Current Status of Bibliometrics-Based Research on Measurement and Communication Technology for Space Tracking Ships
Abstract
:1. Introduction
2. Development and Technology
2.1. History of Development in Different Countries
- (1)
- USA
- (2)
- USSR/Russia
- (3)
- France
- (4)
- China
2.2. The Structure of Space Tracking Ships
- (1)
- External scale
- (2)
- Internal scale
- (1)
- Steam engine
- (2)
- Internal combustion engine (ICE)
- (3)
- Power system
2.3. Space Tracking Ship Communications Capability
2.3.1. High-Frequency Communication Technology
2.3.2. Anti-Interference
2.3.3. Antenna Servo System
2.3.4. Frequency Shift Compensation Techniques
3. Bibliometric Analysis
3.1. Country Analysis
3.2. Institutional Analysis
3.3. Keywords Analysis
4. Conclusions
4.1. The Limitations of the Study
4.2. Directions for Future Research
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wu, B.; Xu, Z. Research on integrated space-air-ground TT&C and communication network based on space tracking ship. In Proceedings of the 2017 16th International Conference on Optical Communications and Networks (ICOCN), Wuzhen, China, 7–10 August 2017; IEEE: Piscataway, NJ, USA, 2017. [Google Scholar]
- Soltani Mohsen, N.; Izadi-Zamanabadi, R.; Wisniewski, R. Reliable control of ship-mounted satellite tracking antenna. IEEE Trans. Control. Syst. Technol. 2010, 19, 221–228. [Google Scholar] [CrossRef]
- Zalewski, P.; Bąk, A.; Bergmann, M. Evolution of maritime GNSS and RNSS performance standards. Remote Sens. 2022, 14, 5291. [Google Scholar] [CrossRef]
- Mao, H.; Sinn, T.; Vasile, M.; Tibert, G. Post-launch analysis of the deployment dynamics of a space web sounding rocket experiment. Acta Astronaut. 2016, 127, 345–358. [Google Scholar] [CrossRef]
- Caruzzo, A.; Belderrain, M.C.N.; Fisch, G.; Manso, D.F. The mapping of aerospace meteorology in the Brazilian Space Program: Challenges and opportunities for rocket launch. J. Aerosp. Technol. Manag. 2015, 7, 7–18. [Google Scholar] [CrossRef]
- Wang, J. The current status and future aspects in formal ship safety assessment. Saf. Sci. 2001, 38, 19–30. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Z.; Li, H. GPS data processing method for at-sea accuracy qualification of external measurement equipment on aerospace measurement ships. Telemetry 2007, S1, 228–233. (In Chinese) [Google Scholar]
- Gu, J.; Chu, W.; Zhai, Y.; Wang, G. Discussion on quality supervision of the development and modification of measurement and control communication equipment for aerospace measurement ships. Qual. Reliab. 2009, 6, 5–9. (In Chinese) [Google Scholar]
- Xu, H. Predictive Control and Simulation of Path Tracking of Aerospace Survey Vessel. Master’s Thesis, Shanghai Jiao Tong University, Shanghai, China, 2013. (In Chinese). [Google Scholar]
- Guo, Z.; Li, J. Development of China’s first-generation aerospace ocean-going survey ship under the perspective of sea-land-air integration. Nat. Dialectics Lett. 2024, 46, 62–68. (In Chinese) [Google Scholar] [CrossRef]
- Delaney, W. From vision to reality 50+ years of phased array development. In Proceedings of the 2016 IEEE International Symposium on Phased Array Systems and Technology (PAST), Waltham, MA, USA, 18–21 October 2016; IEEE: Piscataway, NJ, USA, 2016. [Google Scholar]
- Sharpe, M.R.; Lowther, J.M. Progress in Rocket, Missile, and Space Carrier Vehicle Testing, Launching, and Tracking Technology. Adv. Space Sci. Technol. 1965, 7, 1–145. [Google Scholar]
- Esper, J.; Flatley, T.P.; Bull, J.B.; Buckley, S.J. Small Rocket/Spacecraft Technology (SMART) Platform. In Proceedings of the Annual AIAA/USU Conference on Small Satellites, Logan, UT, USA, 8–11 August 2011. [Google Scholar]
- Launius, R.D.; Conway, E.M.; Johnston, A.K.; Wang, Z.C.; Hersch, M.H.; Paikowsky, D.; Whalen, D.J.; Toldi, E.; Dougherty, K.; Hays, P.L.; et al. Spaceflight: The development of science, surveillance, and commerce in space. Proc. IEEE 2012, 100, 1785–1818. [Google Scholar] [CrossRef]
- Bravo, J.; Villarreal, V.; Hervás, R.; Urzaiz, G. Using a communication model to collect measurement data through mobile devices. Sensors 2012, 12, 9253–9272. [Google Scholar] [CrossRef] [PubMed]
- Dudojc, B.; Mindykowski, J. New approach to analysis of selected measurement and monitoring systems solutions in ship technology. Sensors 2019, 19, 1775. [Google Scholar] [CrossRef] [PubMed]
- Abotaleb, M.; Mindykowski, J.; Dudojc, B.; Masnicki, R. Case-Study-Based Overview of Methods and Technical Solutions of Analog and Digital Transmission in Measurement and Control Ship Systems. Sensors 2022, 22, 6931. [Google Scholar] [CrossRef] [PubMed]
- Psiaki, M.L. Autonomous orbit determination for two spacecraft from relative position measurements. J. Guid. Control. Dyn. 1999, 22, 305–312. [Google Scholar]
- Baranov, A.A. Change of spacecraft position in a satellite system. Cosm. Res. 2008, 46, 215–218. [Google Scholar] [CrossRef]
- Oshman, Y.; Dellus, F. Spacecraft angular velocity estimation using sequential observations of a single directional vector. J. Spacecr. Rocket. 2003, 40, 237–247. [Google Scholar]
- Guibaud, A.; Legros, G.; Consalvi, J.-L.; Torero, J. Fire safety in spacecraft: Past incidents and Deep Space challenges. Acta Astronaut. 2022, 195, 344–354. [Google Scholar] [CrossRef]
- McKenzie, I.; Ibrahim, S.; Haddad, E.; Abad, S.; Hurni, A.; Cheng, L.K. Fiber optic sensing in spacecraft engineering: An historical perspective from the European space agency. Front. Phys. 2021, 9, 719441. [Google Scholar]
- Xu, J.; Li, J.; Xu, S. Data fusion for target tracking in wireless sensor networks using quantized innovations and Kalman filtering. Sci. China Inf. Sci. 2012, 55, 530–544. [Google Scholar] [CrossRef]
- Klepsch, J.; Klüppelberg, C. An innovations algorithm for the prediction of functional linear processes. J. Multivar. Anal. 2017, 155, 252–271. [Google Scholar]
- Kakatkar, C.; Bilgram, V.; Füller, J. Innovation analytics: Leveraging artificial intelligence in the innovation process. Bus. Horiz. 2020, 63, 171–181. [Google Scholar] [CrossRef]
- Zhang, D.; Ma, Y.; Zhang, H.; Zhang, Y. Marine equipment siting using machine-learning-based ocean remote sensing data: Current status and future prospects. Sustainability 2024, 16, 8889. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, D.; Jiang, H. A review of artificial intelligence-based optimization applications in traditional active maritime collision avoidance. Sustainability 2023, 15, 13384. [Google Scholar] [CrossRef]
- Gray, T. Launch vehicle tracking enhancement through Global Positioning system Metric Tracking. In Proceedings of the 2014 IEEE Aerospace Conference, Big Sky, MT, USA, 1–8 March 2014; IEEE: Piscataway, NJ, USA, 2014. [Google Scholar]
- Braun, B.; Markgraf, M.; Montenbruck, O. Performance analysis of IMU-augmented GNSS tracking systems for space launch vehicles. CEAS Space J. 2016, 8, 117–133. [Google Scholar] [CrossRef]
- Chan, D.T.; Paulson, J.W.; Shea, P.; Toro, K.; Parker, P.A.; Commo, S.A. Aerodynamic Characterization and Improved Testing Methods for the Space Launch System Liftoff and Transition Environment. In Proceedings of the AIAA Aviation 2019 Forum, Dallas, TX, USA, 17–21 June 2019. [Google Scholar]
- Song, Z. The Test and Launch Control Technology for Launch Vehicles; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Hu, Y.; Xie, W.; An, J.; Yao, J.; Ma, W. Research on evaluation index system of autonomous and controllable capability of aerospace test and launch system. IOP Conf. Ser. Earth Environ. Sci. 2021, 692, 022092. [Google Scholar] [CrossRef]
- Schwabacher, M.; Waterman, R. Pre-launch diagnostics for launch vehicles. In Proceedings of the 2008 IEEE Aerospace Conference, Big Sky, MT, USA, 1–8 March 2008; IEEE: Piscataway, NJ, USA, 2008. [Google Scholar]
- Han, X.; Thomasson, J.A.; Xiang, Y.; Gharakhani, H.; Yadav, P.K.; Rooney, W.L. Multifunctional ground control points with a wireless network for communication with a UAV. Sensors 2019, 19, 2852. [Google Scholar] [CrossRef]
- Zhu, L.; Yin, D.; Yang, J.; Shen, L. Research of remote measurement and control technology of UAV based on mobile communication networks. In Proceedings of the 2015 IEEE International Conference on Information and Automation, Lijiang, China, 8–10 August 2015; IEEE: Piscataway, NJ, USA, 2015. [Google Scholar]
- Keebler, J.R.; Dietz, A.S.; Baker, A. Effects of communication lag in long duration space flight missions: Potential mitigation strategies. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting, Los Angeles, CA, USA, 26–30 October 2015; SAGE Publications: Los Angeles, CA, USA, 2015; Volume 59. [Google Scholar]
- Marquez, J.J.; Hillenius, S.; Deliz, I.; Zheng, J.; Kanefsky, B.; Gale, J. Enabling communication between astronauts and ground teams for space exploration missions. In Proceedings of the 2019 IEEE Aerospace Conference, Big Sky, MT, USA, 2–9 March 2019; IEEE: Piscataway, NJ, USA, 2019. [Google Scholar]
- Ma, B.-H.; Cao, Y.-J.; Zheng, W.-B.; Lu, J.-R.; Kuang, H.-B.; Lei, X.-H.; Lv, Y.-H.; Zhang, T.; Duan, E.-K. Real-time micrography of mouse preimplantation embryos in an orbit module on SJ-8 satellite. Microgravity Sci. Technol. 2008, 20, 127–136. [Google Scholar] [CrossRef]
- Gómez, M.; Solera-Rico, A.; Valero, E.; Lázaro, J.A.; Fernández-Prades, C. Enhancing GNSS receiver performance with software-defined vector carrier tracking for rocket launching. Results Eng. 2023, 19, 101310. [Google Scholar] [CrossRef]
- Malanowski, M.; Borowiec, K.; Rzewuski, S. Rocket detection using passive radar-challenges and solutions. In Proceedings of the 2018 International Conference on Radar (RADAR), Brisbane, Australia, 27–31 August 2018; IEEE: Piscataway, NJ, USA, 2018. [Google Scholar]
- Bratić, K.; Pavić, I.; Vukša, S.; Stazić, L. A review of autonomous and remotely controlled ships in maritime sector. Trans. Marit. Sci. 2019, 8, 253–265. [Google Scholar] [CrossRef]
- Kari, R.; Steinert, M. Human factor issues in remote ship operations: Lesson learned by studying different domains. J. Mar. Sci. Eng. 2021, 9, 385. [Google Scholar] [CrossRef]
- Zakheim, D.S. Land-Based Aviation and Maritime Warfare. The Us Navy; Routledge: London, UK, 2019; pp. 49–65. [Google Scholar]
- Kyle, H.C. Manned Spaceflight Communications Systems. Advances in Communication Systems; Elsevier: Amsterdam, The Netherlands, 1966; Volume 2, pp. 193–261. [Google Scholar]
- Tavana, M. Intelligent flight support system (IFSS): A real-time intelligent decision support system for future manned spaceflight operations at Mission Control Center. Adv. Eng. Softw. 2004, 35, 301–313. [Google Scholar] [CrossRef]
- Sharma, S. Global Developments in Sea-based Unmanned Crafts. J. Def. Stud. 2022, 16, 21–50. [Google Scholar]
- Werft, F.L. Naval Craft, Weapon and Sensor Systems. Inf. Secur. 2003, 13, 51–76. [Google Scholar] [CrossRef]
- Che, Y.; Leng, X. Reliability Evaluation of Shipborne Land-Based Missile Weapon Systems. In Proceedings of the 2024 IEEE 2nd International Conference on Sensors, Electronics and Computer Engineering (ICSECE), Jinzhou, China, 29–31 August 2024; IEEE: Piscataway, NJ, USA, 2024. [Google Scholar]
- Refuto, G.J. Evolution of the US Sea-Based Nuclear Missile Deterrent: Warfighting Capabilities; Xlibris Corporation: Bloomington, IN, USA, 2011. [Google Scholar]
- Spacy, W., II. Assessing the military utility of space-based weapons. Astropolitics 2003, 1, 1–43. [Google Scholar] [CrossRef]
- Ren, Y.; Zou, Y.; Nan, X. Application of large shipborne theodolite in space target measurement. In Proceedings of the 17th International Conference on Optical Communications and Networks (ICOCN2018), Zhuhai, China, 16–19 November 2018; SPIE: Bellingham, WA, USA, 2019; Volume 11048. [Google Scholar]
- Zhang, Z.; Zhang, K.; Han, Z. Three-dimensional nonlinear trajectory tracking control based on adaptive sliding mode. Aerosp. Sci. Technol. 2022, 128, 107734. [Google Scholar] [CrossRef]
- Phillips, C.A.; Drake, J.C. Trajectory optimization for a missile using a multitier approach. J. Spacecr. Rocket. 2000, 37, 653–662. [Google Scholar] [CrossRef]
- Sackett, L.C. Data collection problems in second generation ballistic missiles. IRE Trans. Space Electron. Telem. 1959, 1, 1–7. [Google Scholar] [CrossRef]
- Rudd, J.G.; Marsh, R.A.; Roecker, J.A. Surveillance and tracking of ballistic missile launches. IBM J. Res. Dev. 1994, 38, 195–216. [Google Scholar] [CrossRef]
- Kelly, T. Manned lunar lander design-The Project Apollo Lunar Module (LM). In Proceedings of the Space Programs and Technologies Conference, Huntsville, AL, USA, 24–27 March 1992. [Google Scholar]
- Burkhalter, B.B.; Sharpe, M.R. Mercury-Redstone: The first American man-rated space launch vehicle. Acta Astronaut. 1990, 21, 819–853. [Google Scholar] [CrossRef]
- Nilsson, D. Ships Named Huntsville. Huntsville Hist. Rev. 2007, 32, 3. [Google Scholar]
- Stansell, T.A. Transit, the navy navigation satellite system. Navig. J. Inst. Navig. 1971, 18, 93–109. [Google Scholar] [CrossRef]
- Brookner, E. Phased array radars-past, present and future. In Proceedings of the RADAR, Edinburgh, UK, 15–17 October 2002; pp. 104–113. [Google Scholar]
- Agrawal, A.K.; Kopp, B.A.; Luesse, M.H.; OHaver, K.W. Active phased array antenna development for modern shipboard radar systems. Johns Hopkins APL Tech. Dig. 2001, 22, 600–613. [Google Scholar]
- Nelson, A.; French, E. Results of dynamic testing of the USAF/ESMC GPS user equipment aboard the range tracking ships USNS Observation Island and USNS Redstone. In Proceedings of the Satellite Division’s First Technical Meeting (ION GPS 1987), Colorado Springs, CO, USA, 21–25 September 1987. [Google Scholar]
- Roarty, H.; Cook, T.; Hazard, L.; George, D.; Harlan, J.; Cosoli, S.; Wyatt, L.; Alvarez Fanjul, E.; Terrill, E.; Otero, M.; et al. The global high frequency radar network. Front. Mar. Sci. 2019, 6, 164. [Google Scholar] [CrossRef]
- McGuire, S. The United States, Japan and the aerospace industry: From capture to competitor? Pac. Rev. 2007, 20, 329–350. [Google Scholar] [CrossRef]
- Boatner, A.J. Consolidation of the aerospace and defense industries: The effect of the big three mergers in the United States Defense Industry. J. Air L. Com. 1998, 64, 913. [Google Scholar]
- Rohwer, J. The Development of Strategic Concepts and Shipbuilding Programmes for the Soviet Navy, 1922–1953: Stalin’s Battleships and Battlecruisers. North. Mar. 1997, 7, 51–61. [Google Scholar] [CrossRef]
- Yegorova, N.I. Stalin’s conception of maritime power: Revelations from the Russian archives. J. Strateg. Stud. 2005, 28, 157–186. [Google Scholar] [CrossRef]
- Karnozov, V. Russia’s pacific fleet-A formidable force, getting stronger. Def. Rev. Asia 2019, 13, 22–28. [Google Scholar]
- Lovett, C.C. The Russian/Soviet Navy, 1900–1945. In The Military History of the Soviet Union; Palgrave Macmillan US: New York, NY, USA, 2010; pp. 169–195. [Google Scholar]
- Rockwell, T. The Molding of the Rising Generation: Soviet Propoganda and the Hero-Myth of Iurii Gagrin. Past Imperfect 2006, 12. [Google Scholar] [CrossRef]
- Lydolph, P.E. Soviet Shipping: Its impact on the West. Soviet and East European Transport Problems; Routledge: London, UK, 2021; pp. 119–143. [Google Scholar]
- Harvey, B. Launch sites. In The Rebirth of the Russian Space Program: 50 Years After Sputnik, New Frontiers; Springer: Berlin/Heidelberg, Germany, 2007; pp. 207–264. [Google Scholar]
- Petersen, P.A. Strategic Missile Forces and Cosmic Research. Soviet Aviation and Air Power; Routledge: London, UK, 2019; pp. 239–264. [Google Scholar]
- Broadwin, J.A. A Soviet Ship: What’s Her Name? Nav. War Coll. Rev. 1982, 35, 77–86. [Google Scholar]
- Siddiqi, A.A. Challenge to Apollo: The Soviet Union and the Space Race, 1945–1974; National Aeronautics and Space Administration, NASA History Division, Office of Policy and Plans: Washington, DC, USA, 2000; Volume 4408.
- Shreve, B.G. The US, the USSR, and space exploration, 1957–1963. Int. J. World Peace 2003, 67–83. [Google Scholar]
- Krivoruchko, O.N. Maritime economic systems of the USSR. Sov. Geogr. 1976, 17, 153–159. [Google Scholar] [CrossRef]
- Papanikolaou, A. Tanker design and safety: Historical developments and future trends. In Environmental Technology in the Oil Industry; Springer: Cham, Switzerland, 2016; pp. 285–320. [Google Scholar]
- Cao, X.; Wei, W. The French Navy Space Survey Vessel Monge. Mod. Ships 2009, 11, 33–36. (In Chinese) [Google Scholar]
- Liang, G. Missile Tracking Master—French Navy Missile Surveillance Ship ‘Monge’. Mod. Weapons 2005, 06, 27–29. (In Chinese) [Google Scholar]
- Baig, J.F.; Martinerie, F.; Sutter, M.; Martinot, V.; Ameline, P.; Blazejczak, E.; Fletcher, E. Results and analysis of the ESA SSA radar tracking campaigns. In Proceedings of the 6th European Conference on Space Debris, Darmstadt, Germany, 25 April 2013. [Google Scholar]
- Longhi, C. A French revolution: Technology management in the aerospace industry. The case of Toulouse. Int. J. Technol. Manag. 2005, 29, 194–215. [Google Scholar] [CrossRef]
- Alory, G.; Delcroix, T.; Téchiné, P.; Diverrès, D.; Varillon, D.; Cravatte, S.; Gouriou, Y.; Grelet, J.; Jacquin, S.; Kestenare, E.; et al. The French contribution to the voluntary observing ships network of sea surface salinity. Deep. Sea Res. Part I Oceanogr. Res. Pap. 2015, 105, 1–18. [Google Scholar] [CrossRef]
- Fu, L.L.; Christensen, E.J.; Yamarone, C.A., Jr.; Lefebvre, M.; Ménard, Y.; Dorrer, M.; Escudier, P. TOPEX/POSEIDON mission overview. J. Geophys. Res. Ocean. 1994, 99, 24369–24381. [Google Scholar] [CrossRef]
- Erickson, A.S. China’s space development history: A comparison of the rocket and satellite sectors. Acta Astronaut. 2014, 103, 142–167. [Google Scholar] [CrossRef]
- Chen, S.; Yan, H.; Cai, Y.; Zhu, X. Progress and development of space technology in China. Acta Astronaut. 2000, 46, 559–563. [Google Scholar]
- Zhu, Z. The current situation of China manned aerospace technology and the direction for its further development. Acta Astronaut. 2009, 65, 308–311. [Google Scholar]
- Lewis, J.W.; Di, H. China’s ballistic missile programs: Technologies, strategies, goals. Int. Secur. 1992, 17, 5–40. [Google Scholar] [CrossRef]
- Lewis, J. China’s Missile Forces. Adelphi Pap. 2014, 54, 99–126. [Google Scholar] [CrossRef]
- Li, P. Positioning: The Pacific Ocean—The Beginning and End of the Implementation of Project 718. Ocean. Dev. Manag. 1999, 01, 76–80. (In Chinese) [Google Scholar] [CrossRef]
- Ball, D. Intelligence collection operations and EEZs: The implications of new technology. Mar. Policy 2004, 28, 67–82. [Google Scholar] [CrossRef]
- Yu, Z.; Lu, L.; Liu, Y.; Dong, G. Space operation system for Chang’E program and its capability evaluation. J. Earth Syst. Sci. 2005, 114, 795–799. [Google Scholar]
- Wei, E.; Liu, J.; Shi, C. Chinese surveying and control network for earth-orbit satellites and deep space detection. Geo-Spat. Inf. Sci. 2006, 9, 6–12. [Google Scholar]
- Mo, Y. The successful retirement of Yuanwang 2. Space Explor. 2019, 01, 58–61. (In Chinese) [Google Scholar]
- Cui, Y. China’s ‘Yuanwang’ fleet. China Ship Insp. 2009, 10, 70–73+67. (In Chinese) [Google Scholar]
- Liu, H.; Sun, C.; Zhang, Y.; Liu, X.; Liu, J.; Zhang, X.; Yu, Q. Hull deformation measurement for spacecraft TT&C ship by Photogrammetry. Sci. China Technol. Sci. 2015, 58, 1339–1347. [Google Scholar]
- Ma, B. Refit design of telemetry communication ship ‘Yuanwang 4’. Ships 2000, 05, 10–13. (In Chinese) [Google Scholar]
- Gao, J. From Xiangyanghong 10 to Yuanwang 4. Arch. Spring Autumn 2013, 12, 19–21. (In Chinese) [Google Scholar]
- Ma, L.; Zhu, D.; Sun, C.; Dai, D.; Wang, X.; Qin, S. Three-axis attitude accuracy of better than 5 arcseconds obtained for the star sensor in a long-term on-ship dynamic experiment. Appl. Opt. 2018, 57, 9589–9595. [Google Scholar] [CrossRef] [PubMed]
- Hu, X. Five Tiger Generals of Yuanwang remotely control Shenzhou 7’ China Shipbuilding News 2008-10-10, 001. China Shipbuilding News, 10 October 2008. (In Chinese) [Google Scholar]
- Harvey, B. Applications and military. In China in Space: The Great Leap Forward; Springer: Berlin/Heidelberg, Germany, 2019; pp. 266–358. [Google Scholar]
- Hai, X. Yuanwang 6 Space Survey Ship. Mod. Ships 2008, 5, 4. (In Chinese) [Google Scholar]
- Arthur, G. Flexing Its Muscles-Chinese Power Projection Capabilities. Def. Rev. Asia 2011, 5, 18. [Google Scholar]
- Zhong-Guo, A.I. China’s military expansion-A Chinese perspective. Asia-Pac. Def. Report. 2013, 39, 38–40. [Google Scholar]
- Ahlawat, D.; Cogan, M.S. Can small island states escape China’s influence? The cases of Sri Lanka and Fiji. Geopolitics 2024, 29, 661–690. [Google Scholar]
- Wang, Y. China’s new-generation ocean-going space survey ship ‘Yuanwang 7’ formally entered the ranks. Dual-Use Technol. Prod. 2016, 15, 26. [Google Scholar] [CrossRef]
- Chandrashekar, S. Space Infrastructure in China. China’s Space Programme: From the Era of Mao Zedong to Xi Jinping; Springer Nature Singapore: Singapore, 2022; pp. 291–305. [Google Scholar]
- Hang, M. Yuanwang 7 makes its first trip to the Pacific Ocean. Space Explor. 2016, 9, 5. (In Chinese) [Google Scholar]
- Qiu, X.; Yang, D.; Ni, C. Design of command display system for aerospace survey ship based on B/S architecture. Autom. Technol. Appl. 2015, 34, 42–46. (In Chinese) [Google Scholar] [CrossRef]
- Huang, L. Optimal Design Method and Implementation of Aerospace Measurement Ship Working Conditions. Master’s Thesis, University of Electronic Science and Technology, Chengdu, China, 2014. (In Chinese). [Google Scholar]
- Jin, H.; Sun, Y.; Liu, J.; Qiu, D. Design and implementation of servo DC motor test system for aerospace measurement vessel. Electr. Mach. Control. Appl. 2013, 40, 53–56. (In Chinese) [Google Scholar]
- Sun, W.J.; Lai, L.L.; Chen, S.Q. Fault diagnosis system design for communication equipment of aerospace survey ship. Value Eng. 2012, 31, 190–192. (In Chinese) [Google Scholar] [CrossRef]
- Papanikolaou, A.; Papanikolaou, A. Selection of Main Dimensions and Calculation of Basic Ship Design Values. In Ship Design; Springer: Dordrecht, The Netherlands, 2014; pp. 69–292. [Google Scholar]
- Papanikolaou, A.; Papanikolaou, A. Ship’s Hull Form. In Ship Design: Methodologies of Preliminary Design; Springer: Berlin/Heidelberg, Germany, 2014; pp. 293–357. [Google Scholar]
- Kim, D.J.; Kim, S.Y.; You, Y.J.; Rhee, K.P.; Kim, S.H.; Kim, Y.G. Design of high-speed planing hulls for the improvement of resistance and seakeeping performance. Int. J. Nav. Archit. Ocean. Eng. 2013, 5, 161–177. [Google Scholar] [CrossRef]
- Papanikolaou, A. Holistic ship design optimization. Comput.-Aided Des. 2010, 42, 1028–1044. [Google Scholar] [CrossRef]
- Okumoto, Y.; Takeda, Y.; Mano, M.; Okada, T. Design of Ship Hull Structures: A Practical Guide for Engineers; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Wang, L.; Li, S.; Liu, J.; Hu, Y.; Wu, Q. Design and implementation of a testing platform for ship control: A case study on the optimal switching controller for ship motion. Adv. Eng. Softw. 2023, 178, 103427. [Google Scholar] [CrossRef]
- Boström, M. Mind the Gap! A quantitative comparison between ship-to-ship communication and intended communication protocol. Saf. Sci. 2020, 123, 104567. [Google Scholar] [CrossRef]
- Choi, M.S.; Park, S.; Lee, Y.; Lee, S.R. Ship to ship maritime communication for e-Navigation using WiMAX. Int. J. Multimed. Ubiquitous Eng. 2014, 9, 171–178. [Google Scholar] [CrossRef]
- Froholdt, L.L. Getting closer to context: A case study of communication between ship and shore in an emergency situation. Text Talk 2010, 30, 385–402. [Google Scholar] [CrossRef]
- Zheng, Z.; Zhang, X.; Zhang, J.; Chang, Z. A stable platform to compensate motion of ship based on Stewart mechanism. In Proceedings of the Intelligent Robotics and Applications: 8th International Conference, ICIRA 2015, Portsmouth, UK, 24–27 August 2015; Proceedings, Part I 8. Springer International Publishing: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Zhang, Y.; Zhang, D.; Jiang, H. A Review of Offshore Wind and Wave Installations in Some Areas with an Eye towards Generating Economic Benefits and Offering Commercial Inspiration. Sustainability 2023, 15, 8429. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, X.-M. Global ship accidents and ocean swell-related sea states. Nat. Hazards Earth Syst. Sci. 2017, 17, 2041–2051. [Google Scholar] [CrossRef]
- Zhou, P.; Zhou, Z.; Wang, Y.; Wang, H. Ship weather routing based on hybrid genetic algorithm under complicated sea conditions. J. Ocean. Univ. China 2023, 22, 28–42. [Google Scholar] [CrossRef]
- Cai, Y.; Wen, Y.; Wu, L. Ship route design for avoiding heavy weather and sea conditions. TransNav Int. J. Mar. Navig. Saf. Sea Transp. 2014, 8, 551–556. [Google Scholar] [CrossRef]
- Zis, T.P.; Psaraftis, H.N.; Ding, L. Ship weather routing: A taxonomy and survey. Ocean. Eng. 2020, 213, 107697. [Google Scholar] [CrossRef]
- Esmailian, E.; Steen, S.; Koushan, K. Ship design for real sea states under uncertainty. Ocean. Eng. 2022, 266, 113127. [Google Scholar] [CrossRef]
- Agis, G.; Jorge, J.; Brett, P.O.; Erikstad, S.O. How uncertainty influences decision-making effectiveness in conceptual ship design processes. Int. Shipbuild. Progress 2021, 67, 141–172. [Google Scholar] [CrossRef]
- Khramushin, V. Key design solutions and specifics of operation in heavy weather (Fluid Mechanics Approach to Stabilization of Ship in Heavy Seas). In Proceedings of the 10th International Conference on Stability of Ships and Ocean Vehicles, STAB-2009, St. Petersburg, Russia, 22–26 June 2009; pp. 473–482. [Google Scholar]
- Babicz, J. Encyclopedia of Ship Technology; Wärtsilä Corporation: Helsinki, Finland, 2015. [Google Scholar]
- Wang, S.; Yu, L. Intact, Damage, and Dynamic Stability of Floating Structures. Encyclopedia of Ocean Engineering; Springer Nature Singapore: Singapore, 2022; pp. 843–851. [Google Scholar]
- Shen, W.; Hu, J.; Liu, L.; Chen, H. Operability analysis and line failure risk assessment for a tanker moored at berth. Ocean. Eng. 2024, 300, 117439. [Google Scholar] [CrossRef]
- Clark, R.N. Instrument fault detection. IEEE Trans. Aerosp. Electron. Syst. 1978, 3, 456–465. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, D.; Jiang, H. Review of challenges and opportunities in turbulence modeling: A comparative analysis of data-driven machine learning approaches. J. Mar. Sci. Eng. 2023, 11, 1440. [Google Scholar] [CrossRef]
- Ryazachev, J.I.; Ying, M.H. Determination of the main scale at the preliminary design stage of an aerospace survey ship. Ships 1990, 01, 12–14. (In Chinese) [Google Scholar]
- Dzan, W.-Y.; Yang, H.-J.; Lin, H.-C. A research of digitizing ship design and stability analysis. WSEAS Trans. Appl. Theor. Mech. 2010, 2, 123–133. [Google Scholar]
- Huang, X.; Wang, J.; Wang, D.; Peng, J.; Zhao, B. Improvement of the Pointing Accuracy of Shipborne Optical Measuring Equipment Based on a Subdivision Iteration Algorithm. IEEE Access 2024, 12, 16208–16217. [Google Scholar] [CrossRef]
- Gottschall, J.; Catalano, E.; Dörenkämper, M.; Witha, B. The NEWA ferry lidar experiment: Measuring mesoscale winds in the Southern Baltic Sea. Remote Sens. 2018, 10, 1620. [Google Scholar] [CrossRef]
- Jones, A.T. Design Space Exploration and Optimization Using Modern Ship Design Tools. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2014. [Google Scholar]
- Hockberger, W.A. Ship design margins-issues and impacts. Nav. Eng. J. 1976, 88, 157–170. [Google Scholar] [CrossRef]
- Ross, C.T.F. Pressure Vessels: External Pressure Technology; Elsevier: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Briggs, M.J.; Kopp, P.J.; Silver, A.L.; Wiggins, W. Probabilistic model for predicting deep-draught channel design: Savannah, GA entrance channel. Ocean Eng. 2015, 108, 276–286. [Google Scholar] [CrossRef]
- Dibble, W.J.; Mitchell, P. Draught Surveys; North of England P&I Association: Newcastle upon Tyne, UK, 2009. [Google Scholar]
- Maruo, H. Calculation of the Wave Resistance of Ships, the Draught of Which is as Small as the Beam. J. Zosen Kiokai 1962, 112, 21–37. [Google Scholar] [CrossRef]
- Campbell, R.; Terziev, M.; Tezdogan, T.; Incecik, A. Computational fluid dynamics predictions of draught and trim variations on ship resistance in confined waters. Appl. Ocean. Res. 2022, 126, 103301. [Google Scholar] [CrossRef]
- Bačkalov, I. Impact of contemporary ship stability regulations on safety of shallow-draught inland container vessels. Saf. Sci. 2015, 72, 105–115. [Google Scholar] [CrossRef]
- Chen, D.; Tang, T.; Yao, Y. Research on prediction algorithm of ship equipment heath condition. Ocean. Eng. 2022, 249, 110750. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, C.-F. HF band shipboard antenna design using characteristic modes. IEEE Trans. Antennas Propag. 2015, 63, 1004–1013. [Google Scholar] [CrossRef]
- Kim, B.G. The design of an optical sensor arrangement for the detection of oil contamination in an adhesively bonded structure of a liquefied natural gas (LNG) ship. Meas. Sci. Technol. 2009, 20, 065204. [Google Scholar] [CrossRef]
- Lamaris, V.T.; Hountalas, D.T. A general purpose diagnostic technique for marine diesel engines—Application on the main propulsion and auxiliary diesel units of a marine vessel. Energy Convers. Manag. 2010, 51, 740–753. [Google Scholar] [CrossRef]
- Borkowski, T.; Kowalak, P.; Myśków, J. Vessel main propulsion engine performance evaluation. J. KONES 2012, 19, 53–60. [Google Scholar] [CrossRef]
- Haglind, F. A review on the use of gas and steam turbine combined cycles as prime movers for large ships. Part I: Background and design. Energy Convers. Manag. 2008, 49, 3458–3467. [Google Scholar] [CrossRef]
- Haglind, F. A review on the use of gas and steam turbine combined cycles as prime movers for large ships. Part II: Previous work and implications. Energy Convers. Manag. 2008, 49, 3468–3475. [Google Scholar] [CrossRef]
- Mrzljak, V.; Poljak, I.; Prpić-Oršić, J. Exergy analysis of the main propulsion steam turbine from marine propulsion plant. Brodogr. Int. J. Nav. Archit. Ocean. Eng. Res. Dev. 2019, 70, 59–77. [Google Scholar] [CrossRef]
- Vergara, J.A.; McKesson, C.B. Marine technology nuclear propulsion in high-performance cargo vessels. Mar. Technol. SNAME News 2002, 39, 1–11. [Google Scholar] [CrossRef]
- Carlton, J.S.; Smart, R.; Jenkins, V. The nuclear propulsion of merchant ships: Aspects of engineering, science and technology. J. Mar. Eng. Technol. 2011, 10, 47–59. [Google Scholar] [CrossRef]
- Micheli, D.; Clemente, S.; Taccani, R. Energy Systems on Board Ships. Sustainable Energy Systems on Ships; Elsevier: Amsterdam, The Netherlands, 2022; pp. 27–78. [Google Scholar]
- Woodyard, D. Pounder’s Marine Diesel Engines and Gas Turbines; Butterworth-Heinemann: Oxford, UK, 2009. [Google Scholar]
- Yuan, Y.; Wang, J.; Yan, X.; Shen, B.; Long, T. A review of multi-energy hybrid power system for ships. Renew. Sustain. Energy Rev. 2020, 132, 110081. [Google Scholar] [CrossRef]
- Sui, C.; Stapersma, D.; Visser, K.; de Vos, P.; Ding, Y. Energy effectiveness of ocean-going cargo ship under various operating conditions. Ocean. Eng. 2019, 190, 106473. [Google Scholar] [CrossRef]
- Chaibakhsh, A.; Ghaffari, A. Steam turbine model. Simul. Model. Pract. Theory 2008, 16, 1145–1162. [Google Scholar] [CrossRef]
- Gülen, S.C. Steam Turbine—Quo Vadis? Front. Energy Res. 2021, 8, 612731. [Google Scholar] [CrossRef]
- Staniša, B.; Ivušić, V. Erosion behaviour and mechanisms for steam turbine rotor blades. Wear 1995, 186, 395–400. [Google Scholar] [CrossRef]
- Baumann, K. Recent developments in steam turbine practice. J. Inst. Electr. Eng. 1912, 48, 768–842. [Google Scholar] [CrossRef]
- Saito, E.; Matsuno, N.; Tanaka, K.; Nishimoto, S.; Yamamoto, R.; Imano, S. Latest technologies and future prospects for a new steam turbine. Mitsubishi Heavy Ind. Tech. Rev. 2015, 52, 39–46. [Google Scholar]
- Onwuamaeze, P.I. Improving steam turbine efficiency: An appraisal. Res. J. Mech. Oper. 2018, 1, 24–30. [Google Scholar]
- Berg, E. Propulsion of ships. J. Frankl. Inst. 1918, 185, 317–332. [Google Scholar] [CrossRef]
- Alagumalai, A. Internal combustion engines: Progress and prospects. Renew. Sustain. Energy Rev. 2014, 38, 561–571. [Google Scholar] [CrossRef]
- Gupta, H.N. Fundamentals of Internal Combustion Engines; PHI Learning Pvt. Ltd.: Delhi, India, 2012. [Google Scholar]
- Pulkrabek, W.W. Engineering fundamentals of the internal combustion engine. J. Eng. Gas Turbines Power 2004, 126, 198. [Google Scholar] [CrossRef]
- Rajput, R.K. Internal Combustion Engines; Laxmi Publications: Delhi, India, 2005. [Google Scholar]
- Naseer, A.; Rao, Y.V.H.; Atgur, V.; Moulali, S.; Manavendra, G. Numerical studies on combustion characterization of four stroke diesel engine. Int. J. Veh. Struct. Syst. 2019, 9, 234–240. [Google Scholar] [CrossRef]
- Islam, A.; Sohail, M.U.; Ali, S.M.; Ammar-ul-Hassan, R.K. Simulation of four stroke internal combustion engine. Int. J. Sci. Eng. Res. 2016, 7, 1212–1219. [Google Scholar]
- Ouroua, A.; Domaschk, L.; Beno, J.H. Electric ship power system integration analyses through modeling and simulation. In Proceedings of the IEEE Electric Ship Technologies Symposium, Philadelphia, PA, USA, 27 July 2005. [Google Scholar]
- Dale, S.J. Ship power system testing and simulation. In Proceedings of the IEEE Electric Ship Technologies Symposium, Philadelphia, PA, USA, 27 July 2005. [Google Scholar]
- Hansen, J.F.; Wendt, F. History and state of the art in commercial electric ship propulsion, integrated power systems, and future trends. Proc. IEEE 2015, 103, 2229–2242. [Google Scholar] [CrossRef]
- Hu, H.; Wei, N. A study of GPS jamming and anti-jamming. In Proceedings of the 2009 2nd International Conference on Power Electronics and Intelligent Transportation System (PEITS), Shenzhen, China, 19–20 December 2009; IEEE: Piscataway, NJ, USA, 2009; Volume 1. [Google Scholar]
- Ma, J.; Li, Q.; Liu, Z.; Du, L.; Chen, H.; Ansari, N. Jamming modulation: An active anti-jamming scheme. IEEE Trans. Wirel. Commun. 2022, 22, 2730–2743. [Google Scholar] [CrossRef]
- Ward, J. Space-time adaptive processing for airborne radar. In IEE Colloquium on Space-Time Adaptive Processing; IEEE: London, UK, 1998; p. 2. [Google Scholar]
- Zhu, D.; Chen, K.; Geng, W. Design of active disturbance rejection controller for ship-borne antenna servo tracking system. In Proceedings of the 2013 International Conference on Mechatronic Sciences, Electric Engineering and Computer (MEC), Shenyang, China, 20–22 December 2013; IEEE: Piscataway, NJ, USA, 2013. [Google Scholar]
- Li, S.; Huang, J.; Duan, B. Integrated design of structure and control for radar antenna servo-mechanism. J. Mech. Eng. 2010, 46, 140–146. [Google Scholar]
- Mulla, A.; Vasambekar, P. Overview on the development and applications of antenna control systems. Annu. Rev. Control. 2016, 41, 47–57. [Google Scholar]
- Neipp, C.; Ndez, A.H.; Rodes, J.J.; Rquez, A.M.; Ndez, T.B. An analysis of the classical Doppler effect. Eur. J. Phys. 2003, 24, 497. [Google Scholar] [CrossRef]
- Wang, C.; Ellis, J.D. Dynamic doppler frequency shift errors: Measurement, characterization, and compensation. IEEE Trans. Instrum. Meas. 2015, 64, 1994–2004. [Google Scholar]
- Zhang, J.; Wen, H.; Tang, L. Improved smoothing frequency shifting and filtering algorithm for harmonic analysis with systematic error compensation. IEEE Trans. Ind. Electron. 2019, 66, 9500–9509. [Google Scholar] [CrossRef]
Title | Yuanwang 1,2 | Yuanwang 3 | Yuanwang 4 | Yuanwang 5,6 | Yuanwang 7 |
---|---|---|---|---|---|
Length/m | 192 | 179.9 | 156.1 | 222.2 | 224.9 |
Width/m | 22.6 | 22.2 | 20.6 | 25.2 | 27.2 |
Hight/m | 37.2 | 36.4 | 39 | 40.9 | 44.2 |
Draught (full load)/m | 8.87 | 7.96 | 7.63 | 8.2 | / |
Displacement (full load)/t | 21,594 | 16,792 | 12,785 | 24,966 | 27,000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, H.; Ma, Y.; Zeng, S.; Tian, Y.; Zhang, D. Current Status of Bibliometrics-Based Research on Measurement and Communication Technology for Space Tracking Ships. J. Mar. Sci. Eng. 2025, 13, 719. https://doi.org/10.3390/jmse13040719
Jiang H, Ma Y, Zeng S, Tian Y, Zhang D. Current Status of Bibliometrics-Based Research on Measurement and Communication Technology for Space Tracking Ships. Journal of Marine Science and Engineering. 2025; 13(4):719. https://doi.org/10.3390/jmse13040719
Chicago/Turabian StyleJiang, Haoyu, Yunsheng Ma, Shengqing Zeng, Yutao Tian, and Dapeng Zhang. 2025. "Current Status of Bibliometrics-Based Research on Measurement and Communication Technology for Space Tracking Ships" Journal of Marine Science and Engineering 13, no. 4: 719. https://doi.org/10.3390/jmse13040719
APA StyleJiang, H., Ma, Y., Zeng, S., Tian, Y., & Zhang, D. (2025). Current Status of Bibliometrics-Based Research on Measurement and Communication Technology for Space Tracking Ships. Journal of Marine Science and Engineering, 13(4), 719. https://doi.org/10.3390/jmse13040719