Can the Baikal Amphipod Gmelinoides fasciatus (Stebbing, 1899) Have Different Responses to Light Pollution with Different Color Temperatures?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Analysis of the Values of Intensity of Stable Night Light Radiation in Places Where Organisms Were Caught
2.2. Capture and Acclimation of Organisms
2.3. Conducting Experiments
2.4. Statistical Analysis of Data
3. Results
3.1. Illumination at Sampling Sites
3.2. Group Behavior Under Experimental Conditions
3.3. Individual Behavior Under Experimental Conditions
4. Discussion
4.1. Current Situation
4.2. Group and Individual Reactions to Artificial Lighting
4.3. Possible Consequences
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Long, W.J. Wilderness Ways; Ginn and Company: Boston, MA, USA, 1901. [Google Scholar]
- Hölker, F.; Wolter, C.; Perkin, E.K.; Tockner, K. Light pollution as a biodiversity threat. Trends Ecol. Evol. 2010, 25, 681–682. [Google Scholar] [CrossRef] [PubMed]
- Bruce-White, C.; Shardlow, M. A Review of the Impact of Artificial Light on Invertebrates; Buglife The Invertebrate Conservation Trust: Peterborough, UK, 2011; p. 32. [Google Scholar]
- Davies, T.W.; Bennie, J.; Gaston, K.J. Street lighting changes the composition of invertebrate communities. Biol. Lett. 2012, 8, 764–767. [Google Scholar] [CrossRef] [PubMed]
- Moore, M.V.; Pierce, S.M.; Walsh, H.M.; Kvalvik, S.K.; Lim, J.D. Urban light pollution alters the diel vertical migration of Daphnia. Verh. Int. Ver. Theor. Angew. Limnol. 2000, 27, 779–782. [Google Scholar] [CrossRef]
- Hölker, F.; Moss, T.; Griefahn, B.; Kloas, W.; Voigt, C.C.; Henckel, D.; Hänel, A.; Kappeler, P.M.; Völker, S.; Schwope, A.; et al. The dark side of light: A transdisciplinary research agenda for light pollution policy. Ecol. Soc. 2010, 15, 13. [Google Scholar] [CrossRef]
- Blinn, D.W.; Grossnickle, N.E.; Dehdashti, B. Diel vertical migration of a pelagic amphipod in the absence of fish predation. Hydrobiologia 1988, 160, 165–171. [Google Scholar] [CrossRef]
- Marangoni, L.F.B.; Davies, T.; Smyth, T.; Rodríguez, A.; Hamann, M.; Duarte, C.; Pendoley, K.; Berge, J.; Maggi, E.; Levy, O. Impacts of artificial light at night in marine ecosystems—A review. Glob. Change Biol. 2022, 28, 5346–5367. [Google Scholar] [CrossRef]
- Berge, J.; Geoffroy, M.; Daase, M.; Cottier, F.; Priou, P.; Cohen, J.H.; Johnsen, G.; McKee, D.; Kostakis, I.; Renaud, P.E.; et al. Artificial light during the polar night disrupts Arctic fish and zooplankton behaviour down to 200 m depth. Commun. Biol. 2020, 3, 102. [Google Scholar] [CrossRef]
- de Miguel, A.S.; Bennie, J.; Rosenfeld, E.; Dzurjak, S.; Gaston, K.J. First Estimation of Global Trends in Nocturnal Power Emissions Reveals Acceleration of Light Pollution. Remote Sens. 2021, 13, 3311. [Google Scholar] [CrossRef]
- Depledge, M.H.; Godard-Codding, C.A.J.; Bowen, R.E. Light pollution in the sea. Mar. Pollut. Bull. 2010, 60, 1383–1385. [Google Scholar] [CrossRef]
- Davies, T.W.; Duffy, J.P.; Bennie, J.; Gaston, K.J. The nature, extent, and ecological implications of marine light pollution. Front. Ecol. Environ. 2014, 12, 347–355. [Google Scholar] [CrossRef]
- Longcore, T.; Rich, C. Ecological light pollution. Front. Ecol. Environ. 2004, 2, 191–198. [Google Scholar] [CrossRef]
- Gaston, K.J.; Bennie, J.; Davies, T.W.; Hopkins, J. The ecological impacts of nighttime light pollution: A mechanistic appraisal. Biol. Rev. 2013, 88, 912–927. [Google Scholar] [CrossRef] [PubMed]
- Navarro-Barranco, C.; Hughes, L.E. Effects of light pollution on the emergent fauna of shallow marine ecosystems: Amphipods as a case study. Mar. Pollut. Bull. 2015, 94, 235–240. [Google Scholar] [CrossRef] [PubMed]
- Sanders, D.; Frago, E.; Kehoe, R.; Patterson, C.; Gaston, K.J. A meta-analysis of biological impacts of artificial light at night. Nat. Ecol. Evol. 2021, 5, 74–81. [Google Scholar] [CrossRef]
- Dejnego, V.N.; Elizarov, V.B.; Kaptsov, V.A. Hygienic and ecological problems of energy-saving lighting during urbanization of Crimea. Hyg. Sanit. 2016, 95, 909–913. [Google Scholar] [CrossRef]
- Luarte, T.; Bonta, C.C.; Silva-Rodriguez, E.A.; Quijón, P.A.; Miranda, C.; Farias, A.A.; Duarte, C. Light pollution reduces activity, food consumption and growth rates in a sandy beach invertebrate. Environ. Pollut. 2016, 218, 1147–1153. [Google Scholar] [CrossRef]
- Brüning, A.; Hölker, F.; Franke, S.; Kleiner, W.; Kloas, W. Impact of different colours of artificial light at night on melatonin rhythm and gene expression of gonadotropins in European perch. Sci. Total Environ. 2016, 543, 214–222. [Google Scholar] [CrossRef]
- Karnaukhov, D.; Dolinskaya, E.; Biritskaya, S.; Teplykh, M.; Khomich, A.; Silow, E. Effect of artificial light on the migratory activity of the pelagic amphipod Macrohectopus branickii During daily vertical migration in Lake Baikal. Ecol. Environ. Conserv. 2019, 25, 208–210. [Google Scholar]
- Karnaukhov, D.; Ermolaeva, Y.; Maslennikova, M.; Osadchy, B.; Biritskaya, S.; Lavnikova, A.; Kulbachnaya, N.; Solodkova, A.; Guliguev, A.; Kodatenko, I.; et al. Species-Specific Responses of Baikal Amphipods to Artificial Lighting of Varying Intensity and Spectral Composition. Limnol. Rev. 2025, 25, 11. [Google Scholar] [CrossRef]
- Brüning, A.; Hölker, F.; Franke, S.; Preuer, T.; Kloas, W. Spotlight on fish: Light pollution affects circadian rhythms of European perch but does not cause stress. Sci. Total Environ. 2015, 511, 516–522. [Google Scholar] [CrossRef]
- Bolton, D.; Mayer-Pinto, M.; Clark, G.F.; Dafforn, K.A.; Brassil, W.A.; Becker, A.; Johnston, E.L. Coastal urban lighting has ecological consequences for multiple trophic levels under the sea. Sci. Total Environ. 2017, 576, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Gliwicz, Z.M. A lunar cycle in zooplankton. Ecology 1986, 67, 883–897. [Google Scholar] [CrossRef]
- Candolin, U. Coping with light pollution in urban environments: Patterns and challenges. iScience 2024, 27, 109244. [Google Scholar] [CrossRef] [PubMed]
- Hirt, M.R.; Evans, D.M.; Miller, C.R.; Remo, R. Light pollution in complex ecological systems. Phil. Trans. R. Soc. B 2023, 378, 20220351. [Google Scholar] [CrossRef]
- Takhteev, V.V.; Berezina, N.A.; Sidorov, D.A. Checklist of the Amphipoda (Crustacea) from continental waters of Russia, with data on alien species. Arthropoda Sel. 2015, 24, 335–370. [Google Scholar] [CrossRef]
- Volkova, L.A. Features of attracting young fish of Baikal to artificial light in a reservoir. In Ecological Research of Water Bodies of Siberia; Irkutsk University: Irkutsk, Russia, 1978; pp. 63–75. [Google Scholar]
- Kozhova, O.M. Introduction to Hydrobiology; Krasnoyarsk State University: Krasnoyarsk, Russia, 1987. [Google Scholar]
- Karnaukhov, D.Y.; Bedulina, D.S.; Kaus, A.; Prokosov, S.O.; Sartoris, L.; Timofeyev, M.A.; Takhteev, V.V. Behaviour of lake baikal amphipods as a part of the night migratory complex in the Kluevka settlement region (South-Eastern Baikal). Crustaceana 2016, 89, 419–430. [Google Scholar] [CrossRef]
- Takhteev, V.V.; Arov, I.V.; Misharina, E.A.; Govoruhina, E.B.; Eropova, I.O.; Batranin, D.A. Structure of zooplankton and nocturnal migration complex of benthic amphipods in the area of Bolshoy Ushkany Island (Lake Baikal) during the dark hours of the day (June–July). Izv. ISU Ser. Biol. Ecol. 2018, 23, 54–67. [Google Scholar] [CrossRef]
- Takhteev, V.V.; Karnaukhov, D.Y.; Govorukhina, E.B.; Misharin, A.S. Diel Vertical Migrations of Hydrobionts in the Coastal Area of Lake Baikal. Inland Water Biol. 2019, 12, 178–189. [Google Scholar] [CrossRef]
- Karnaukhov, D.; Teplykh, M.; Dolinskaya, Е.; Biritskaya, S.; Ermolaeva, Y.; Pushnica, V.; Kuznetsova, I.; Okholina, A.; Bukhaeva, L.; Silow, Е. Light pollution affects the coastal zone of Lake Baikal. Limnol. Rev. 2021, 21, 165–168. [Google Scholar] [CrossRef]
- Hölker, F.; Bolliger, J.; Davies, T.W.; Giavi, S.; Jechow, A.; Kalinkat, G.; Longcore, T.; Spoelstra, K.; Tidau, S.; Visser, M.E.; et al. 11 Pressing Research Questions on How Light Pollution Affects Biodiversity. Front. Ecol. Evol. 2021, 9, 767177. [Google Scholar] [CrossRef]
- Bazikalova, A.Y. Amphipods of Lake Baikal. In Proceedings of the Baikal Limnological Station; Publishing House of the USSR Academy of Sciences: Leningrad, Russia, 1945; 440p. (In Russian) [Google Scholar]
- Sidorova, A.I. Features of Reproductive Biology of Invasive Species Gmelinoides fasciatus (Crustacea: Amphipoda) Inhabiting Lake Onega. Russ. J. Dev. Biol. 2022, 53, 198–207. [Google Scholar] [CrossRef]
- Sidorova, A.I. Role of the invasive amphipod Gmelinoides fasciatus (Crustacea: Amphipoda) of littoral macrozoobenthos of the Zaonezhye area of Lake Onego. Limnol. Freshw. Biol. 2024, 5, 1243–1252. [Google Scholar] [CrossRef]
- Rasputina, E.; Milyanchuk, N.; Ilmast, N. Baikal amphipod (Gmelinoides fasciatus) and is contribution to the feeding of Ladoga Lake perch. BIO Web Conf. 2024, 95, 02007. [Google Scholar] [CrossRef]
- Panov, V.E.; Berezina, N.A. Invasion History, Biology and Impacts of the Baikalian Amphipod Gmelinoides fasciatus. In Invasive Aquatic Species of Europe. Distribution, Impacts and Management; Leppäkoski, E., Gollasch, S., Olenin, S., Eds.; Springer: Dordrecht, The Netherlands, 2002. [Google Scholar] [CrossRef]
- Wang, Z.; Roman, M.O.; Kalb, V.L.; Miller, S.D.; Zhang, J.; Shrestha, R.M. Quantifying uncertainties in nighttime light retrievals from Suomi-NPP and NOAA-20 VIIRS Day/Night Band data. Remote Sens. Environ. 2021, 263, 112557. [Google Scholar] [CrossRef]
- Levin, N.; Kyba, C.C.M.; Zhang, Q.; de Miguel, A.S.; Román, M.O.; Li, X.; Portnov, B.A.; Molthan, A.L.; Jechow, A.; Millerl, S.D.; et al. Remote sensing of night lights: A review and an outlook for the future. Remote Sens. Environ. 2020, 237, 111443. [Google Scholar] [CrossRef]
- Sladkova, S.V.; Kholodkevich, S.V.; Safronova, D.V.; Borisov, R.R. Cardioactivity of crayfish Cherax quadricarinatus (von Martens 1868) in various physiological states. Princ. Ecol. 2017, 3, 40. [Google Scholar] [CrossRef]
- Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the Protection of Animals Used for Scientific Purposes: Text with EEA Relevance. Available online: https://eur-lex.europa.eu/eli/dir/2010/63/oj (accessed on 27 March 2025).
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B Stat. Methodol. 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Verbitskii, V.B. Ecological fundamentals and methodology for selection and introduction of new species into an aquaculture. Inland Water Biol. 2008, 1, 114–119. [Google Scholar] [CrossRef]
- Lubyaga, Y.; Trifonova, M.; Drozdova, P.; Gurkov, A.; Madyarova, E.; Axenov-Gribanov, D.; Kurashov, E.; Vereshchagina, K.; Shatilina, Z.; Timofeyev, M. Invader amphipods Gmelinoides fasciatus (Stebbing, 1899) inhabiting distant waterbodies demonstrate differences in tolerance and energy metabolism under elevated temperatures. J. Great Lakes Res. 2020, 46, 899–909. [Google Scholar] [CrossRef]
- Berezina, N.A.; Panov, V.E. Establishment of new gammarid species in the eastern Gulf of Finland (Baltic Sea) and their effects on littoral communities. Proc. Est. Acad. Sci. Biol. Ecol. 2003, 52, 284–304. [Google Scholar] [CrossRef]
- Dudakova, D.S.; Petukhova, M.D.; Starukhina, A.D. Features of diel migrations of Gmelinoides fasciatus (Stebbing, 1899) amphipods in the littoral zone of the Lake Ladoga skerries region. Trans. Karelian Res. Cent. RAS 2023, 6, 84–96. (In Russian) [Google Scholar] [CrossRef]
- Ermolaeva, Y.K.; Dolinskaya, E.M.; Biritskaya, S.A.; Maslennikova, M.A.; Bukhaeva, L.B.; Lavnikova, A.V.; Golubets, D.I.; Kulbachnaya, N.A.; Okholina, A.I.; Milovidova, I.V.; et al. Daily vertical migrations of aquatic organisms and water transparency as indicators of the potential exposure of freshwater lakes to light pollution. Acta Biol. Sib. 2024, 10, 69–88. [Google Scholar] [CrossRef]
- Fefelov, I.V.; Povarincev, A.I. Polovoj i vozrastnoj sostav gogolej Bucephala clangula na zimovke v cherte Irkutska v 2013 godu. Russ. Ornitol. Zh. 2013, 883, 1441–1445. (In Russian) [Google Scholar]
- Folt, C.L.; Burns, C.W. Biological drivers of zooplankton patchiness. Trends Ecol. Evol. 1999, 14, 300–305. [Google Scholar] [CrossRef]
- Cherry, T.R.; Kohler, S.A.; Ford, A.T. Sex Specific Differences Recorded in the Behavior of an Amphipod: Implications for Behavioral Toxicology. Front. Mar. Sci. 2020, 7, 370. [Google Scholar] [CrossRef]
- Karnaukhov, D.Y.; Dolinskaya, E.M.; Biritskaya, S.A.; Teplykh, M.A.; Ermolaeva, Y.K.; Pushnica, V.A.; Bukhaeva, L.B.; Makhov, I.A.; Lavnikova, A.V.; Silow, E.A. Daily vertical migrations of Lake Baikal amphipods: Major players, seasonal dynamics and potential causes. Internat. J. Aqua. Biol. 2023, 11, 50–58. [Google Scholar]
- Toyota, K.; Usami, K.; Mizusawa, K.; Ohira, T. Effect of Blue Light on the Growth of the Red Swamp Crayfish Procambraus clarkii Larvae -Seasonal and Sexual Differences. Zool. Stud. 2022, 61, e3. [Google Scholar] [CrossRef]
- Falcón, J.; Torriglia, A.; Attia, D.; Viénot, F.; Gronfier, C.; Behar-Cohen, F.; Martinsons, C.; Hicks, D. Exposure to Artificial Light at Night and the Consequences for Flora, Fauna, and Ecosystems. Front. Neurosci. 2020, 14, 602796. [Google Scholar] [CrossRef]
Lighting Types | Cold Light | Daylight | Without Light (Night) |
---|---|---|---|
Daylight | 0.15 | ||
Without light (Night) | 0.15 | 0.0003 | |
Warm light | 0.15 | 0.0003 | 0.9 |
Daylight (Kruskal–Wallis Chi-Squared = 79.496, df = 4, p-value = 2.227 × 10−16) | ||||
Aquarium zones | 0 | 0.1–1 | 1–10 | 10–20 |
0.1–1 | 5.7 × 10−5 | |||
1–10 | 1.2 × 10−10 | 0.08 | ||
10–20 | 1.4 × 10−15 | 0.0008 | 0.4 | |
20–30 | 3.9 × 10−8 | 0.4 | 0.4 | 0.08 |
Without light (Night) (Kruskal–Wallis chi-squared = 65.959, df = 4, p-value = 1.616 × 10−13) | ||||
Aquarium zones | 0 | 0.1–1 | 1–10 | 10–20 |
0.1–1 | 0.01 | |||
1–10 | 1.2 × 10−6 | 0.07 | ||
10–20 | 7.8 × 10−12 | 0.0001 | 0.16 | |
20–30 | 0.2 | 0.2 | 0.001 | 1.4 × 10−7 |
Warm light (Kruskal–Wallis chi-squared = 81.206, df = 4, p-value < 2.2 × 10−16) | ||||
Aquarium zones | 0 | 0.1–1 | 1–10 | 10–20 |
0.1–1 | 6.6 × 10−6 | |||
1–10 | 9.7 × 10−6 | 1 | ||
10–20 | 9.3 × 10−11 | 0.16 | 0.16 | |
20–30 | 1 | 2.0 × 10−6 | 3.1 × 10−6 | 1.4 × 10−11 |
Cold light (Kruskal–Wallis chi-squared = 84.803, df = 4, p-value < 2.2 × 10−16) | ||||
Aquarium zones | 0 | 0.1–1 | 1–10 | 10–20 |
0.1–1 | 1.3 × 10−6 | |||
1–10 | 4.3 × 10−11 | 0.2 | ||
10–20 | 2 × 10−16 | 0.004 | 0.2 | |
20–30 | 0.0004 | 0.2 | 0.01 | 3.3 × 10−5 |
Lighting Types | Cold Light | Daylight | Without Light |
---|---|---|---|
Daylight | 0.0003 | ||
Without light | 0.14 | 4.3 × 10−8 | |
Warm light | 0.4 | 0.004 | 0.03 |
Daylight (Kruskal–Wallis Chi-Squared = 93.886, df = 4, p-Value < 2.2 × 10−16) | ||||
Aquarium zones | 0 | 0.1–1 | 1–10 | 10–20 |
0.1–1 | 1.1 × 10−5 | |||
1–10 | 2.4 × 10−11 | 0.11 | ||
10–20 | 7.5 × 10−15 | 0.005 | 0.6 | |
20–30 | 1.5 × 10−15 | 0.003 | 0.6 | 0.8 |
Without light (Kruskal–Wallis chi-squared = 72.08, df = 4, p-value = 8.254 × 10−15) | ||||
Aquarium zones | 0 | 0.1–1 | 1–10 | 10–20 |
0.1–1 | 7.8 × 10−6 | |||
1–10 | 7.2 × 10−10 | 0.3 | ||
10–20 | 1.6 × 10−14 | 0.01 | 0.32 | |
20–30 | 4.3 × 10−5 | 0.7 | 0.19 | 0.003 |
Warm light (Kruskal–Wallis chi-squared = 71.733, df = 4, p-value = 9.773 × 10−15) | ||||
Aquarium zones | 0 | 0.1–1 | 1–10 | 10–20 |
0.1–1 | 4.7 × 10−8 | |||
1–10 | 2.3 × 10−9 | 0.7 | ||
10–20 | 2.7 × 10−14 | 0.18 | 0.4 | |
20–30 | 5.7 × 10−6 | 0.7 | 0.4 | 0.01 |
Cold light (Kruskal–Wallis chi-squared = 82.069, df = 4, p-value < 2.2 × 10−16) | ||||
Aquarium zones | 0 | 0.1–1 | 1–10 | 10–20 |
0.1–1 | 0.0008 | |||
1–10 | 2.7 × 10−13 | 0.0008 | ||
10–20 | 1.2 × 10−13 | 0.0005 | 0.9 | |
20–30 | 1.3 × 10−7 | 0.15 | 0.15 | 0.15 |
Daylight (W = 6516) | Without Light (W = 7045) | Warm Light (W = 5899) | Cold Light (W = 7493.5) | ||||
---|---|---|---|---|---|---|---|
Angara | Angara | Angara | Angara | ||||
Baikal | 0.01 | Baikal | 0.17 | Baikal | 0.0007 | Baikal | 0.57 |
Comparison | p.adj.Fisher |
---|---|
cold: day | 0.4 |
cold: night | 0.02 |
cold: warm | 0.000001 |
day: night | 0.0003 |
day: warm | 6.66 × 10−8 |
night: warm | 0.02 |
Comparison | p.adj.Fisher |
---|---|
cold: day | 0.8 |
cold: night | 0.0002 |
cold: warm | 0.4 |
day: night | 0.0003 |
day: warm | 0.08 |
night: warm | 0.0003 |
Day | Night | Warm | Cold | ||||
---|---|---|---|---|---|---|---|
Angara | Angara | Angara | Angara | ||||
Baikal | 0.009 | Baikal | 0.06 | Baikal | 0.0004 | Baikal | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karnaukhov, D.; Ermolaeva, Y.; Maslennikova, M.; Golubets, D.; Lavnikova, A.; Kodatenko, I.; Guliguev, A.; Rechile, D.; Salovarov, K.; Olimova, A.; et al. Can the Baikal Amphipod Gmelinoides fasciatus (Stebbing, 1899) Have Different Responses to Light Pollution with Different Color Temperatures? J. Mar. Sci. Eng. 2025, 13, 1039. https://doi.org/10.3390/jmse13061039
Karnaukhov D, Ermolaeva Y, Maslennikova M, Golubets D, Lavnikova A, Kodatenko I, Guliguev A, Rechile D, Salovarov K, Olimova A, et al. Can the Baikal Amphipod Gmelinoides fasciatus (Stebbing, 1899) Have Different Responses to Light Pollution with Different Color Temperatures? Journal of Marine Science and Engineering. 2025; 13(6):1039. https://doi.org/10.3390/jmse13061039
Chicago/Turabian StyleKarnaukhov, Dmitry, Yana Ermolaeva, Maria Maslennikova, Dmitry Golubets, Arina Lavnikova, Ivan Kodatenko, Artem Guliguev, Diana Rechile, Kirill Salovarov, Anastasia Olimova, and et al. 2025. "Can the Baikal Amphipod Gmelinoides fasciatus (Stebbing, 1899) Have Different Responses to Light Pollution with Different Color Temperatures?" Journal of Marine Science and Engineering 13, no. 6: 1039. https://doi.org/10.3390/jmse13061039
APA StyleKarnaukhov, D., Ermolaeva, Y., Maslennikova, M., Golubets, D., Lavnikova, A., Kodatenko, I., Guliguev, A., Rechile, D., Salovarov, K., Olimova, A., Ruban, K., Kondratieva, D., Solomka, A., Slepchenko, A., Bashkirtsev, A., Biritskaya, S., Solodkova, A., Kulbachnaya, N., & Silow, E. (2025). Can the Baikal Amphipod Gmelinoides fasciatus (Stebbing, 1899) Have Different Responses to Light Pollution with Different Color Temperatures? Journal of Marine Science and Engineering, 13(6), 1039. https://doi.org/10.3390/jmse13061039