Langmuir Turbulence Effects on Coastal Surface Waves
Abstract
:1. Introduction
2. Methods
2.1. Model Configuration
2.2. Wave Equations with CEW
3. Results
3.1. Impact of LT on Upwelling Frontal Instability
3.2. Effects of LT on Wave Height
3.3. Sensitivity to Wave Direction
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ardhuin, F.; Jenkins, A.D. On the interaction of surface waves and upper ocean turbulence. J. Phys. Oceanogr. 2006, 36, 551–557. [Google Scholar] [CrossRef]
- Qiao, F.; Yuan, Y.; Deng, J.; Dai, D.; Song, Z. Wave–turbulence interaction-induced vertical mixing and its effects in ocean and climate models. Philos. Trans. R. Soc. A 2016, 374, 20150201. [Google Scholar] [CrossRef]
- Wu, L.; Rutgersson, A.; Sahlée, E. Upper-ocean mixing due to surface gravity waves. J. Geophys. Res. Oceans 2015, 120, 8210–8228. [Google Scholar] [CrossRef]
- Melet, A.; Teatini, P.; Le Cozannet, G.; Jamet, C.; Conversi, A.; Benveniste, J.; Almar, R. Earth observations for monitoring marine coastal hazards and their drivers. Surv. Geophys. 2020, 41, 1489–1534. [Google Scholar] [CrossRef]
- Munk, W.H.; Traylor, M.A. Refraction of ocean waves: A process linking underwater topography to beach erosion. J. Geol. 1947, 55, 1–26. [Google Scholar] [CrossRef]
- Sun, R.; Villas Bôas, A.B.; Subramanian, A.C.; Cornuelle, B.D.; Mazloff, M.R.; Miller, A.J.; Langodan, S.; Hoteit, I. Focusing and defocusing of tropical cyclone generated waves by ocean current refraction. J. Geophys. Res. Oceans 2022, 127, e2021JC018112. [Google Scholar] [CrossRef]
- Ardhuin, F.; Gille, S.T.; Menemenlis, D.; Rocha, C.B.; Rascle, N.; Chapron, B.; Gula, J.; Molemaker, J. Small-scale open ocean currents have large effects on wind wave heights. J. Geophys. Res. Oceans 2017, 122, 4500–4517. [Google Scholar] [CrossRef]
- Kudryavtsev, V.; Yurovskaya, M.; Chapron, B.; Collard, F.; Donlon, C. Sun glitter imagery of surface waves. Part 2: Waves transformation on ocean currents. J. Geophys. Res. Oceans 2017, 122, 1384–1399. [Google Scholar] [CrossRef]
- Marechal, G.; Ardhuin, F. Surface Currents and Significant Wave Height Gradients: Matching Numerical Models and High-Resolution Altimeter Wave Heights in the Agulhas Current Region. J. Geophys. Res. Oceans 2021, 126, e2020JC016564. [Google Scholar] [CrossRef]
- Quilfen, Y.; Yurovskaya, M.; Chapron, B.; Ardhuin, F. Storm waves focusing and steepening in the Agulhas current: Satellite observations and modeling. Remote Sens. Environ. 2018, 216, 561–571. [Google Scholar] [CrossRef]
- Romero, L.; Hypolite, D.; McWilliams, J.C. Submesoscale current effects on surface waves. Ocean Model. 2020, 153, 101662. [Google Scholar] [CrossRef]
- Villas Bôas, A.B.; Cornuelle, B.D.; Mazloff, M.R.; Gille, S.T.; Ardhuin, F. Wave–current interactions at meso- and submesoscales: Insights from idealized numerical simulations. J. Phys. Oceanogr. 2020, 50, 3483–3500. [Google Scholar] [CrossRef]
- Romero, L.; Lenain, L.; Melville, W.K. Observations of surface wave–current interaction. J. Phys. Oceanogr. 2017, 47, 615–632. [Google Scholar] [CrossRef]
- Wang, J.; Dong, C.; Yu, K. The influences of the Kuroshio on wave characteristics and wave energy distribution in the East China Sea. Deep Sea Res. Part I Oceanogr. Res. Pap. 2020, 158, 103228. [Google Scholar] [CrossRef]
- Leibovich, S. The form and dynamics of Langmuir circulations. Annu. Rev. Fluid Mech. 1983, 15, 391–427. [Google Scholar] [CrossRef]
- McWilliams, J.C.; Sullivan, P.P.; Moeng, C.H. Langmuir turbulence in the ocean. J. Fluid Mech. 1997, 334, 1–30. [Google Scholar] [CrossRef]
- Thorpe, S.A. Langmuir circulation. Annu. Rev. Fluid Mech. 2004, 36, 55–79. [Google Scholar] [CrossRef]
- Kukulka, T.; Plueddemann, A.J.; Trowbridge, J.H.; Sullivan, P.P. Significance of Langmuir circulation in upper ocean mixing: Comparison of observations and simulations. Geophys. Res. Lett. 2009, 36, L10603. [Google Scholar] [CrossRef]
- McWilliams, J.C.; Sullivan, P.P. Vertical mixing by Langmuir circulations. Spill Sci. Technol. Bull. 2000, 6, 225–237. [Google Scholar] [CrossRef]
- Wang, P.; Özgökmen, T.M. Langmuir Circulation with Explicit Surface Waves from Moving-Mesh Modeling. Geophys. Res. Lett. 2018, 45, 216–226. [Google Scholar] [CrossRef]
- D’Asaro, E.A.; Thomson, J.; Shcherbina, A.Y.; Harcourt, R.R.; Cronin, M.F.; Hemer, M.A.; Fox-Kemper, B. Quantifying upper ocean turbulence driven by surface waves. Geophys. Res. Lett. 2014, 41, 102–107. [Google Scholar] [CrossRef]
- Harcourt, R.R.; D’Asaro, E.A. Large-eddy simulation of Langmuir turbulence in pure wind seas. J. Phys. Oceanogr. 2008, 38, 1542–1562. [Google Scholar] [CrossRef]
- Gargett, A.; Wells, J.; Tejada-Martinez, A.E.; Grosch, C.E. Langmuir supercells: A mechanism for sediment resuspension and transport in shallow seas. Science 2004, 306, 1925–1928. [Google Scholar] [CrossRef]
- Gargett, A.E.; Wells, J.R. Langmuir turbulence in shallow water. Part 1. Observations. J. Fluid Mech. 2007, 576, 27–61. [Google Scholar] [CrossRef]
- Gargett, A.E.; Savidge, D.K.; Wells, J.R. Anatomy of a Langmuir supercell event. J. Mar. Res. 2014, 72, 127–163. [Google Scholar] [CrossRef]
- Yang, D.; Chamecki, M.; Meneveau, C. Inhibition of oil plume dilution in Langmuir ocean circulation. Geophys. Res. Lett. 2014, 41, 1632–1638. [Google Scholar] [CrossRef]
- Hughes, C.J.; Liu, G.; Perrie, W.; Sheng, J. Impact of Langmuir turbulence, wave breaking, and Stokes drift on upper ocean dynamics under hurricane conditions. J. Geophys. Res. Oceans 2021, 126, e2021JC017388. [Google Scholar] [CrossRef]
- Zhou, X.; Hara, T.; Ginis, I.; D’Asaro, E.; Reichl, B.G. Evidence of Langmuir mixing effects in the upper ocean layer during tropical cyclones using observations and a coupled wave-ocean model. J. Geophys. Res. Oceans 2023, 128, e2023JC020062. [Google Scholar] [CrossRef]
- Li, Q.; Reichl, B.G.; Fox-Kemper, B.; Adcroft, A.J.; Belcher, S.E.; Danabasoglu, G.; Grant, A.L.M.; Griffies, S.M.; Hallberg, R.; Hara, T.; et al. Comparing ocean surface boundary vertical mixing schemes including Langmuir turbulence. J. Adv. Model. Earth Syst. 2019, 11, 3545–3592. [Google Scholar] [CrossRef]
- Ali, A.; Christensen, K.H.; Breivik, Ø.; Malila, M.; Raj, R.P.; Bertino, L.; Chassignet, E.P.; Bakhoday-Paskyabi, M. A comparison of Langmuir turbulence parameterizations and key wave effects in a numerical model of the North Atlantic and Arctic Oceans. Ocean Model. 2019, 137, 76–97. [Google Scholar] [CrossRef]
- Marchesiello, P.; Benshila, R.; Almar, R.; Uchiyama, Y.; McWilliams, J.C.; Shchepetkin, A. On Tridimensional Rip Current Modeling. Ocean Model. 2015, 96, 36–48. [Google Scholar] [CrossRef]
- Uchiyama, Y.; McWilliams, J.C.; Shchepetkin, A.F. Wave–Current Interaction in an Oceanic Circulation Model with a Vortex-Force Formalism: Application to the Surf Zone. Ocean Model. 2010, 34, 16–35. [Google Scholar] [CrossRef]
- Uchiyama, Y.; McWilliams, J.C.; Akan, C. Three-Dimensional Transient Rip Currents: Bathymetric Excitation of Low-Frequency Intrinsic Variability. J. Geophys. Res. Oceans 2017, 122, 5826–5849. [Google Scholar] [CrossRef]
- Wang, P.; McWilliams, J.C.; Uchiyama, Y.; Chekroun, M.D.; Yi, D.L. Effects of Wave Streaming and Wave Variations on Nearshore Wave-Driven Circulation. J. Phys. Oceanogr. 2020, 50, 3025–3041. [Google Scholar] [CrossRef]
- Wang, P.; McWilliams, J.C.; Uchiyama, Y. A Nearshore Oceanic Front Induced by Wave Streaming. J. Phys. Oceanogr. 2021, 51, 1967–1984. [Google Scholar] [CrossRef]
- Wang, P.; McWilliams, J.C.; Wang, D.; Yi, D.L. Conservative Surface Wave Effects on a Wind-Driven Coastal Upwelling System. J. Phys. Oceanogr. 2023, 53, 37–55. [Google Scholar] [CrossRef]
- Wu, J.; Wang, P. How Do Conservative Surface Wave Effects Influence a Coastal Upwelling Front? J. Geophys. Res. Oceans 2025, 130, e2024JC021404. [Google Scholar] [CrossRef]
- Large, W.G.; McWilliams, J.C.; Doney, S.C. Oceanic Vertical Mixing: A Review and a Model with a Nonlocal Boundary Layer Parameterization. Rev. Geophys. 1994, 32, 363–403. [Google Scholar] [CrossRef]
- McWilliams, J.C.; Restrepo, J.M.; Lane, E.M. An Asymptotic Theory for the Interaction of Waves and Currents in Coastal Waters. J. Fluid Mech. 2004, 511, 135–178. [Google Scholar] [CrossRef]
- Wang, P.; McWilliams, J.C.; Yuan, J.; Liang, J.-H. Langmuir Mixing Schemes Based on a Modified K-Profile Parameterization. J. Adv. Model. Earth Syst. 2025, 17, e2024MS004729. [Google Scholar] [CrossRef]
- Grant, A.L.; Belcher, S.E. Characteristics of Langmuir Turbulence in the Ocean Mixed Layer. J. Phys. Oceanogr. 2009, 39, 1871–1887. [Google Scholar] [CrossRef]
- McWilliams, J.C.; Huckle, E.; Liang, J.; Sullivan, P.P. Langmuir Turbulence in Swell. J. Phys. Oceanogr. 2014, 44, 870–890. [Google Scholar] [CrossRef]
- Van Roekel, L.P.; Fox-Kemper, B.; Sullivan, P.P.; Hamlington, P.E.; Haney, S.R. The Form and Orientation of Langmuir Cells for Misaligned Winds and Waves. J. Geophys. Res. Oceans 2012, 117, C05001. [Google Scholar] [CrossRef]
- Shrestha, K.; Anderson, W.; Tejada-Martinez, A.; Kuehl, J. Orientation of coastal-zone Langmuir cells forced by wind, wave and mean current at variable obliquity. J. Fluid Mech. 2019, 879, 716–743. [Google Scholar] [CrossRef]
- Sullivan, P.P.; McWilliams, J.C. Langmuir turbulence and filament frontogenesis in the oceanic surface boundary layer. J. Fluid Mech. 2019, 879, 512–553. [Google Scholar] [CrossRef]
- Scully, M.E.; Zippel, S.F. Vertical energy fluxes driven by the interaction between wave groups and Langmuir turbulence. J. Phys. Oceanogr. 2024, 54, 1347–1366. [Google Scholar] [CrossRef]
- Smeltzer, B.K.; Rømcke, O.; Hearst, R.J.; Ellingsen, S.Å. Experimental study of the mutual interactions between waves and tailored turbulence. J. Fluid Mech. 2023, 962, R1. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, J.; Wang, P. Langmuir Turbulence Effects on Coastal Surface Waves. J. Mar. Sci. Eng. 2025, 13, 1067. https://doi.org/10.3390/jmse13061067
Wu J, Wang P. Langmuir Turbulence Effects on Coastal Surface Waves. Journal of Marine Science and Engineering. 2025; 13(6):1067. https://doi.org/10.3390/jmse13061067
Chicago/Turabian StyleWu, Jiehua, and Peng Wang. 2025. "Langmuir Turbulence Effects on Coastal Surface Waves" Journal of Marine Science and Engineering 13, no. 6: 1067. https://doi.org/10.3390/jmse13061067
APA StyleWu, J., & Wang, P. (2025). Langmuir Turbulence Effects on Coastal Surface Waves. Journal of Marine Science and Engineering, 13(6), 1067. https://doi.org/10.3390/jmse13061067