An Adaptive Neural Network Fuzzy Sliding Mode Controller for Tracking Control of Deep-Sea Mining Vehicles
Abstract
:1. Introduction
2. HMV Modeling
2.1. Kinematics
2.2. Dynamics
3. Controller Design
3.1. Conventional Sliding Mode Controller (CSMC)
3.2. Adaptive Radial Basis Function Neural Network Fuzzy Logic Controller (ARFSMC)
3.2.1. RBF Neural Network
3.2.2. Fuzzy Inference System
3.3. Stability Analysis
4. Numerical Validation
4.1. Simulation Case A: Vertical Deployment into Mining Zone
4.2. Simulation Case B: Linear Translation with Time-Varying Mass
4.3. Simulation Case C: Spiral Motion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ROV | Remotely Operated (underwater) Vehicle |
HMV | Hovering mining vehicle |
ARFSMC | Adaptive Radial Basis Function Neural Network Fuzzy Sliding Mode Controller |
RBFNN | Radial basis function neural network |
FIS | Fuzzy inference system |
CSMC | Conventional sliding mode controller |
DSMC | Double-loop sliding mode controller |
ISA | International Sea Authority |
PID | Proportional–integral–derivative controller |
FLC | Fuzzy logic controller |
ANN | Artificial neural network |
SMC | Sliding mode controller |
AFSMC | Adaptive fuzzy logic sliding mode controller |
FTC | Fault-tolerant Control |
DOF | Degree(s) of freedom |
FDD | Fault detection and diagnosis |
ITSMC | Integral terminal sliding mode controller |
FITSMC | Fast Integral Terminal Sliding Mode Controller |
RNN | Recurrent neural network |
UUV | Unmanned underwater vehicle |
CoG | Center of Gravity |
RMS | Root mean square |
RBF | Radial basis function |
Appendix A
Appendix B
Parameter | Value | Unit | Parameter | Value | Unit |
---|---|---|---|---|---|
m | 4187.5 | kg | −2381 | kg m−1 | |
L | 3.1 | m | −7282 | kg | |
3587 | kg m2 | −4451 | kg s−1 | ||
−3179 | kg | 517 | kg m−1 | ||
−1347 | kg s−1 | −3614 | kg m2 | ||
−1924 | kg m−1 | −5694 | kg m2 s−1 | ||
−4546 | kg | −2033 | kg m2 | ||
−2401 | kg s−1 |
References
- Guo, X.; Fan, N.; Liu, Y.; Liu, X.; Wang, Z.; Xie, X.; Jia, Y. Deep seabed mining: Frontiers in engineering geology and environment. Int. J. Coal Sci. Technol. 2023, 10, 23. [Google Scholar] [CrossRef]
- Kang, Y.; Liu, S. Review on the Technology and Equipment Progress and the System Scheme of Deep-Sea Mining. J. Mech. Eng. 2023, 59, 325–337. [Google Scholar]
- Levin, L.A.; Mengerink, K.; Gjerde, K.M.; Rowden, A.A.; Van Dover, C.L.; Clark, M.R.; Ramirez-Llodra, E.; Currie, B.; Smith, C.R.; Sato, K.N.; et al. Defining “serious harm” to the marine environment in the context of deep-seabed mining. Mar. Policy 2016, 74, 245–259. [Google Scholar] [CrossRef]
- Mengerink, K.J.; Van Dover, C.L.; Ardron, J.; Baker, M.; Escobar-Briones, E.; Gjerde, K.; Koslow, J.A.; Ramirez-Llodra, E.; Lara-Lopez, A.; Squires, D.; et al. A call for deep-ocean stewardship. Science 2014, 344, 696–698. [Google Scholar] [CrossRef]
- Xiao, J.; Cheng, P.; Cao, J.; Lin, R.; Luo, M.; Yu, C.; Yao, B.; Hu, Y. Dynamic analysis and simulations of a deep-sea floating mining vehicle multi-body system under real-world operating conditions. Ocean Eng. 2024, 306, 117871. [Google Scholar] [CrossRef]
- Tijjani, A.S.; Chemori, A.; Creuze, V. A survey on tracking control of unmanned underwater vehicles: Experiments-based approach. Annu. Rev. Control 2022, 54, 125–147. [Google Scholar] [CrossRef]
- Soylu, S.; Buckham, B.J.; Podhorodeski, R.P. A chattering-free sliding-mode controller for underwater vehicles with fault-tolerant infinity-norm thrust allocation. Ocean Eng. 2008, 35, 1647–1659. [Google Scholar] [CrossRef]
- Slotine, J.J.E. Sliding controller design for non-linear systems. Int. J. Control 1984, 40, 421–434. [Google Scholar] [CrossRef]
- Bessa, W.M.; Dutra, M.S.; Kreuzer, E. An adaptive fuzzy sliding mode controller for remotely operated underwater vehicles. Robot. Auton. Syst. 2010, 58, 16–26. [Google Scholar] [CrossRef]
- Eun, Y.; Kim, J.H.; Kim, K.; Cho, D.I. Discrete-time variable structure controller with a decoupled disturbance compensator and its application to a CNC servomechanism. IEEE Trans. Control Syst. Technol. 1999, 7, 414–423. [Google Scholar]
- Slotine, J.J.; Sastry, S.S. Tracking control of non-linear systems using sliding surfaces, with application to robot manipulators. Int. J. Control 1983, 38, 465–492. [Google Scholar] [CrossRef]
- Chung, S.C.Y.; Lin, C.L. A transformed Lure problem for sliding mode control and chattering reduction. IEEE Trans. Autom. Control 1999, 44, 563–568. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, M.; Wilson, P.A.; Liu, X. Adaptive neural network-based backstepping fault tolerant control for underwater vehicles with thruster fault. Ocean Eng. 2015, 110, 15–24. [Google Scholar] [CrossRef]
- Qiao, L.; Zhang, W. Double-loop integral terminal sliding mode tracking control for UUVs with adaptive dynamic compensation of uncertainties and disturbances. IEEE J. Ocean. Eng. 2018, 44, 29–53. [Google Scholar] [CrossRef]
- Li, J.; Guo, H.; Zhang, H.; Yan, Z. Double-loop structure integral sliding mode control for UUV trajectory tracking. IEEE Access 2019, 7, 101620–101632. [Google Scholar] [CrossRef]
- Huang, B.; Yang, Q. Double-loop sliding mode controller with a novel switching term for the trajectory tracking of work-class ROVs. Ocean Eng. 2019, 178, 80–94. [Google Scholar] [CrossRef]
- Xia, Y.; Xu, K.; Li, Y.; Xu, G.; Xiang, X. Adaptive trajectory tracking control of a cable-driven underwater vehicle on a tension leg platform. IEEE Access 2019, 7, 35512–35531. [Google Scholar] [CrossRef]
- Yang, M.; Sheng, Z.; Yin, G.; Wang, H. A recurrent neural network based fuzzy sliding mode control for 4-DOF ROV movements. Ocean Eng. 2022, 256, 111509. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, Y.; Guan, Z.; Zhang, Y. An adaptive sliding mode motion control method of remote operated vehicle. IEEE Access 2021, 9, 22447–22454. [Google Scholar] [CrossRef]
- Fossen, T.I. Guidance and Control of Ocean Vehicles; Wiley: Chichester, UK, 1999. [Google Scholar]
- Zhang, M.J.; Chu, Z.Z. Adaptive sliding mode control based on local recurrent neural networks for underwater robot. Ocean Eng. 2012, 45, 56–62. [Google Scholar] [CrossRef]
- Chu, Z.; Chen, Y.; Zhu, D.; Zhang, M. Observer-based adaptive neural sliding mode trajectory tracking control for remotely operated vehicles with thruster constraints. Trans. Inst. Meas. Control 2021, 43, 2960–2971. [Google Scholar] [CrossRef]
- Peng, Z.; Wang, J. Output-feedback path-following control of autonomous underwater vehicles based on an extended state observer and projection neural networks. IEEE Trans. Syst. Man Cybern. Syst. 2017, 48, 535–544. [Google Scholar] [CrossRef]
- Li, J.; Du, J.; Chen, C.P. Command-filtered robust adaptive NN control with the prescribed performance for the 3-D trajectory tracking of underactuated AUVs. IEEE Trans. Neural Netw. Learn. Syst. 2021, 33, 6545–6557. [Google Scholar] [CrossRef] [PubMed]
- Xiang, X.; Yu, C.; Lapierre, L.; Zhang, J.; Zhang, Q. Survey on fuzzy-logic-based guidance and control of marine surface vehicles and underwater vehicles. Int. J. Fuzzy Syst. 2018, 20, 572–586. [Google Scholar] [CrossRef]
Sim. Case | Controller | Tracking RMSE, in | |||
---|---|---|---|---|---|
[m] | [m] | [m] | [m] | ||
A | CSMC | 0.0681 | 0.0474 | 0.0248 | 0.0054 |
DSMC | 0.0654 | 0.0439 | 0.0217 | 0.0117 | |
ARFSMC | 0.0571 | 0.0382 | 0.0188 | 0.0152 | |
Reduction (1/2) | 16.2%/12.8% | 19.4%/12.9% | 24.2%/13.5% | −180.0%/−30.03% | |
B | CSMC | 0.1006 | 0.0675 | 0.0346 | 0.0177 |
DSMC | 0.1012 | 0.0657 | 0.0335 | 0.0168 | |
ARFSMC | 0.0913 | 0.0609 | 0.0303 | 0.0155 | |
Reduction (1/2) | 9.2%/9.8% | 9.8%/7.3% | 12.4%9.5% | 12.3%/7.8% | |
C | CSMC | 0.0969 | 0.0648 | 0.0332 | 0.0169 |
DSMC | 0.0978 | 0.0633 | 0.0321 | 0.0159 | |
ARFSMC | 0.0838 | 0.0559 | 0.0278 | 0.0139 | |
Reduction (1/2) | 13.6%/14.3% | 13.8%/11.8% | 16.4%/13.5% | 17.6%/12.2% |
Sim. Case | Controller | TV, in | |||
---|---|---|---|---|---|
[N] | [N] | [N] | [Nm] | ||
A | CSMC | ||||
ARFSMC | |||||
Reduction | 98.2% | 98.5% | 98.9% | 98.9% | |
B | CSMC | ||||
ARFSMC | |||||
Reduction | 96.6% | 97.3% | 97.7% | 97.5% | |
C | CSMC | ||||
ARFSMC | |||||
Reduction | 96.7% | 97.5% | 98.2% | 98.0% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Shan, Z.; Xiao, J.; Cao, J.; Zhang, H.; Sun, N. An Adaptive Neural Network Fuzzy Sliding Mode Controller for Tracking Control of Deep-Sea Mining Vehicles. J. Mar. Sci. Eng. 2025, 13, 960. https://doi.org/10.3390/jmse13050960
Wang S, Shan Z, Xiao J, Cao J, Zhang H, Sun N. An Adaptive Neural Network Fuzzy Sliding Mode Controller for Tracking Control of Deep-Sea Mining Vehicles. Journal of Marine Science and Engineering. 2025; 13(5):960. https://doi.org/10.3390/jmse13050960
Chicago/Turabian StyleWang, Shidong, Zida Shan, Jialuan Xiao, Junjun Cao, He Zhang, and Nan Sun. 2025. "An Adaptive Neural Network Fuzzy Sliding Mode Controller for Tracking Control of Deep-Sea Mining Vehicles" Journal of Marine Science and Engineering 13, no. 5: 960. https://doi.org/10.3390/jmse13050960
APA StyleWang, S., Shan, Z., Xiao, J., Cao, J., Zhang, H., & Sun, N. (2025). An Adaptive Neural Network Fuzzy Sliding Mode Controller for Tracking Control of Deep-Sea Mining Vehicles. Journal of Marine Science and Engineering, 13(5), 960. https://doi.org/10.3390/jmse13050960