Prediction of the Marine Dynamic Environment for Arctic Ice-Based Buoys Using Historical Profile Data
Abstract
:1. Introduction
2. Dataset
2.1. Data Introduction
2.2. Feature Selection
- Lon: reflects the longitude position of the trajectory.
- Lat: reflects the latitude of the trajectory.
- Temperature: reflects the temperature changes in the ocean environment.
- Salinity: reflects changes in the salinity of the marine environment.
2.3. Data Preprocessing
2.4. Data Standardization
- is the mean of the feature;
- is the standard deviation of the feature.
2.5. Sequence Construction
- Training set: 60% of the data for model training;
- Validation set: 20% of the data for hyperparameter tuning;
- Test set: 20% of the data for final evaluation.
3. Methods
3.1. Model Architecture
- Time-Mixing: Mixes features along the temporal dimension to capture temporal dependencies in the time series.
- Feature-Mixing: Mixes the data along the feature dimension to capture the correlation between different features.
3.1.1. Input Layer
3.1.2. MixerLayer Stacking
3.1.3. Temporal Dimension Mixing
3.1.4. Dimension Restoration
3.1.5. Residual Connection and Layer Normalization
3.1.6. Feature Dimension Mixing
3.1.7. Second Residual Connection and Layer Normalization
Algorithm 1 Training of TSMixer |
|
3.2. Loss Function
3.3. Evaluation Index
- TP (True Positive): True example, actually positive, model predicted positive.
- TN (True Negative): True negative, actually negative, model predicted negative.
- FP (False Positive): False positive, actually negative, model mispredicted positive.
- FN (False Negative): False negative, actually positive, model mispredicted negative.
4. Experiments
4.1. Experimental Setup
4.2. Training Process
4.3. Experimental Results
4.4. Comparative Experiments
4.5. Ablation Study
5. Discussion
5.1. Model Advantages
5.2. Model Performance Analysis
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Number of samples input into the model each time | |
Length of the time series, that is, the number of time steps | |
Number of features contained in each time step | |
DL | Deep Learning |
Temp | Temperature |
Lon/Lat | Longitude/Latitude |
MLP | Multi-layer Perceptron |
ReLU | Rectified Linear Unit |
References
- Lin, M.; Yang, C. Ocean Observation Technologies: A Review. Chin. J. Mech. Eng. 2020, 33, 32. [Google Scholar] [CrossRef]
- Soreide, N.; Woody, C.; Holt, S. Overview of ocean based buoys and drifters: Present applications and future needs. In Proceedings of the MTS/IEEE Oceans 2001. An Ocean Odyssey. Conference Proceedings (IEEE Cat. No. 01CH37295), Honolulu, HI, USA, 5–8 November 2001; Volume 4, pp. 2470–2472. [Google Scholar] [CrossRef]
- Song, D.L.; Wang, H.J.; Zhou, L.Q.; Zang, S.P. Kinematic and dynamic analysis of a lowered ocean microstructure turbulence profiler. Period. Ocean. Univ. China (Nat. Sci. Ed.) 2019, 49, 145–152. [Google Scholar] [CrossRef]
- Li, Y.; Yang, F.; Li, S.; Tang, X.; Sun, X.; Qi, S.; Gao, Z. Influence of Six-Degree-of-Freedom Motion of a Large Marine Data Buoy on Wind Speed Monitoring Accuracy. J. Mar. Sci. Eng. 2023, 11, 1985. [Google Scholar] [CrossRef]
- Mou, N.X.; Zhang, H.C.; Chen, J.; Zhang, L.X.; Dai, H.L. A Review on the Application Research of Trajectory Data Mining in Urban Cities. J.-Geo-Inf. Sci. 2015, 17, 1136–1142. [Google Scholar] [CrossRef]
- Wang, J.; Fu, L.L.; Haines, B.; Lankhorst, M.; Lucas, A.J.; Farrar, J.T.; Send, U.; Meinig, C.; Schofield, O.; Ray, R.; et al. On the Development of SWOT In Situ Calibration/Validation for Short-Wavelength Ocean Topography. J. Atmos. Ocean. Technol. 2022, 39, 595–617. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, H.; Dong, J.; Zhong, G.; Sun, X. Prediction of Sea Surface Temperature Using Long Short-Term Memory. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1745–1749. [Google Scholar] [CrossRef]
- Song, M.; Hu, W.; Liu, S.; Chen, S.; Fu, X.; Zhang, J.; Li, W.; Xu, Y. Developing an Artificial Intelligence-Based Method for Predicting the Trajectory of Surface Drifting Buoys Using a Hybrid Multi-Layer Neural Network Model. J. Mar. Sci. Eng. 2024, 12, 958. [Google Scholar] [CrossRef]
- Zaremba, W.; Sutskever, I.; Vinyals, O. Recurrent Neural Network Regularization. arXiv 2015, arXiv:1409.2329. [Google Scholar]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Chung, J.; Gülçehre, Ç.; Cho, K.; Bengio, Y. Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling. arXiv 2014, arXiv:1412.3555. [Google Scholar]
- Lea, C.; Vidal, R.; Reiter, A.; Hager, G.D. Temporal Convolutional Networks: A Unified Approach to Action Segmentation. arXiv 2016, arXiv:1608.08242. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is All you Need. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2017; Volume 30. [Google Scholar]
- Zeng, A.; Chen, M.; Zhang, L.; Xu, Q. Are Transformers Effective for Time Series Forecasting? Proc. AAAI Conf. Artif. Intell. 2022, 37, 11121–11128. [Google Scholar] [CrossRef]
- Ekambaram, V.; Jati, A.; Nguyen, N.; Sinthong, P.; Kalagnanam, J. TSMixer: Lightweight MLP-Mixer Model for Multivariate Time Series Forecasting. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD ’23, Long Beach, CA USA, 6–10 August 2023; pp. 459–469. [Google Scholar] [CrossRef]
- Toole, J.; Krishfield, R.; Proshutinsky, A.; Ashjian, C.; Doherty, K.; Frye, D.; Hammar, T.; Kemp, J.; Peters, D.; Timmermans, M.L.; et al. Ice-tethered profilers sample the upper Arctic Ocean. Eos Trans. Am. Geophys. Union 2006, 87, 434–438. [Google Scholar] [CrossRef]
- ITP. Ice-Tethered Profiler Observational Dataset. 2023. Available online: https://www2.whoi.edu/site/itp/ (accessed on 21 April 2025).
- Rhines, P.B. Slow oscillations in an ocean of varying depth Part 1. Abrupt topography. J. Fluid Mech. 1969, 37, 161–189. [Google Scholar] [CrossRef]
- Singh, D.; Singh, B. Investigating the impact of data normalization on classification performance. Appl. Soft Comput. 2020, 97, 105524. [Google Scholar] [CrossRef]
Buoy | Profile Number | Buoy | Profile Number | Buoy | Profile Number |
---|---|---|---|---|---|
itp76 | 910 | itp93 | 1543 | itp114 | 4403 |
itp77 | 2367 | itp95 | 878 | itp115 | 261 |
itp78 | 1691 | itp97 | 699 | itp116 | 529 |
itp79 | 1694 | itp98 | 179 | itp117 | 206 |
itp80 | 3258 | itp99 | 224 | itp120 | 1927 |
itp81 | 671 | itp100 | 176 | itp121 | 1101 |
itp82 | 1087 | itp101 | 382 | itp122 | 1860 |
itp83 | 937 | itp102 | 2140 | itp123 | 1100 |
itp84 | 172 | itp103 | 5039 | itp125 | 151 |
itp85 | 659 | itp104 | 6223 | itp126 | 941 |
itp86 | 753 | itp105 | 6061 | itp127 | 862 |
itp87 | 647 | itp107 | 296 | itp128 | 408 |
itp88 | 30 | itp108 | 673 | itp129 | 1294 |
itp89 | 429 | itp109 | 169 | itp130 | 338 |
itp90 | 305 | itp110 | 630 | itp131 | 253 |
itp91 | 328 | itp111 | 520 | itp136 | 434 |
itp92 | 1855 | itp113 | 4842 | itp137 | 431 |
Category | Setting/Parameter | Value | Description |
---|---|---|---|
Hardware | CPU | Intel Core i7-12700K | High perf multithreaded CPU |
GPU | NVIDIA GeForce RTX 3090 | 24 GB VRAM, supports large-scale DL training | |
Software | Python Version | 3.9 | Multi—thread high—perf CPU |
PyTorch Version | 1.12.1 | Multi—thread high—perf CPU | |
Dataset | Samples | 5847 | Multivariate time series |
Model Parameters | Sequence Length | n | Input time series length |
492 | Features per timestep | ||
Time-Mix Dim | 256 | Time-Mixing MLP dim | |
Feature-Mix Dim | 2048 | Feature-Mixing MLP dim | |
Dropout Rate | 0.1 | Anti—overfitting regularization | |
Batch Size | 32 | Training mini-batch size | |
Epochs | 30 | Total training iterations | |
Learning Rate | Adam | Optimizer configuration ( = 0.001) | |
Loss Function | BCELoss | Binary Cross-Entropy Loss metric | |
optimizer | Adam | For model parameter update | |
Device | cuda | GPU acceleration enabled | |
Training | Adam | Optimizer with learning rate | |
BCELoss | Equation (12) | Binary Cross-Entropy Loss function | |
Metrics | Acc/Prec/Rec/F1 | Equations (13)–(15) | Classification metrics |
MSE/R2 | Equations (16) and (17) | Regression metrics |
Metric | Value |
---|---|
Train Accuracy | 0.8702 ± 0.0099 |
Validation Accuracy | 0.8031 ± 0.0414 |
Test Accuracy | 0.8154 ± 0.0399 |
Test Accuracy 95% CI | [0.7659, 0.8649] |
Avg. Training Time (s) | 1.76 ± 0.71 |
Model | Val Acc | MSE | R2 |
---|---|---|---|
Mamba | 0.7581 ± 0.0104 | 0.1985 ± 0.0194 | 0.2057 ± 0.0748 |
LSTM | 0.7248 ± 0.0360 | 0.2109 ± 0.0249 | 0.1559 ± 0.1022 |
TCN | 0.7994 ± 0.0049 | 0.1476 ± 0.0045 | 0.4091 ± 0.0197 |
RNN | 0.6471 ± 0.0064 | 0.2208 ± 0.0028 | 0.1163 ± 0.0110 |
GRU (needs GPU) | 0.8013 ± 0.0070 | 0.1459 ± 0.0053 | 0.4162 ± 0.0220 |
Transformer | 0.6309 ± 0.0053 | 0.2259 ± 0.0046 | 0.0960 ± 0.0184 |
DLinear | 0.6495 ± 0.0111 | 0.2174 ± 0.0038 | 0.1298 ± 0.0138 |
iTransformer | 0.6796 ± 0.0138 | 0.2036 ± 0.0064 | 0.1852 ± 0.0257 |
TSMixer (Ours) | 0.7994 ± 0.0066 | 0.1591 ± 0.0041 | 0.3632 ± 0.0171 |
Paired t-Test p-Values for Val Acc (TSMixer vs. Others) | |||
Comparison | t-Statistic | p-Value | |
TSMixer vs. Mamba | 5.8232 | 0.0043 | |
TSMixer vs. LSTM | 4.1660 | 0.0141 | |
TSMixer vs. TCN | −1.9722 | 0.1199 | |
TSMixer vs. RNN | 5.3506 | 0.0059 | |
TSMixer vs. GRU | −4.3121 | 0.0125 | |
TSMixer vs. Transformer | 4.8380 | 0.0084 | |
TSMixer vs. DLinear | 5.3194 | 0.0060 | |
TSMixer vs. iTransformer | 3.5243 | 0.0242 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, J.; Luo, Y.; Li, T.; Gan, Y.; Dong, J. Prediction of the Marine Dynamic Environment for Arctic Ice-Based Buoys Using Historical Profile Data. J. Mar. Sci. Eng. 2025, 13, 1003. https://doi.org/10.3390/jmse13061003
Zhu J, Luo Y, Li T, Gan Y, Dong J. Prediction of the Marine Dynamic Environment for Arctic Ice-Based Buoys Using Historical Profile Data. Journal of Marine Science and Engineering. 2025; 13(6):1003. https://doi.org/10.3390/jmse13061003
Chicago/Turabian StyleZhu, Jingzi, Yu Luo, Tao Li, Yanhai Gan, and Junyu Dong. 2025. "Prediction of the Marine Dynamic Environment for Arctic Ice-Based Buoys Using Historical Profile Data" Journal of Marine Science and Engineering 13, no. 6: 1003. https://doi.org/10.3390/jmse13061003
APA StyleZhu, J., Luo, Y., Li, T., Gan, Y., & Dong, J. (2025). Prediction of the Marine Dynamic Environment for Arctic Ice-Based Buoys Using Historical Profile Data. Journal of Marine Science and Engineering, 13(6), 1003. https://doi.org/10.3390/jmse13061003