Surf and Swash Zone Dynamics from High-Frequency Observations at a Microtidal Low-Energy Dissipative Beach
Abstract
:1. Introduction
2. Study Area and Methods
2.1. Study Area
2.2. Field Data Acquisition
2.3. Beach Optical Monitoring System
2.4. Wave Modeling
2.5. Wave Run-Up Prediction
3. Results
3.1. Beach Morphology, Wind and Wave Climate
3.2. Shoreline, Wave Run-Up, and Wave Breaking Location
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
1 | https://www.unep.org/unepmap/who-we-are/barcelona-convention-and-protocols (accessed on 19 February 2025). |
References
- Luijendijk, A.; Hagenaars, G.; Ranasinghe, R.; Baart, F.; Donchyts, G.; Aarninkhof, S. The State of the World’s Beaches. Sci. Rep. 2018, 8, 6641. [Google Scholar] [CrossRef] [PubMed]
- Roy, P.; Pal, S.C.; Chakrabortty, R.; Chowdhuri, I.; Saha, A.; Shit, M. Effects of Climate Change and Sea-Level Rise on Coastal Habitat: Vulnerability Assessment, Adaptation Strategies and Policy Recommendations. J. Environ. Manag. 2023, 330, 117187. [Google Scholar] [CrossRef]
- Toimil, A.; Losada, I.J.; Álvarez-Cuesta, M.; Le Cozannet, G. Demonstrating the Value of Beaches for Adaptation to Future Coastal Flood Risk. Nat. Commun. 2023, 14, 3474. [Google Scholar] [CrossRef] [PubMed]
- UNWTO. International Tourism Highlights, 2024 ed.; World Tourism Organization: Madrid, Spain, 2024; ISBN 978-92-844-2579-2. [Google Scholar]
- Monioudi, I.N.; Velegrakis, A.F. Beach Carrying Capacity at Touristic 3S Destinations: Its Significance, Projected Decreases and Adaptation Options under Climate Change. J. Tour. Hosp. 2022, 11, 500. [Google Scholar]
- Brett, M.R. How Important is Coastal Tourism for Island Nations? An Assessment of African and Indian Ocean Islands. J. Coast. Res. 2021, 37, 568–575. [Google Scholar] [CrossRef]
- Pons, G.X.; Martín-Prieto, J.Á.; Carreras-Martí, D. Tourist Visitation and Beach Erosion: Analysis of the Evolution of the Coastline, Frequentation and Beach Area on the Island of Menorca (2001–2015) (Balearic Islands, Spain). In Spanish Tourism Geographies: Territorial Diversity and Different Approaches; Blanco-Romero, A., Blázquez-Salom, M., Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp. 227–243. ISBN 978-3-031-39780-6. [Google Scholar]
- Vousdoukas, M.I.; Ranasinghe, R.; Mentaschi, L.; Plomaritis, T.A.; Athanasiou, P.; Luijendijk, A.; Feyen, L. Sandy Coastlines under Threat of Erosion. Nat. Clim. Chang. 2020, 10, 260–263. [Google Scholar] [CrossRef]
- Bozzeda, F.; Ortega, L.; Costa, L.L.; Fanini, L.; Barboza, C.A.M.; McLachlan, A.; Defeo, O. Global Patterns in Sandy Beach Erosion: Unraveling the Roles of Anthropogenic, Climatic and Morphodynamic Factors. Front. Mar. Sci. 2023, 10, 1270490. [Google Scholar] [CrossRef]
- WMO. State of Global Climate 2023; WMO-No. 1347; World Meteorological Organization: Geneva, Switzerland, 2024; ISBN 978-92-63-11347-4. [Google Scholar]
- Monioudi, I.N.; Velegrakis, A.F.; Chatzistratis, D.; Vousdoukas, M.I.; Savva, C.; Wang, D.; Bove, G.; Mentaschi, L.; Paprotny, D.; Morales-Nápoles, O.; et al. Climate change—Induced hazards on touristic island beaches: Cyprus, Eastern Mediterranean. Front. Mar. Sci. 2023, 10, 1188896. [Google Scholar] [CrossRef]
- Komar, P.D. Beach Processes and Sedimentation; Prentice Hall: Upper Saddle River, NJ, USA, 1978; ISBN 0-13-754938-5. [Google Scholar]
- Stockdon, H.F.; Holman, R.A.; Howd, P.A.; Sallenger, A.H. Empirical Parameterization of Setup, Swash, and Runup. Coast. Eng. 2006, 53, 573–588. [Google Scholar] [CrossRef]
- Chatzipavlis, A.; Tsekouras, G.E.; Trygonis, V.; Velegrakis, A.F.; Tsimikas, J.; Rigos, A.; Hasiotis, T.; Salmas, C. Modeling Beach Realignment Using a Neuro-Fuzzy Network Optimized by a Novel Backtracking Search Algorithm. Neural Comput. Appl. 2019, 31, 1747–1763. [Google Scholar] [CrossRef]
- Pianca, C.; Holman, R.; Siegle, E. Shoreline Variability from Days to Decades: Results of Long-Term Video Imaging. J. Geophys. Res. Oceans 2015, 120, 2159–2178. [Google Scholar] [CrossRef]
- Vousdoukas, M.I.; Velegrakis, A.F.; Dimou, K.; Zervakis, V.; Conley, D.C. Wave Run-up Observations in Microtidal, Sediment-Starved Pocket Beaches of the Eastern Mediterranean. J. Mar. Syst. 2009, 78, S37–S47. [Google Scholar] [CrossRef]
- Velegrakis, A.; Papadatou, K.; Alves, B.; Hasiotis, T.; Armaroli, C. International and EU Policies and Legislation for Coastal Floods. In Proceedings of the Marine and Inland Waters Research Symposium, Port Heli, Greece, 16–19 September 2022; Tzovara, E., Ed.; Hellenic Centre for Marine Research: Anavyssos, Greece, 2022; pp. 91–95. [Google Scholar]
- Gomes da Silva, P.; Coco, G.; Garnier, R.; Klein, A.H.F. On the Prediction of Runup, Setup and Swash on Beaches. Earth Sci. Rev. 2020, 204, 103148. [Google Scholar] [CrossRef]
- Dubarbier, B.; Castelle, B.; Marieu, V.; Ruessink, G. Process-Based Modeling of Cross-Shore Sandbar Behavior. Coast. Eng. 2015, 95, 35–50. [Google Scholar] [CrossRef]
- Cohn, N.; Ruggiero, P. The Influence of Seasonal to Interannual Nearshore Profile Variability on Extreme Water Levels: Modeling Wave Runup on Dissipative Beaches. Coast. Eng. 2016, 115, 79–92. [Google Scholar] [CrossRef]
- Anderson, D.; Bak, A.S.; Cohn, N.; Brodie, K.L.; Johnson, B.; Dickhudt, P. The Impact of Inherited Morphology on Sandbar Migration During Mild Wave Seasons. Geophys. Res. Lett. 2023, 50, e2022GL101219. [Google Scholar] [CrossRef]
- Hoefel, F.; Elgar, S. Wave-Induced Sediment Transport and Sandbar Migration. Science 2003, 299, 1885–1887. [Google Scholar] [CrossRef]
- Pan, Y.; Yin, S.; Chen, Y.P.; Yang, Y.B.; Xu, C.Y.; Xu, Z.S. An Experimental Study on the Evolution of a Submerged Berm under the Effects of Regular Waves in Low-Energy Conditions. Coast. Eng. 2022, 176, 104169. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, C.; Dai, W.; Chen, D.; Sui, T.; Xie, M.; Chen, S. Laboratory Investigation on Morphology Response of Submerged Artificial Sandbar and Its Impact on Beach Evolution under Storm Wave Condition. Mar. Geol. 2022, 443, 106668. [Google Scholar] [CrossRef]
- Kuang, C.; Chen, L.; Han, X.; Wang, D.; Cao, D.; Zou, Q. Impacts of an Artificial Sandbar on Wave Transformation and Runup over a Nourished Beach. Geosciences 2024, 14, 337. [Google Scholar] [CrossRef]
- Cheng, J.; Wang, P. Dynamic Equilibrium of Sandbar Position and Height along a Low Wave Energy Micro-Tidal Coast. Cont. Shelf Res. 2018, 165, 120–136. [Google Scholar] [CrossRef]
- Armaroli, C.; Ciavola, P. Dynamics of a Nearshore Bar System in the Northern Adriatic: A Video-Based Morphological Classification. Geomorphology 2011, 126, 201–216. [Google Scholar] [CrossRef]
- Melito, L.; Parlagreco, L.; Perugini, E.; Postacchini, M.; Devoti, S.; Soldini, L.; Zitti, G.; Liberti, L.; Brocchini, M. Sandbar Dynamics in Microtidal Environments: Migration Patterns in Unprotected and Bounded Beaches. Coast. Eng. 2020, 161, 103768. [Google Scholar] [CrossRef]
- Alevizos, E. Quantification of Nearshore Sandbar Seasonal Evolution Based on Drone Pseudo-Bathymetry Time-Lapse Data. Remote Sens. 2024, 16, 4551. [Google Scholar] [CrossRef]
- Boak, E.H.; Turner, I.L. Shoreline Definition and Detection: A Review. J. Coast. Res. 2005, 21, 688–703. [Google Scholar] [CrossRef]
- Vousdoukas, M.I.; Wziatek, D.; Almeida, L.P. Coastal Vulnerability Assessment Based on Video Wave Run-up Observations at a Mesotidal, Steep-Sloped Beach. Ocean Dyn. 2012, 62, 123–137. [Google Scholar] [CrossRef]
- SETE Annual Report of Competitiveness and Structural Adjustment in the Touristic Sector for the Year 2023: Administrative Region of South Aegean. Available online: https://insete.gr/wp-content/uploads/2024/12/24-12_South_Aegean-1.pdf (accessed on 30 November 2024). (In Greek).
- Piper, D.J.W.; Pe-Piper, G. A Reworked Isolated Deposit of the Kos Plateau Tuff and Its Significance for Dating Raised Marine Terraces, Kos, Greece. Geol. Mag. 2020, 157, 2021–2032. [Google Scholar] [CrossRef]
- Monioudi, I.N.; Chatzistratis, D.; Chalazas, T.; Chatzipavlis, A.E.; Velegrakis, A.F.; Andreadis, O.P.; Monioudis, E.N.; Nikolaou, A.; Hasiotis, T. A Prioritization Framework for Adaptation Responses for Climate Change-Induced Erosion in Island Beaches—Cases from the Aegean Islands, Greece. J. Mar. Sci. Eng. 2025, 13, 491. [Google Scholar] [CrossRef]
- Velegrakis, A.F.; Trygonis, V.; Chatzipavlis, A.E.; Karambas, T.; Vousdoukas, M.I.; Ghionis, G.; Monioudi, I.N.; Hasiotis, T.; Andreadis, O.; Psarros, F. Shoreline Variability of an Urban Beach Fronted by a Beachrock Reef from Video Imagery. Nat. Hazards 2016, 83, 201–222. [Google Scholar] [CrossRef]
- Senechal, N.; Coco, G.; Castelle, B.; Marieu, V. Storm Impact on the Seasonal Shoreline Dynamics of a Meso- to Macrotidal Open Sandy Beach (Biscarrosse, France). Geomorphology 2015, 228, 448–461. [Google Scholar] [CrossRef]
- Rigos, A.; Tsekouras, G.E.; Vousdoukas, M.I.; Chatzipavlis, A.; Velegrakis, A.F. A Chebyshev Polynomial Radial Basis Function Neural Network for Automated Shoreline Extraction from Coastal Imagery. Integr. Comput. Aided Eng. 2016, 23, 141–160. [Google Scholar] [CrossRef]
- Bouvier, C.; Balouin, Y.; Castelle, B. Video Monitoring of Sandbar-Shoreline Response to an Offshore Submerged Structure at a Microtidal Beach. Geomorphology 2017, 295, 297–305. [Google Scholar] [CrossRef]
- Splinter, K.D.; Gonzalez, M.V.G.; Oltman-Shay, J.; Rutten, J.; Holman, R. Observations and Modelling of Shoreline and Multiple Sandbar Behaviour on a High-Energy Meso-Tidal Beach. Cont. Shelf Res. 2018, 159, 33–45. [Google Scholar] [CrossRef]
- Ruessink, B.G.; Pape, L.; Turner, I.L. Daily to Interannual Cross-Shore Sandbar Migration: Observations from a Multiple Sandbar System. Cont. Shelf Res. 2009, 29, 1663–1677. [Google Scholar] [CrossRef]
- Roelvink, D.; Reniers, A.; van Dongeren, A.; van Thiel de Vries, J.; McCall, R.; Lescinski, J. Modelling Storm Impacts on Beaches, Dunes and Barrier Islands. Coast. Eng. 2009, 56, 1133–1152. [Google Scholar] [CrossRef]
- U.S. Army Corps of Engineers. Coastal Engineering Manual (CEM); Engineer Manual 1110-2-1100; U.S. Army Corps of Engineers: Washington, DC, USA, 2002.
- Monioudi, I.; Velegrakis, A.F.; Chatzipavlis, A.; Rigos, A.; Karambas, T.; Vousdoukas, M.I.; Hasiotis, T.; Koukourouvli, N.; Peduzzi, P.; Manoutsoglou, E.; et al. Assessment of island beach erosion due to sea level rise: The case of the Aegean Archipelago (Eastern Mediterranean). Nat. Hazards Earth Syst. Sci. 2017, 17, 449–466. [Google Scholar] [CrossRef]
- Biolchi, L.G.; Unguendoli, S.; Bressan, L.; Giambastiani, B.M.S.; Valentini, A. Ensemble technique application to an XBeach-based coastal Early Warning System for the Northwest Adriatic Sea (Emilia-Romagna region, Italy). Coast. Eng. 2022, 173, 104081. [Google Scholar] [CrossRef]
- Peduzzi, P.; Velegrakis, A.; Chatenoux, B.; Estrella, M.; Karambas, T. Assessment of the Role of Nearshore Marine Ecosystems to Mitigate Beach Erosion: The Case of Negril (Jamaica). Environments 2022, 9, 62. [Google Scholar] [CrossRef]
- Elgar, S.; Guza, R.T.; Raubenheimer, B.; Herbers, T.H.C.; Gallagher, E.L. Spectral Evolution of Shoaling and Breaking Waves on a Barred Beach. J. Geophys. Res. Oceans 1997, 102, 15797–15805. [Google Scholar] [CrossRef]
- Holman, R.A.; Guza, R.T. Measuring Run-up on a Natural Beach. Coast. Eng. 1984, 8, 129–140. [Google Scholar] [CrossRef]
- Ruessink, B.G.; Kleinhans, M.G.; van den Beukel, P.G.L. Observations of Swash under Highly Dissipative Conditions. J. Geophys. Res. Oceans 1998, 103, 3111–3118. [Google Scholar] [CrossRef]
- Wijnberg, K.M. On the Systematic Offshore Decay of Breaker Bars. In Proceedings of the 25th International Conference on Coastal Engineering, Orlando, FL, USA, 2–6 September 1996; ASCE: New York, NY, USA, 1997; pp. 3600–3613. [Google Scholar]
- Ruessink, B.G.; Wijnberg, K.M.; Holman, R.A.; Kuriyama, Y.; van Enckevort, I.M.J. Intersite Comparison of Interannual Nearshore Bar Behavior. J. Geophys. Res. Oceans 2003, 108, 3249. [Google Scholar] [CrossRef]
- Walstra, D.J.R.; Reniers, A.J.H.M.; Ranasinghe, R.; Roelvink, J.A.; Ruessink, B.G. On Bar Growth and Decay during Interannual Net Offshore Migration. Coast. Eng. 2012, 60, 190–200. [Google Scholar] [CrossRef]
- Walstra, D.-J.R.; Wesselman, D.A.; der Deijl, E.C.; Ruessink, G. On the Intersite Variability in Inter-Annual Nearshore Sandbar Cycles. J. Mar. Sci. Eng. 2016, 4, 15. [Google Scholar] [CrossRef]
- Wright, L.D.; Short, A.D. Morphodynamic Variability of Surf Zones and Beaches: A Synthesis. Mar. Geol. 1984, 56, 93–118. [Google Scholar] [CrossRef]
- Pape, L.; Plant, N.G.; Ruessink, B.G. On Cross-Shore Migration and Equilibrium States of Nearshore Sandbars. J. Geophys. Res. Earth Surf. 2010, 115, F03008. [Google Scholar] [CrossRef]
- Ellenson, A.N.; Simmons, J.A.; Wilson, G.W.; Hesser, T.J.; Splinter, K.D. Beach State Recognition Using Argus Imagery and Convolutional Neural Networks. Remote Sens. 2020, 12, 3953. [Google Scholar] [CrossRef]
- Castelle, B.; Ruessink, B.G.; Bonneton, P.; Marieu, V.; Bruneau, N.; Price, T.D. Coupling Mechanisms in Double Sandbar Systems. Part 1: Patterns and Physical Explanation. Earth Surf. Process. Landf. 2010, 35, 476–486. [Google Scholar] [CrossRef]
- Vidal-Ruiz, J.A.; Ruiz de Alegría-Arzaburu, A. Variability of Sandbar Morphometrics over Three Seasonal Cycles on a Single-Barred Beach. Geomorphology 2019, 333, 61–72. [Google Scholar] [CrossRef]
- van Enckevort, I.M.J.; Ruessink, B.G.; Coco, G.; Suzuki, K.; Turner, I.L.; Plant, N.G.; Holman, R.A. Observations of Nearshore Crescentic Sandbars. J. Geophys. Res. Oceans 2004, 109, C06028. [Google Scholar] [CrossRef]
- Price, T.D.; Ruessink, B.G.; Castelle, B. Morphological Coupling in Multiple Sandbar Systems—A Review. Earth Surf. Dyn. 2014, 2, 309–321. [Google Scholar] [CrossRef]
- Velegrakis, A.F.; Hasiotis, T.; Papadatou, K. Coastal Climate Resilience: Review of Policies and Regulations. Deliverable 2.2—ECFAS Project (GA 101004211). 2021. Available online: www.ecfas.eu (accessed on 25 February 2025).
- Chalazas, T.; Bove, G.; Chatzistratis, D.; Monioudi, I.; Velegrakis, A.F. A system for the management of sandy shorelines under climate change: United States Virgin Islands (USVI). Ambio 2024, 53, 406–420. [Google Scholar] [CrossRef] [PubMed]
- Karditsa, A.; Niavis, S.; Paramana, T.; Monioudi, I.; Poulos, S.; Hatzaki, M. Is the insular coastal tourism of western Greece at risk due to climate induced sea level rise? Ocean. Coast. Manag. 2024, 251, 107088. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chatzistratis, D.; Chatzipavlis, A.E.; Monioudi, I.N.; Velegrakis, A.F.; Andreadis, O.P.; Psarros, F.; Petsimeris, I.T. Surf and Swash Zone Dynamics from High-Frequency Observations at a Microtidal Low-Energy Dissipative Beach. J. Mar. Sci. Eng. 2025, 13, 861. https://doi.org/10.3390/jmse13050861
Chatzistratis D, Chatzipavlis AE, Monioudi IN, Velegrakis AF, Andreadis OP, Psarros F, Petsimeris IT. Surf and Swash Zone Dynamics from High-Frequency Observations at a Microtidal Low-Energy Dissipative Beach. Journal of Marine Science and Engineering. 2025; 13(5):861. https://doi.org/10.3390/jmse13050861
Chicago/Turabian StyleChatzistratis, Dimitris, Antonis E. Chatzipavlis, Isavela N. Monioudi, Adonis F. Velegrakis, Olympos P. Andreadis, Fotis Psarros, and Ivan T. Petsimeris. 2025. "Surf and Swash Zone Dynamics from High-Frequency Observations at a Microtidal Low-Energy Dissipative Beach" Journal of Marine Science and Engineering 13, no. 5: 861. https://doi.org/10.3390/jmse13050861
APA StyleChatzistratis, D., Chatzipavlis, A. E., Monioudi, I. N., Velegrakis, A. F., Andreadis, O. P., Psarros, F., & Petsimeris, I. T. (2025). Surf and Swash Zone Dynamics from High-Frequency Observations at a Microtidal Low-Energy Dissipative Beach. Journal of Marine Science and Engineering, 13(5), 861. https://doi.org/10.3390/jmse13050861