Phase Estimation Using an Optimization Algorithm to Improve Ray-Based Blind Deconvolution Performance
Abstract
:1. Introduction
2. Proposed Method
3. Experimental Description
4. Results and Discussion
4.1. CIR Estimation in the Low-Frequency Band Using Ship-Radiated Noise
4.2. Source Waveform Reconstruction Using the CIRs Estimated from LFM Signals in the High-Frequency Band
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
References
- Sabra, K.G.; Song, H.-C.; Dowling, D.R. Ray-based blind deconvolution in ocean sound channels. J. Acoust. Soc. Am. 2010, 127, EL42–EL47. [Google Scholar] [CrossRef]
- Zhang, X.; Durofchalk, N.C.; Niu, H.; Wu, L.; Zhang, R.; Sabra, K.G. Geoacoustic inversion using ray-based blind deconvolution of shipping sources. J. Acoust. Soc. Am. 2020, 147, 285–299. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Park, H.; Kim, J.; Hahn, J.Y. Application of ray-based blind deconvolution to long-range acoustic communication in deep water. J. Acoust. Soc. Korea 2022, 41, 242–253. [Google Scholar]
- Lee, S.; Makris, N.C. The array invariant. J. Acoust. Soc. Am. 2006, 119, 336–351. [Google Scholar] [CrossRef] [PubMed]
- Byun, G.; Kim, J.; Cho, C.; Song, H.; Byun, S.-H. Array invariant-based ranging of a source of opportunity. J. Acoust. Soc. Am. 2017, 142, EL286–EL291. [Google Scholar] [CrossRef]
- Song, H.-C.; Cho, C.; Byun, G.; Kim, J.S. Cascade of blind deconvolution and array invariant for robust source-range estimation. J. Acoust. Soc. Am. 2017, 141, 3270–3273. [Google Scholar] [PubMed]
- Byun, G.; Song, H.; Kim, J.; Park, J. Real-time tracking of a surface ship using a bottom-mounted horizontal array. J. Acoust. Soc. Am. 2018, 144, 2375–2382. [Google Scholar] [CrossRef]
- Durofchalk, N.C.; Sabra, K.G. Analysis of the ray-based blind deconvolution algorithm for shipping sources. J. Acoust. Soc. Am. 2020, 147, 1927–1938. [Google Scholar]
- Touret, R.X.; Durofchalk, N.; Sabra, K.G. Quantifying the influence of source motion on the ray-based blind deconvolution algorithm. JASA Express Lett. 2024, 4, 116002. [Google Scholar] [CrossRef]
- Byun, S.-H.; Byun, G.; Sabra, K.G. Ray-based blind deconvolution of shipping sources using multiple beams separated by alternating projection. J. Acoust. Soc. Am. 2018, 144, 3525–3532. [Google Scholar]
- Kim, D.; Kim, D.; Byun, G.; Kim, J.; Song, H. Improvement of a Green’s Function Estimation for a Moving Source Using the Waveguide Invariant Theory. Sensors 2024, 24, 5782. [Google Scholar] [CrossRef]
- Xu, Z.; Li, H.; Yang, K.; Li, P. A deep-water ray-based blind deconvolution for a near-surface source with a bottom-moored short-aperture vertical array. JASA Express Lett. 2022, 2, 026001. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Yang, J.; Sabra, K. Ray-based blind deconvolution of shipping sources using single-snapshot adaptive beamforming. J. Acoust. Soc. Am. 2020, 147, EL106–EL112. [Google Scholar]
- Abadi, S.H.; Rouseff, D.; Dowling, D.R. Blind deconvolution for robust signal estimation and approximate source localization. J. Acoust. Soc. Am. 2012, 131, 2599–2610. [Google Scholar] [PubMed]
- Song, H.; Cho, C. Array invariant-based source localization in shallow water using a sparse vertical array. J. Acoust. Soc. Am. 2017, 141, 183–188. [Google Scholar]
- Yoon, S.; Yang, H.; Seong, W. Ray-based blind deconvolution with maximum kurtosis phase correction. J. Acoust. Soc. Am. 2022, 151, 4237–4251. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the Proceedings of ICNN’95-International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; pp. 1942–1948. [Google Scholar]
- AlRashidi, M.R.; El-Hawary, M.E. A survey of particle swarm optimization applications in electric power systems. IEEE Trans. Evol. Comput. 2008, 13, 913–918. [Google Scholar]
- Liu, F.; Zhou, Z. An improved QPSO algorithm and its application in the high-dimensional complex problems. Chemom. Intell. Lab. Syst. 2014, 132, 82–90. [Google Scholar] [CrossRef]
- Sen, M.K.; Stoffa, P.L. Global Optimization Methods in Geophysical Inversion; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Byun, G.; Cho, C.; Song, H.; Kim, J.; Byun, S.-H. Array invariant-based calibration of array tilt using a source of opportunity. J. Acoust. Soc. Am. 2018, 143, 1318–1325. [Google Scholar] [CrossRef]
- Byun, S.-H.; Verlinden, C.; Sabra, K.G. Blind deconvolution of shipping sources in an ocean waveguide. J. Acoust. Soc. Am. 2017, 141, 797–807. [Google Scholar]
- Poli, R.; Kennedy, J.; Blackwell, T. Particle swarm optimization: An overview. Swarm Intell. 2007, 1, 33–57. [Google Scholar]
- Gutiérrez, A.; Lanza, M.; Barriuso, I.; Valle, L.; Domingo, M.; Perez, J.; Basterrechea, J. Comparison of different PSO initialization techniques for high dimensional search space problems: A test with FSS and antenna arrays. In Proceedings of the Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP), Rome, Italy, 11–15 April 2011; pp. 965–969. [Google Scholar]
- Helwig, S.; Wanka, R. Particle swarm optimization in high-dimensional bounded search spaces. In Proceedings of the 2007 IEEE Swarm Intelligence Symposium, Honolulu, HI, USA, 1–5 April 2007; pp. 198–205. [Google Scholar]
- Yahya, A.A.; Osman, A.; El-Bashir, M.S. Rocchio algorithm-based particle initialization mechanism for effective PSO classification of high dimensional data. Swarm Evol. Comput. 2017, 34, 18–32. [Google Scholar]
- Xinchao, Z. A perturbed particle swarm algorithm for numerical optimization. Appl. Soft Comput. 2010, 10, 119–124. [Google Scholar]
- Wang, D.; Tan, D.; Liu, L. Particle swarm optimization algorithm: An overview. Soft Comput. 2018, 22, 387–408. [Google Scholar]
- Porter, M.B.; Bucker, H.P. Gaussian beam tracing for computing ocean acoustic fields. J. Acoust. Soc. Am. 1987, 82, 1349–1359. [Google Scholar] [CrossRef]
- Gong, Z.; Ratilal, P.; Makris, N.C. Simultaneous localization of multiple broadband non-impulsive acoustic sources in an ocean waveguide using the array invariant. J. Acoust. Soc. Am. 2015, 138, 2649–2667. [Google Scholar]
- Oh, S.H.; Byun, G.H.; Kim, J. Performance improvement of underwater acoustic communication using ray-based blind deconvolution in passive time reversal mirror. J. Acoust. Soc. Korea 2016, 35, 375–382. [Google Scholar]
- Jensen, F.B.; Kuperman, W.A.; Porter, M.B.; Schmidt, H.; Tolstoy, A. Computational Ocean Acoustics; Springer: Berlin/Heidelberg, Germany, 2011; Volume 2011. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, W.; Han, D.-G. Phase Estimation Using an Optimization Algorithm to Improve Ray-Based Blind Deconvolution Performance. J. Mar. Sci. Eng. 2025, 13, 704. https://doi.org/10.3390/jmse13040704
Yang W, Han D-G. Phase Estimation Using an Optimization Algorithm to Improve Ray-Based Blind Deconvolution Performance. Journal of Marine Science and Engineering. 2025; 13(4):704. https://doi.org/10.3390/jmse13040704
Chicago/Turabian StyleYang, Wonjun, and Dong-Gyun Han. 2025. "Phase Estimation Using an Optimization Algorithm to Improve Ray-Based Blind Deconvolution Performance" Journal of Marine Science and Engineering 13, no. 4: 704. https://doi.org/10.3390/jmse13040704
APA StyleYang, W., & Han, D.-G. (2025). Phase Estimation Using an Optimization Algorithm to Improve Ray-Based Blind Deconvolution Performance. Journal of Marine Science and Engineering, 13(4), 704. https://doi.org/10.3390/jmse13040704