote Sens. 2001, 27, 568–577. [Google Scholar] [CrossRef]
- Patel, K.; Bhatt, C.; Mazzeo, P.L. Deep Learning-Based Automatic Detection of Ships: An Experimental Study Using Satellite Images. J. Imaging 2022, 8, 182. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Zhang, X. High-Speed Ship Detection in SAR Images Based on a Grid Convolutional Neural Network. Remote Sens. 2019, 11, 1206. [Google Scholar] [CrossRef]
- Jiang, S.; Zhou, X. DWSC-YOLO: A Lightweight Ship Detector of SAR images Based on Deep Learning. J. Mar. Sci. Eng. 2022, 10, 1699. [Google Scholar] [CrossRef]
- Zhao, Z.; Ji, K.; Xing, X.; Zou, H.; Zhou, S. Ship Surveillance by Integration of Space-borne SAR and AIS—Review of Current Research. J. Navig. 2014, 67, 177–189. [Google Scholar] [CrossRef]
- Wang, J.; Lu, C.; Jiang, W. Simultaneous Ship Detection and Orientation Estimation in SAR Images Based on Attention Module and Angle Regression. Sensors 2018, 18, 2851. [Google Scholar] [CrossRef]
- Zhang, S.; Wu, R.; Xu, K.; Wang, J.; Sun, W. R-CNN-Based Ship Detection from High Resolution Remote Sensing Imagery. Remote Sens. 2019, 11, 631. [Google Scholar] [CrossRef]
- Dong, X.; Li, J.; Li, B.; Jin, Y.; Miao, S. Marine Oil Spill Detection from Low-Quality SAR Remote Sensing Images. J. Mar. Sci. Eng. 2023, 11, 1552. [Google Scholar] [CrossRef]
- Fan, Y.; Rui, X.; Zhang, G.; Yu, T.; Xu, X.; Poslad, S. Feature Merged Network for Oil Spill Detection Using SAR Images. Remote Sens. 2021, 13, 3174. [Google Scholar] [CrossRef]
- Conceição, M.R.A.; de Mendonça, L.F.F.; Lentini, C.A.D.; da Cunha Lima, A.T.; Lopes, J.M.; de Vasconcelos, R.N.; Gouveia, M.B.; Porsani, M.J. SAR Oil Spill Detection System through Random Forest Classifiers. Remote Sens. 2021, 13, 2044. [Google Scholar] [CrossRef]
- Alpers, W.; Holt, B.; Zeng, K. Oil spill detection by imaging radars: Challenges and pitfalls. Remote Sens. Environ. 2017, 201, 133–147. [Google Scholar] [CrossRef]
- Chaturvedi, S.K.; Banerjee, S.; Lele, S. An assessment of oil spill detection using Sentinel 1 SAR-C images. J. Ocean Eng. Sci. 2020, 5, 116–135. [Google Scholar] [CrossRef]
- Topouzelis, K.N. Oil Spill Detection by SAR Images: Dark Formation Detection, Feature Extraction and Classification Algorithms. Sensors 2008, 8, 6642–6659. [Google Scholar] [CrossRef] [PubMed]
- Nirchio, F.; Sorgente, M.; Giancaspro, A.; Biamino, W.; Parisato, E.; Ravera, R.; Trivero, P. Automatic detection of oil spills from SAR images. Int. J. Remote Sens. 2005, 26, 1157–1174. [Google Scholar] [CrossRef]
- Yang, Y.J.; Singha, S.; Mayerle, R. A deep learning-based oil spill detector using Sentinel-1 SAR imagery. Int. J. Remote Sens. 2022, 43, 4287–4314. [Google Scholar] [CrossRef]
- Hasimoto-Beltran, R.; Canul-Ku, M.; Méndez, G.M.D.; Ocampo-Torres, F.J.; Esquivel-Trava, B. Ocean oil spill detection from SAR images based on multi-channel deep learning semantic segmentation. Mar. Pollut. Bull. 2023, 188, 114651. [Google Scholar] [CrossRef]
- Nagel, G.W.; Moraes Novo, E.M.L.; Kampel, M. Nanosatellites applied to optical Earth observation: A review. Rev. Ambiente Agua 2020, 15, e2513. [Google Scholar] [CrossRef]
- Zacharias, D.C. Desenvolvimento do STFM (Spill, Transport and Fate Model): Modelo Computacional Lagrangeano de Transporte e Degradação de Manchas de óleo. Ph.D. Thesis, Universidade de São Paulo, Instituto de Astronomia, Geofísica e Ciências Atmosféricas, São Paulo, Brazil, 2017. (In Portuguese). [Google Scholar]
- Zacharias, D.C.; Rezende, K.F.O.; Fornaro, A. Offshore petroleum pollution compared numerically via algorithm tests and computation solutions. Ocean Eng. 2018, 151, 191–198. [Google Scholar] [CrossRef]
- Zacharias, D.C.; Fornaro, A. Brazilian offshore oil exploration areas: An overview of hydrocarbon pollution. Rev. Ambiente Agua 2020, 15, e2569. [Google Scholar] [CrossRef]
- Tessarolo, L.F.; Barreto, F.T.C.; Innocentini, V.; Gonçalves, I.Â.; Silva, L.H.M.M.; Chacaltana, J.T.A.; Palma, G.; Martins, R.G. A surface Lagrangian algorithm applied to the 2019 South Atlantic oil spill. Ocean Eng. 2023, 268, 113505. [Google Scholar] [CrossRef]
- Barreto, F.T.C.; Dammann, D.O.; Tessarolo, L.F.; Skancke, J.; Keghouche, I.; Innocentini, V.; Winther-Kaland, N.; Marton, L. Comparison of the coupled model for oil spill prediction (CMOP) and the oil spill contingency and response model (OSCAR) during the DeepSpill field experiment. Ocean Coast. Manag. 2021, 204, 105552. [Google Scholar] [CrossRef]
- Zelenke, B.; O’Connor, C.; Barker, C.; Beegle-Krause, C.J.; Eclipse, L.E. (Eds.) General NOAA Operational Modeling Environment (GNOME) Technical Documentation; NOAA Technical Memorandum NOS OR&R 40; US Department of Commerce, Emergency Response Division, NOAA: Seattle, WA, USA, 2012; p. 105. [Google Scholar]
- MacFadyen, A.; Barker, C.H. NOAA’s Response Modeling—Challenges and Innovations. In Proceedings of the International Oil Spill Conference, New Orleans, LA, USA, 13–16 May 2024; p. 318. [Google Scholar]
- Dagestad, K.-F.; Röhrs, J.; Breivik, Ø.; Ådlandsvik, B. OpenDrift v1.0: A generic framework for trajectory modelling. Geosci. Model Dev. 2018, 11, 1405–1420. [Google Scholar] [CrossRef]
- Jones, C.E.; Dagestad, K.-F.; Breivik, Ø.; Holt, B.; Röhrs, J.; Christensen, K.H.; Espeseth, M.; Brekke, C.; Skrunes, S. Measurement and modeling of oil slick transport. J. Geophys. Res. Ocean. 2016, 121, 7759–7775. [Google Scholar] [CrossRef]
- Zacharias, D.C.; Fornaro, A. Spill, transport and fate model (STFM): Development and validation. Rev. Ambiente Agua 2022, 17, e2789. [Google Scholar] [CrossRef]
- Zacharias, D.C.; Gama, C.M.; Fornaro, A. Desenvolvimento e Validação do STFM: Um Novo Modelo de Derramamento de Óleo para a Costa Brasileira. In Proceedings of the 3º Simpósio Interdisciplinar de Ciência Ambiental, Seoul, Republic of Korea, 24 October 2022. [Google Scholar] [CrossRef]
- Zacharias, D.C.; Lemos, A.; Keramea, P.; Dantas, R.C.; da Rocha, R.P.; Crespo, N.M.; Sylaios, G.; Jovane, L.; Santos, I.G.d.S.; Montone, R.C.; et al. Offshore oil spills in Brazil: An extensive review and further development. Mar. Pollut. Bull. 2024, 205, 116663. [Google Scholar] [CrossRef]
- Brum, H.D.; Campos-Silva, J.V.; Oliveira, E.G. Brazil oil spill response: Government inaction. Science 2020, 367, 155–156. [Google Scholar] [CrossRef]
- Ladle, R.J.; Malhado, A.C.; Campos-Silva, J.V.; Pinheiro, B.R. Brazil’s mystery oil spill: An ongoing social disaster. Nature 2020, 578, 37. [Google Scholar] [CrossRef]
- Lourenço, R.A.; Combi, T.; Alexandre, M.R.; Sasaki, S.T.; Zanardi-Lamardo, E.; Yogui, G.T. Mysterious oil spill along Brazil’s northeast and southeast seaboard (2019–2020): Trying to find answers and filling data gaps. Mar. Pollut. Bull. 2020, 156, 111219. [Google Scholar] [CrossRef]
- Pena, P.G.L.; Northcross, A.L.; Lima, M.A.G.; Rego, R.C.F. The Crude oil spill on the Brazilian coast in 2019: The question of public health emergency. Cad. Saúde Pública 2020, 36, e00231019. [Google Scholar] [CrossRef]
- Ribero, L.C.; De Souza, K.B.; Domingues, E.P.; Magalhães, A.S. Blue water turns black: Economic impact of oil spill on tourism and fishing in Brazilian Northeast. Curr. Issue Tour. 2020, 24, 1042–1047. [Google Scholar] [CrossRef]
- Sissini, M.N.; Berchez, F.; Hall-Spencer, J.; Ghilardi-Lopes, N.; Carvalho, V.F.; Schubert, N.; Koerich, G.; Diaz-Pulido, G.; Silva, J.; Serrão, E.; et al. Brazil oil spill response: Protect rhodolith beds. Science 2020, 367, 156. [Google Scholar] [CrossRef] [PubMed]
- Soares, M.O.; Teixeira, C.E.; Bezerra, L.E.A.; Paiva, S.V.; Tavares, T.C.L.; Garcia, T.M.; de Araújo, J.T.; Campos, C.C.; Ferreira, S.M.C.; Matthews-Cascon, H.; et al. Oil spill in South Atlantic (Brazil): Environmental and governmental disaster. Mar. Policy 2020, 115, 103879. [Google Scholar] [CrossRef]
- Franz, G.; Garcia, C.A.E.; Pereira, J.; de Freitas Assad, L.P.; Rollnic, M.; Garbossa, L.H.P.; da Cunha, L.C.; Lentini, C.A.D.; Nobre, P.; Turra, A.; et al. Coastal Ocean Observing and Modeling Systems in Brazil: Initiatives and Future Perspectives. Front. Mar. Sci. 2021, 8, 681619. [Google Scholar] [CrossRef]
- Figueroa, S.N.; Bonatti, J.P. The Brazilian Global Atmospheric Model (BAM): Performance for Tropical Rainfall Forecasting and Sensitivity to Convective Scheme and Horizontal Resolution. Weather. Forecast. 2016, 31, 1547–1572. [Google Scholar] [CrossRef]
- Griffies, S.M.; Boning, C.; Bryan, F.O.; Chassignet, E.P.; Gerdes, R.; Hasumi, H.; Hirst, A.; Treguier, A.M.; Webb, D. Developments in ocean climate modelling. Ocean Model. 2000, 2, 123–192. [Google Scholar] [CrossRef]
- Xue, Y.; Sellers, P.J.; Kinter, J.L.; Shukla, J. A simplified biosphere model for global climate studies. J. Clim. 1991, 4, 345–364. [Google Scholar] [CrossRef]
- Foley, J.A.; Prentice, I.C.; Ramankutty, N.; Levis, S.; Pollard, D.; Sitch, S.; Haxeltine, A. An integrated biosphere model of land surface processes, terrestrial carbon balance and vegetation dynamics. Glob. Biogeochem. Cycles 1996, 10, 603–628. [Google Scholar] [CrossRef]
- Nobre, P.; Siqueira, L.S.P.; de Almeida, R.A.F.; Malagutti, M.; Giarolla, E.; Castelão, G.P.; Bottino, M.J.; Kubota, P.; Figueroa, S.N.; Costa, M.C.; et al. Climate Simulation and Change in the Brazilian Climate Model. J. Clim. 2013, 26, 6716–6732. [Google Scholar] [CrossRef]
- Nobre, P.; De Almeida, R.A.; Malagutti, M.; Giarolla, E. Coupled Ocean–atmosphere variations over the South Atlantic Ocean. J. Clim. 2012, 25, 6349–6358. [Google Scholar] [CrossRef]
- Torres, R.R.; Ferreira, N.J. Case Studies of Easterly Wave Disturbances over Northeast Brazil Using the Eta Model. Weather Forecast. 2011, 26, 225–235. [Google Scholar] [CrossRef]
- Pilotto, I.L.; Chou, S.C.; Nobre, P. Seasonal climate hindcasts with Eta model nested in CPTEC coupled ocean–atmosphere general circulation model. Theor. Appl. Clim. 2012, 110, 437–456. [Google Scholar] [CrossRef]
- Chou, S.C.; Dereczynski, C.; Gomes, J.L.; Pesquero, J.F.; DE Avila, A.M.H.; Resende, N.C.; Alves, L.F.; Ruiz-Cárdenas, R.; DE Souza, C.R.; Bustamante, J.F.F. Ten-year seasonal climate reforecasts over South America using the Eta Regional Climate Model. An. Acad. Bras. Cienc. 2020, 92, e20181242. [Google Scholar] [CrossRef]
- Pilotto, I.L.; Rodríguez, D.A.; Chou, S.C.; Tomasella, J.; Sampaio, G.; Gomes, J.L. Effects of the surface heterogeneities on the local climate of a fragmented landscape in Amazonia using a tile approach in the Eta/Noah-MP model. Q. J. R. Meteorol. Soc. 2017, 143 Pt A, 1565–1580. [Google Scholar] [CrossRef]
- Pilotto, I.L.; Rodríguez, D.A.; Chou, S.C.; Garofolo, L.; Gomes, J.L. Impacts of the land use and land-cover changes on local hydroclimate in southwestern Amazon. Clim. Dyn. 2023, 61, 5597–5612. [Google Scholar] [CrossRef]
- Giarolla, E.; Nobre, P.; Malagutti, M.; Pezzi, L.P. The Atlantic Equatorial Undercurrent: PIRATA observations and simulations with GFDL Modular Ocean Model at CPTEC. Geophys. Res. Lett. 2005, 32, L10617. [Google Scholar] [CrossRef]
- Veiga, S.F.; Nobre, P.; Giarolla, E.; Capistrano, V.; Baptista, M., Jr.; Marquez, A.L.; Figueroa, S.N.; Bonatti, J.P.; Kubota, P.; Nobre, C.A. The Brazilian Earth System Model ocean–atmosphere (BESM-OA) version 2.5: Evaluation of its CMIP5 historical simulation. Geosci. Model Dev. 2019, 12, 1613–1642. [Google Scholar] [CrossRef]
- Giarolla, E.; Siqueira, L.S.P.; Bottino, M.J.; Malagutti, M.; Capistrano, V.B.; Nobre, P. Equatorial Atlantic Ocean dynamics in a coupled ocean–atmosphere model simulation. Ocean Dyn. 2015, 65, 831–843. [Google Scholar] [CrossRef]
- Fernandes, E.H.L.; da Silva, P.D.; Gonçalves, G.A.; Möller, O.O. Dispersion plumes in open ocean disposal sites of dredged sediment. Water 2021, 13, 808. [Google Scholar] [CrossRef]
- Marques, W.C.; Fernandes, E.H.L.; Möller, O.O. Straining and advection contributions to the mixing process of the Patos Lagoon coastal plume, Brazil. J. Geophys. Res. Ocean. 2010, 115, C06019. [Google Scholar] [CrossRef]
- Marques, W.C.; Fernandes, E.H.L.; Moraes, B.C.; Möller, O.O.; Malcherek, A. Dynamics of the Patos Lagoon coastal plume and its contribution to the deposition pattern of the southern Brazilian inner shelf. J. Geophys. Res. Ocean. 2010, 115, C10045. [Google Scholar] [CrossRef]
- Oliveira, H.; Fernandes, E.H.L.; Möller, O.O.; García-Rodríguez, F. Relationships between wind effect, hydrodynamics and water level in the world’s largest coastal lagoonal system. Water 2019, 11, 2209. [Google Scholar] [CrossRef]
- Leifer, I.; Lehr, W.J.; Simecek-Beatty, D.; Bradley, E.; Clark, R.; Dennison, P.; Hu, Y.; Matheson, S.; Jones, C.E.; Holt, B.; et al. State of the art satellite and airborne marine oil spill remote sensing: Application to the BP Deepwater Horizon oil spill. Remote Sens. Environ. 2012, 124, 185–209. [Google Scholar] [CrossRef]
- Odonkor, P.; Ball, Z.; Chowdhury, S. Distributed operation of collaborating unmanned aerial vehicles for time-sensitive oil spill mapping. Swarm Evol. Comput. 2019, 46, 52–68. [Google Scholar] [CrossRef]
- Bernabeu, A.M.; Plaza-Morlote, M.; Rey, D.; Almeida, M.; Dias, A.; Mucha, A. Improving the preparedness against an oil spill: Evaluation of the influence of environmental parameters on the operability of unmanned vehicles. Mar. Pollut. Bull. 2021, 172, 112791. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Hu, Y.; Zhang, J.; Ma, Y.; Li, Z.; Jiang, Z. Identification of marine oil spill pollution using hyperspectral combined with thermal infrared remote sensing. Front. Mar. Sci. 2023, 10, 1135356. [Google Scholar] [CrossRef]
- Jha, M.N.; Levy, J.; Gao, Y. Advances in Remote Sensing for Oil Spill Disaster Management: State-of-the-Art Sensors Technology for Oil Spill Surveillance. Sensors 2008, 8, 236–255. [Google Scholar] [CrossRef]
- Groom, S.; Sathyendranath, S.; Ban, Y.; Bernard, S.; Brewin, R.; Brotas, V.; Brockmann, C.; Chauhan, P.; Choi, J.-K.; Chuprin, A.; et al. Satellite Ocean Colour: Current Status and Future Perspective. Front. Mar. Sci. 2019, 6, 485. [Google Scholar] [CrossRef]
- Huang, X.; Zhang, B.; Perrie, W.; Lu, Y.; Wang, C. A novel deep learning method for marine oil spill detection from satellite synthetic aperture radar imagery. Mar. Pollut. Bull. 2022, 179, 113666. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Y.; Zou, H.; Wang, F.; Cheng, X.; Wu, W.; Liu, X.; Li, Y. Multi-source knowledge graph reasoning for ocean oil spill detection from satellite SAR images. Int. J. Appl. Earth Obs. Geoinf. 2023, 116, 103153. [Google Scholar] [CrossRef]
- Trujillo-Acatitla, R.; Tuxpan-Vargas, J.; Ovando-Vázquez, C. Oil spills: Detection and concentration estimation in satellite imagery, a machine learning approach. Mar. Pollut. Bull. 2022, 184, 114132. [Google Scholar] [CrossRef] [PubMed]
- National Oceanic and Atmospheric Administration. Office of Satellite and Product Operations—Marine Products. Available online: https://www.ospo.noaa.gov/products/ocean/marinepollution/index.html?about.html (accessed on 10 June 2025).
- European Maritime Safety Agency. Satellite Based Services. Available online: https://emsa.europa.eu/we-do/surveillance/earthobservationservices.html (accessed on 10 June 2025).
- Schaeffer, B.A.; Whitman, P.; Conmy, R.; Salls, W.; Coffer, M.; Graybill, D.; Lebrasse, M.C. Potential for commercial PlanetScope satellites in oil response monitoring. Mar. Pollut. Bull. 2022, 183, 114077. [Google Scholar] [CrossRef] [PubMed]
- TELESPAZIO a LEONARDO and THALES Company. Telespazio Brasil: Contract with Petrobras to Detect Oil Spills Using Cosmo-Skymed Satellites. 2019. Available online: https://www.telespazio.com/en/news-and-stories-detail/-/detail/010419-telespazio-brasil-contract-with-petrobras-to-detect-oil-spills-using-cosmo-skymed-satellites (accessed on 10 June 2025).
- ITOPF—International Tanker Owners Pollution Federation Limited. Technical Information Paper No 1. Aerial Surveillance of Marine Oil Spills. 2024, p. 42. Available online: https://www.itopf.org/fileadmin/uploads/itopf/data/Documents/TIPS%20TAPS/TIP_NO.1_Aerial_surveillance_of_marine_oil_spills.pdf (accessed on 10 June 2025).
- Badrudin, A.; Sumantri, S.H.; Gultom, R.A.G.; Apriyanto, I.N.P.; Wijaya, H.R.; Sutedja, I. Ship Trajectory Prediction for Anomaly Detection Using AIS Data and Artificial Intelligence: A Systematic Literature Review. J. Theor. Appl. Inf. Technol. 2023, 2023, 101. [Google Scholar]
- Wang, Y.; Liu, J.; Liu, R.W.; Liu, Y.; Yuan, Z. Data-driven methods for detection of abnormal ship behavior: Progress and trends. Ocean Eng. 2023, 271, 113673. [Google Scholar] [CrossRef]
- Riveiro, M.; Pallotta, G.; Vespe, M. Maritime anomaly detection: A review. WIREs Data Min. Knowl. Discov. Adv. Rev. 2018, 8, e1266. [Google Scholar] [CrossRef]
- Wei, Z.; Xie, X.; Zhang, X. Maritime anomaly detection based on a support vector machine. Soft Comput. 2022, 26, 11553–11566. [Google Scholar] [CrossRef]
- Zhang, L.; Zhu, Y.; Ren, J.; Lu, W.; Yao, Y. A method for detecting abnormal behavior of ships based on multi-dimensional density distance and an abnormal isolation mechanism. Math. Biosci. Eng. 2023, 20, 13921–13946. [Google Scholar] [CrossRef]
Technologies | Advantages | Limitations |
---|---|---|
SAR | all-day, all-weather | high false alarm rate unable to identify the type of oil unable to estimate oil film thickness |
Multispectral remote sensing | wide space coverage recognizes heavy and light oils estimate the oil film thickness | low spectral resolution vulnerable to sunglint interference |
Hyperspectral remote sensing | high spectral resolution recognizes different oil products estimate the oil film thickness | not applicable to large-scale marine oil spill monitoring, vulnerable to sunglint interference |
Ultraviolet remote sensing | sensitive to thinner oil film | low spatial resolution, vulnerable to interferences unable to identify non-emulsified oil and oil–water emulsions |
Thermal infrared remote sensing | all-day sensitive to thicker oil film not disturbed by the sunglint | unable to identify non-emulsified oil vulnerable to interference fromtargets with similar thermal properties |
Laser-induced Fluorescence/ Raman | able to identify different oil products reverse oil film thickness | unable to detect very thick oil film |
Laser Acoustic | all-day/night oil slick thickness measurements | bulky and expensive blocked by fog or clouds |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zacharias, D.C.; Lemos, A.T. Early Perspectives on the Planned Brazilian Program to Address Ship-Sourced Pollution. J. Mar. Sci. Eng. 2025, 13, 1201. https://doi.org/10.3390/jmse13071201
Zacharias DC, Lemos AT. Early Perspectives on the Planned Brazilian Program to Address Ship-Sourced Pollution. Journal of Marine Science and Engineering. 2025; 13(7):1201. https://doi.org/10.3390/jmse13071201
Chicago/Turabian StyleZacharias, Daniel Constantino, and Angelo Teixeira Lemos. 2025. "Early Perspectives on the Planned Brazilian Program to Address Ship-Sourced Pollution" Journal of Marine Science and Engineering 13, no. 7: 1201. https://doi.org/10.3390/jmse13071201
APA StyleZacharias, D. C., & Lemos, A. T. (2025). Early Perspectives on the Planned Brazilian Program to Address Ship-Sourced Pollution. Journal of Marine Science and Engineering, 13(7), 1201. https://doi.org/10.3390/jmse13071201