Influence of Geometric Length Perturbation of Optical Path on Measurement Error of Seawater Refractive Index
Abstract
:1. Introduction
2. Mathematical Model and Simulation
2.1. Principle of Interferometry to Measure the Refractive Index of Seawater
2.2. Error Model of Seawater Refractive Index Measurement Due to Perturbation of the Optical Path Geometric Length
2.3. Simulation Analysis
3. Experiment
Experimental Design
4. Results and Discussion
5. Conclusions
- (1)
- Due to the presence of , the systematic error introduced by the geometrical path length perturbation in the measurement area cannot be easily ignored.
- (2)
- To achieve an accurate measurement of a certain refractive index change magnitude, the allowable relative perturbation magnitude is always one order of magnitude smaller than the refractive index change magnitude.
- (3)
- The choice of the parameter critically governs the interferometric system’s susceptibility to geometric path length disturbances and must, therefore, be carefully optimized through a systematic trade-off analysis between measurement precision, environmental robustness, and dynamic range requirements inherent to the target application scenario.
- (4)
- On a logarithmic scale, the systematic error of the refractive index variation at the same refractive index change magnitude increases linearly with the increase in the relative perturbation amplitude.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Röthig, T.; Trevathan-Tackett, S.M.; Voolstra, C.R.; Ross, C.; Chaffron, S.; Durack, P.J.; Warmuth, L.M.; Sweet, M. Human-induced salinity changes impact marine organisms and ecosystems. Glob. Chang. Biol. 2023, 29, 4731–4749. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Zheng, X.-T.; Sun, Q.-W.; Zhang, Y.; Du, Y.; Liu, L. Decadal variability of the upper-ocean salinity in the southeast Indian Ocean: Role of local ocean–atmosphere dynamics. J. Clim. 2021, 34, 7927–7942. [Google Scholar] [CrossRef]
- Liu, Y.; Cheng, L.; Pan, Y.; Abraham, J.; Zhang, B.; Zhu, J.; Song, J. Climatological seasonal variation of the upper ocean salinity. Int. J. Climatol. 2022, 42, 3477–3498. [Google Scholar] [CrossRef]
- Stammer, D.; Martins, M.S.; Köhler, J.; Köhl, A. How well do we know ocean salinity and its changes? Prog. Oceanogr. 2021, 190, 102478. [Google Scholar] [CrossRef]
- Intergovernmental Oceanographic Commission. The International Thermodynamic Equation of Seawater, 2010: Calculation and Use of Thermodynamic Properties; Intergovernmental Oceanographic Commission: Paris, France, 2010. [Google Scholar]
- Uchida, H.; Katsuro, K.; Toshimasa, D. WHP I10 Revisit in 2015 Data Book; Japan Agency for Marine-Earth Science and Technology: Yokosuka, Japan, 2018. [Google Scholar]
- Swift, J.H. 2010 Reference-Quality Water Sample Data: Notes on Acquisition, Record Keeping, and Evaluation. In The GO-SHIP Repeat Hydrography Manual: A Collection of Expert Reports and Guidelines; Hood, E.M., Sabine, C.L., Sloyan, B.M., Eds.; IOCCP Report Number 14, ICPO Publication Series Number 134; 2010; Available online: http://www.go-ship.org/HydroMan.html (accessed on 20 February 2025).
- Lu, W.; Worek, W. Two-wavelength interferometric technique for measuring the refractive index of salt-water solutions. Appl. Opt. 1993, 32, 3992–4002. [Google Scholar] [CrossRef] [PubMed]
- Le Menn, M.; de la Tocnaye, J.d.B.; Grosso, P.; Delauney, L.; Podeur, C.; Brault, P.; Guillerme, O. Advances in measuring ocean salinity with an optical sensor. Meas. Sci. Technol. 2011, 22, 115202. [Google Scholar] [CrossRef]
- Millard, R.; Seaver, G. An index of refraction algorithm for seawater over temperature, pressure, salinity, density, and wavelength. Deep-Sea Res. 1990, 37, 1909–1926. [Google Scholar] [CrossRef]
- Le Menn, M.; Nair, R. Review of acoustical and optical techniques to measure absolute salinity of seawater. Front. Mar. Sci. 2022, 9, 1031824. [Google Scholar] [CrossRef]
- Mahrt, K.-H.; Kroebel, W. Optical Interferometric Bench Salinometer of High Precision with Electrical Read Out. In Proceedings of the OCEANS 1984, Washington, DC, USA, 10–12 September 1984; pp. 219–223. [Google Scholar]
- Uchida, H.; Kayukawa, Y.; Maeda, Y. Ultra high-resolution seawater density sensor based on a refractive index measurement using the spectroscopic interference method. Sci. Rep. 2019, 9, 15482. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Li, L.; Zhou, Y.; Liu, Q.; Wang, Y.; Liu, Y. Investigation of high-precision seawater refractive index sensor based on optical heterodyne interference. Infrared Laser Eng. 2023, 52, 20230134. [Google Scholar]
- Seaver, G.; Vlasov, V.; Kostianoy, A. Laboratory calibration in distilled water and seawater of an oceanographic multichannel interferometer-refractometer. Atmos. Ocean. Technol. 1997, 14, 267–277. [Google Scholar] [CrossRef]
- Yang, S.; Xu, J.; Ji, L.; Sun, Q.; Zhang, M.; Zhao, S.; Wu, C. In Situ Measurement of Deep-Sea Salinity Using Optical Salinometer Based on Michelson Interferometer. J. Mar. Sci. Eng. 2024, 12, 1569. [Google Scholar] [CrossRef]
- Wang, X.; Wang, J.H.; Gao, Y.; Jin, W.Q. Photoelectric Detection Technology and Systems, 3rd ed.; Electronic Industry Press: Beijing, China, 2015. [Google Scholar]
- Tilton, L.; Taylor, J. Refractive index and dispersion of distilled water for visible radiation, at temperatures 0 to 60 °C. J. Res. Natl. Bur. Stand 1938, 20, 419–477. [Google Scholar] [CrossRef]
(RIU) | |
---|---|
(RIU) | (m) | (m) |
---|---|---|
10−3 | 7.5 × 10−8 | |
102 | 7.5 × 10−3 | |
10−5 | 10−3 | 7.5 × 10−9 |
10−2 | 7.5 × 10−8 | |
102 | 7.5 × 10−4 | |
(RIU) | Maximum Systematic Error (RIU) | RMSE (RIU) | |
---|---|---|---|
(m) | RMSE Under Experimental | RMSE Under Simulation | |
---|---|---|---|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Zhao, J.; Wang, H.; Li, L.; Fan, S.; Wang, Y.; Zhou, Y. Influence of Geometric Length Perturbation of Optical Path on Measurement Error of Seawater Refractive Index. J. Mar. Sci. Eng. 2025, 13, 473. https://doi.org/10.3390/jmse13030473
Zhang X, Zhao J, Wang H, Li L, Fan S, Wang Y, Zhou Y. Influence of Geometric Length Perturbation of Optical Path on Measurement Error of Seawater Refractive Index. Journal of Marine Science and Engineering. 2025; 13(3):473. https://doi.org/10.3390/jmse13030473
Chicago/Turabian StyleZhang, Xinyi, Jiaxin Zhao, Hu Wang, Liyan Li, Songtao Fan, Yongjie Wang, and Yan Zhou. 2025. "Influence of Geometric Length Perturbation of Optical Path on Measurement Error of Seawater Refractive Index" Journal of Marine Science and Engineering 13, no. 3: 473. https://doi.org/10.3390/jmse13030473
APA StyleZhang, X., Zhao, J., Wang, H., Li, L., Fan, S., Wang, Y., & Zhou, Y. (2025). Influence of Geometric Length Perturbation of Optical Path on Measurement Error of Seawater Refractive Index. Journal of Marine Science and Engineering, 13(3), 473. https://doi.org/10.3390/jmse13030473