Intelligent Computerized Video Analysis for Automated Data Extraction in Wave Structure Interaction; A Wave Basin Case Study
Abstract
:1. Introduction
1.1. Literature Review
1.2. Problem Statement
1.3. Aims and Novelty
2. Data Generation
3. Methodology
3.1. General Framework
3.2. Controlled Variable
3.3. Hull Segmentation
3.4. Water Line and Hull Edge Detection
3.5. Edge Location Verification
3.6. Post Processing
4. Results
4.1. Regular Waves
4.2. Irregular Wave Spectrum
5. Discussion and Remarks
5.1. Limitations
5.2. Remarks
6. Conclusions and Future Works
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
General | |
Complete name | D:\R167-01_Focused.MP4 |
Format | MPEG-4 |
Format profile | Base Media |
File size | 9.67 GiB |
Overall bit rate mode | Variable |
Overall bit rate | 42.8 Mb/s |
Encoded date | UTC 2023-02-20 05:43:20 |
Tagged date | UTC 2023-02-20 05:43:20 |
CameraMaker | Z CAM |
CameraModel | E2-M4 |
com_zcam_camera_storage | SanDisk SDCFSP-128G |
com_zcam_camera_aperture | F5 |
com_zcam_camera_lensType | LUMIX G VARIO 35-100/F2.8II |
com_zcam_camera_lensFocalLength | 100 mm |
com_zcam_camera_focusDistance | 7600 mm |
Video | |
Format | HEVC |
Format/Info | High Efficiency Video Coding |
Format profile | Main 10 |
Format level | 5.1 |
HDR format | SMPTE ST 2086, HDR10 compatible |
Codec ID | hvc1 |
Duration | 32 min 19 s |
Bit rate | 42.1 Mb/s |
Width | 4 096 pixels |
Height | 1 728 pixels |
Frame rate mode | Constant |
Frame rate | 25.000 FPS |
Color space | YUV |
Chroma subsampling | 4:2:0 |
Bit depth | 10 bits |
Bits/(Pixel*Frame) | 0.238 |
References
- Hamed Majidian, H.E.; Enshaei, H.; Howe, D. Online short-term ship response prediction with dynamic buffer window using transient free switching filter. Ocean Eng. 2024, 294, 116701. [Google Scholar] [CrossRef]
- Swan, C.; Sheikh, R. The interaction between steep waves and a surface-piercing column. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2015, 373, 20140114. [Google Scholar]
- Le Page, S.; Tassin, A.; Caverne, J.; Ducrozet, G. A particle-free stereo-video free-surface reconstruction method for wave-tank experiments. Exp. Fluids 2024, 65, 157. [Google Scholar] [CrossRef]
- Gomit, G.; Chatellier, L.; David, L. Free-surface fow measurements by non-intrusive methods: A survey. Exp. Fluids 2022, 63, 94. [Google Scholar]
- Chakraborty, S.; Pradhan, B. Editorial for the Special Issue “Machine Learning in Computer Vision and Image Sensing: Theory and Applications”. Sensors 2024, 24, 2874. [Google Scholar] [CrossRef]
- Kozłowski, M.; Racewicz, S.; Wierzbicki, S. Image Analysis in Autonomous Vehicles: A Review of the Latest AI Solutions and Their Comparison. Appl. Sci. 2024, 14, 8150. [Google Scholar] [CrossRef]
- Briguglio, G.; Crupi, V. Review on Sensors for Sustainable and Safe Maritime Mobility. J. Mar. Sci. Eng. 2024, 12, 353. [Google Scholar] [CrossRef]
- Ghosh, T.H. Practical modeling and acquisition of layered facial reflectance. In Proceedings of the SIGGRAPH Asia ‘08, Singapore, 10–13 December 2008; pp. 1–10. [Google Scholar]
- Wang, H.; Liao, M.; Zhang, Q.; Yang, R.; Turk, G. Physically guided liquid surface modeling from videos. ACM Trans. Graph. 2009, 28, 1–11. [Google Scholar]
- Zhang, L.; Zhang, F.; Xu, W.; Bo, H.; Zhang, X. An innovative method for measuring the three-dimensional water surface morphology of unsteady flow using light detection and ranging technology. Ocean Eng. 2023, 276, 114079. [Google Scholar] [CrossRef]
- Gomit, G.; Chatellier, L.; Calluaud, D.; David, L. Free surface measurement by stereo-refraction. Exp. Fluids 2013, 54, 1540. [Google Scholar]
- Aubourg, Q.; Campagne, A.; Peureux, C.; Ardhuin, F.; Sommeria, J.; Viboud, S.; Mordant, N. Three-wave and four-wave interactions in gravity wave turbulence. Phys. Rev. Fluids 2017, 2, 114802. [Google Scholar] [CrossRef]
- Li, C.; Pickup, D.; Saunders, T.; Cosker, D.; Marshall, D.; Hall, P.; Willis, P. Water Surface Modeling from A Single Viewpoint Video. IEEE Trans. Vis. Comput. Graph. 2012, 19, 1242–1251. [Google Scholar] [CrossRef]
- Erikson, L.H.; Hanson, H. A method to extract wave tank data using video imagery and its comparison to conventional data collection techniques. Comput. Geosci. 2005, 31, 371–384. [Google Scholar] [CrossRef]
- Brand, M. Understanding manipulation in video. In Proceedings of the Second International Conference on Automatic Face and Gesture Recognition, Killington, VT, USA, 14–16 October 1996; pp. 94–99. [Google Scholar] [CrossRef]
- Guttmann, M.; Wolf, L.; Cohen-Or, D. Content aware video manipulation. Comput. Vis. Image Underst. 2011, 115, 1662–1678. [Google Scholar] [CrossRef]
- Viola, P.; Jones, M.J. Robust Real-Time Face Detection. Int. J. Comput. Vis. 2004, 57, 137–154. [Google Scholar] [CrossRef]
- Canny, J. Finding Edges and Lines in Images; Massachusetts Institute of Technology: Cambridge, MA, USA, 1983. [Google Scholar]
- Marr, D.; Hildreth, E. Theory of edge detection. Proc. R. Soc. Lond. Ser. B. 1980, 207, 187–217. [Google Scholar]
- Reinhard, E. Example-Based Image Manipulation; Max Planck Institute for Informatics: Saarbrücken, Germany, 2012. [Google Scholar]
- Zhang, W.; Li, Y.; Xu, W. Draft Survey Based on Image Processing. In Proceedings of the 3rd International Conference on Electromechanical Control Technology and Transportation, Chongqing, China, 19–21 January 2018; Volume 1, pp. 642–647, ISBN 978-989-758-312-4. [Google Scholar] [CrossRef]
- Majidiyan, H.; Enshaei, H.; Howe, D.; Wang, Y. An Integrated Framework for Real-Time Sea-State Estimation of Stationary Marine Units Using Wave Buoy Analogy. J. Mar. Sci. Eng. 2024, 12, 2312. [Google Scholar] [CrossRef]
- Wang, Z.; Shi, P.; Wu, C. The Adaptive Hough Transform. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 1575, 690–698. [Google Scholar] [CrossRef]
- Canny, J. A Computational Approach to Edge Detection. IEEE Trans. Pattern Anal. Mach. Intell. 1986, 8, 679–698. [Google Scholar] [CrossRef]
- Wang, Z.; Shi, P.; Wu, C. A Ship Draft Line Detection Method Based on Image Processing and Deep Learning. J. Phys. Conf. Ser. 2020, 1575, 012230. [Google Scholar]
- Lindeberg, T. Scale-Space Theory: A Basic Tool for Analysing Structures at Different Scales. J. Appl. Stat. 1994, 21, 225–270. [Google Scholar] [CrossRef]
- Wang, B.; Liu, Z.; Wang, H. Computer vision with deep learning for ship draft reading. Opt. Eng. 2021, 60, 024105. [Google Scholar] [CrossRef]
- Tipping, M.E. Sparse Bayesian Learning and the Relevance Vector Machine. J. Mach. Learn. Res. 2001, 1, 211–244. [Google Scholar]
- Howe, D.; Raju, B.; Hansen, C.L.; Wolgamot, H.; Kurniawan, A.; Nader, J.R.; Shearer, C.; Stansby, P. Basin testing of the 1-2-1 M4 wave energy convertor. In Proceedings of the 15th European Wave and Tidal Energy Conference, Bilbao, Spain, 3–7 September 2023. [Google Scholar]
- Hansen, C.; Wolgamot, H.; Taylor, P.; Kurniawan, A.; Orszaghova, J.; Bredmose, H. Design Waves and extreme responses for an M4 floating, hinged wave energy converter. J. Fluids Struct. 2025, 133, 104253. [Google Scholar] [CrossRef]
- Great Sothern Development Commission. Albany Celebrates Major Milestone in Renewable Energy. Available online: https://gsdc.wa.gov.au/albany-celebrates-major-milestone-in-renewable-energy (accessed on 23 September 2024).
- Australia, M.E. Marine Energy research Australia. Available online: https://marineenergyresearch.com.au/m4-project/ (accessed on 18 October 2024).
- Bala, R.; Eschbach, R.; Zhao, Y. Color space transformations for digital image processing: A review. J. Imaging Sci. Technol. 2005, 49, 453–464. [Google Scholar]
- Zhu, X.; Milanfar, P. Automatic Parameter Selection for Denoising Algorithms Using a No-Reference Measure of Image Content. IEEE Trans. Image Process. 2010, 19, 3116–3132. [Google Scholar] [CrossRef]
- Welch, P.D. The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoust. 1967, 15, 70–73. [Google Scholar] [CrossRef]
Methodology | Principle | Advantages | Disadvantages |
---|---|---|---|
CVA (Proposed here) | Advanced image processing via video, leveraging YCbCr segmentation and Canny/Hough techniques |
|
|
CFD | Numerical modelling of Navier–Stokes equation |
|
|
Wave Gauges | Direct physical measurement using sensor arrays |
|
|
LIDAR | Laser-based optical sensing with pigment enhancement |
|
|
PIV | Particle-seeded flow visualization via stereoscopic imaging |
|
|
Video-based Modelling | Surface reconstruction from monocular video input |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wolrige, S.H.; Howe, D.; Majidiyan, H. Intelligent Computerized Video Analysis for Automated Data Extraction in Wave Structure Interaction; A Wave Basin Case Study. J. Mar. Sci. Eng. 2025, 13, 617. https://doi.org/10.3390/jmse13030617
Wolrige SH, Howe D, Majidiyan H. Intelligent Computerized Video Analysis for Automated Data Extraction in Wave Structure Interaction; A Wave Basin Case Study. Journal of Marine Science and Engineering. 2025; 13(3):617. https://doi.org/10.3390/jmse13030617
Chicago/Turabian StyleWolrige, Samuel Hugh, Damon Howe, and Hamed Majidiyan. 2025. "Intelligent Computerized Video Analysis for Automated Data Extraction in Wave Structure Interaction; A Wave Basin Case Study" Journal of Marine Science and Engineering 13, no. 3: 617. https://doi.org/10.3390/jmse13030617
APA StyleWolrige, S. H., Howe, D., & Majidiyan, H. (2025). Intelligent Computerized Video Analysis for Automated Data Extraction in Wave Structure Interaction; A Wave Basin Case Study. Journal of Marine Science and Engineering, 13(3), 617. https://doi.org/10.3390/jmse13030617