Comparison of Three Brillouin Ocean Lidar Models for Estimating Temperature and Salinity
Abstract
:1. Introduction
2. General Principle
2.1. Brillouin Frequency Shift and Linewidth
2.2. Temperature–Salinity Inversion Model
3. Results and Discussion
3.1. Influence of Pressure on Temperature–Salinity Inversion Model
3.2. Construction of Three Inversion Models
3.3. Error Estimation
3.3.1. Errors from Empirical Formula
3.3.2. Errors from Fitting
3.3.3. Model Uncertainty
3.4. Inversion of Temperature and Salinity in the South China Sea via Dual-Wavelength Model
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
lidar | Light detection and ranging |
References
- Zou, L.; Wang, X.; Wen, Z.; Yu, Z.; Ma, X. Distribution characteristics of pycnocline in the northern South China Sea based on an improved vertical gradient method. J. Oceanogr. 2022, 78, 449–466. [Google Scholar] [CrossRef]
- Somavilla, R.; Rodriguez, C.; Lavín, A.; Viloria, A.; Marcos, E.; Cano, D. Atmospheric Control of Deep Chlorophyll Maximum Development. Geosciences 2019, 9, 178. [Google Scholar] [CrossRef]
- Mourn, J.N.; Perlin, A.; Nash, J.D.; Mcphaden, M.J. Seasonal sea surface cooling in the equatorial Pacific cold tongue controlled by ocean mixing. Nature 2013, 500, 64–67. [Google Scholar]
- Somavilla Cabrillo, R.; González-Pola, C.; Ruiz-Villarreal, M.; Lavín Montero, A. Mixed layer depth (MLD) variability in the southern Bay of Biscay. Deepening of winter MLDs concurrent with generalized upper water warming trends? Ocean Dyn. 2011, 61, 1215–1235. [Google Scholar] [CrossRef]
- Enzor, L.A.; Hunter, E.M.; Place, S.P. The effects of elevated temperature and ocean acidification on the metabolic pathways of notothenioid fish. Conserv. Physiol. 2017, 5, cox019. [Google Scholar] [CrossRef]
- Sandersfeld, T.; Davison, W.; Lamare, M.D.; Knust, R.; Richter, C. Elevated temperature causes metabolic trade-offs at the whole-organism level in the Antarctic fish Trematomus bernacchii. J. Exp. Biol. 2015, 218, 2373–2381. [Google Scholar] [CrossRef]
- Pezzolesi, L.; Guerrini, F.; Ciminicllo, P.; Dell’Auerscmo, C.; Iacouo, E.D.; Fattorusso, E.; Forino, M.; Tartaglione, L.; Pistocchi, R. Influence of temperature and salinity on Ostreopsis cf. ovata growth and evaluation of toxin content through HR LC-MS and biological assays. Water Res. 2012, 46, 82–92. [Google Scholar] [CrossRef]
- Okpobiri, O.; Rowland, E.D.; Egobueze, F.E.; Chinwe, M.F. Monitoring and Quantification of Carbon Dioxide Emissions and Impact of Sea Surface Temperature on Marine Ecosystems as Climate Change Indicators in the Niger Delta Using Geospatial Technology. Atmos. Res. 2023, 6, 1–20. [Google Scholar] [CrossRef]
- Smith, A.N.; Hennon, G.M.M.; Zinser, E.R.; Calfee, B.C.; Chandler, J.W.; Barton, A.D. Comparing Prochlorococcus temperature niches in the lab and across ocean basins. Limnol. Oceanogr. 2021, 66, 2632–2647. [Google Scholar] [CrossRef]
- Hu, C.; Muller-Karger, F.E.; Taylor, C.; Carder, K.L.; Kelble, C.; Johns, E.; Heil, C.A. Red tide detection and tracing using MODIS fluorescence data: A regional example in SW Florida coastal waters. Remote Sens. Environ. 2005, 97, 311–321. [Google Scholar] [CrossRef]
- Yang, F.; Zhang, L.; Long, M. Intensification of Pacific Trade Wind and Related Changes in the Relationship Between Sea Surface Temperature and Sea Level Pressure. Geophys. Res. Lett. 2022, 49, e2022GL098052. [Google Scholar] [CrossRef]
- Delorme, N.J.; Sewell, M.A. Temperature and salinity: Two climate change stressors affecting early development of the New Zealand sea urchin Evechinus chloroticus. Mar. Biol. 2014, 161, 1999–2009. [Google Scholar] [CrossRef]
- Walczowski, W.; Piechura, J.; Goszczko, I.; Wieczorek, P. Changes in Atlantic water properties: An important factor in the European Arctic marine climate. ICES J. Mar. Sci. 2012, 69, 864–869. [Google Scholar] [CrossRef]
- Yang, Y.; Zhong, M.; Feng, W.; Mu, D. Detecting Regional Deep Ocean Warming below 2000 meter Based on Altimetry, GRACE, Argo, and CTD Data. Adv. Atmos. Sci. 2021, 38, 1778–1790. [Google Scholar] [CrossRef]
- Koner, P.K.; Harris, A.; Maturi, E. A Physical Deterministic Inverse Method for Operational Satellite Remote Sensing: An Application for Sea Surface Temperature Retrievals. IEEE Trans. Geosci. Remote Sens. 2015, 53, 5872–5888. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, R.; Yin, Y.; Niu, T. The Application of ARGO Data to the Global Ocean Data Assimilation Operational System of NCC. Acta Meteorol. Sin. 2005, 19, 355. [Google Scholar]
- Gordon, A.L.; Haxby, W.F. Agulhas eddies invade the south Atlantic: Evidence From Geosat altimeter and shipboard conductivity-temperature-depth survey. J. Geophys. Res. Ocean. 1990, 95, 3117–3125. [Google Scholar] [CrossRef]
- Hailun, H.E.; Shouchang, W.U. Comparison of ship-based CTD measurement of Circumpolar Deep Water in the Amundsen Sea based on World Ocean Database. Adv. Polar Sci. 2022, 33, 11. [Google Scholar]
- Shivaprasad, S.; Dinesh, K.; Ashok, K.; Ravichandran, M. Acquisition of High Resolution Upper Ocean Spatial Thermo-Haline Structure by Underway Conductivity Temperature and Depth (UCTD) System in the Bay of Bengal; Indian National Centre for Ocean Information Services (INCOIS): New Delhi, India, 2015. [Google Scholar]
- Hirschberg, J.G.; Byrne, J.D.; Blizard, M.A. Rapid Underwater Ocean Measurements Using Brillouin Scattering. In Proceedings of the Ocean Optics VII, Monterey, CA, USA, 25–28 June 1984; pp. 270–276. [Google Scholar]
- Koestel, D.; Rupp, D.; Langfeld, B.; Walther, T. A Brillouin LIDAR For Remote Sensing the Temperature Profile in the Mixed Layer. In Proceedings of the Conference on Lasers and Electro-Optics, San Jose, CA, USA, 10–15 May 2020; p. ATu4I.3. [Google Scholar]
- Popescu, A.; Schorstein, K.; Walther, T. A novel approach to a Brillouin–LIDAR for remote sensing of the ocean temperature. Appl. Phys. B 2004, 79, 955–961. [Google Scholar] [CrossRef]
- Rudolf, A.; Walther, T. Laboratory demonstration of a Brillouin lidar to remotely measure temperature profiles of the ocean. Opt. Eng. 2014, 53, 051407. [Google Scholar] [CrossRef]
- Rudolf, A.; Walther, T. A Brillouin lidar for remote sensing of the temperature profile in the ocean: Towards the laboratory demonstration. In Proceedings of the Oceans-Yeosu, Yeosu, Republic of Korea, 21–24 May 2012; pp. 1–6. [Google Scholar]
- Schorstein, K.; Fry, E.S.; Walther, T. Depth-resolved temperature measurements of water using the Brillouin lidar technique. Appl. Phys. B 2009, 97, 931–934. [Google Scholar] [CrossRef]
- Moisan, J.R.; Rousseaux, C.S.; Stysley, P.R.; Clarke, G.B.; Poulios, D.P. Ocean Temperature Profiling Lidar: Analysis of Technology and Potential for Rapid Ocean Observations. Remote Sens. 2024, 16, 1236. [Google Scholar] [CrossRef]
- Yu, Y.; Ma, Y.; Li, H.; Huang, J.; Fang, Y.; Liang, K.; Zhou, B. Simulation of simultaneously obtaining ocean temperature and salinity using dual-wavelength Brillouin lidar. Laser Phys. Lett. 2014, 11, 036001. [Google Scholar] [CrossRef]
- Koestel, D.; Walther, T. The Brillouin linewidth in water as a function of temperature and salinity: The missing empirical relationship. Appl. Phys. B 2024, 130, 53. [Google Scholar] [CrossRef]
- Shi, J.; Xu, N.; Luo, N.; Li, S.; Xu, J.; He, X. Retrieval of sound-velocity profile in ocean by employing Brillouin scattering LiDAR. Opt. Express 2022, 30, 16419–16431. [Google Scholar] [CrossRef] [PubMed]
- Hickman, G.D.; Harding, J.M.; Carnes, M.; Pressman, A.; Kattawar, G.W. Aircraft Laser Sensing of Sound Velocity in Water: Brillouin Scattering. Remote Sens. Environ. 1991, 36, 165–178. [Google Scholar] [CrossRef]
- Liu, D.H.; Shi, J.W.; Chen, X.D.; Ouyang, M.; Gong, W.P. Brillouin lidar and related basic physics. Front. Phys. China 2010, 5, 82–106. [Google Scholar] [CrossRef]
- Fry, E.S.; Emery, Y.; Quan, X.; Katz, J.W. Accuracy limitations on Brillouin lidar measurements of temperature and sound speed in the ocean. Appl. Opt. 1997, 36, 6887. [Google Scholar] [CrossRef]
- Liang, K.; Ma, Y.; Yu, Y.; Huang, J.; Li, H. Research on simultaneous measurement of ocean temperature and salinity using Brillouin shift and linewidth. Opt. Eng. 2012, 51, 6002. [Google Scholar] [CrossRef]
- Yong, M.; Kun, L.; Hong, L.; Hang, J. Study on Simultaneous Measurement of Temperature and Salinity Based on Brillouin Scattering. Acta Opt. Sin. 2008, 28, 1508–1512. [Google Scholar] [CrossRef]
- Li, K.; He, Y.; Ma, J.; Jiang, Z.; Hou, C.; Chen, W.; Zhu, X.; Chen, P.; Tang, J.; Wu, S.; et al. A Dual-Wavelength Ocean Lidar for Vertical Profiling of Oceanic Backscatter and Attenuation. Remote Sens. 2020, 12, 2844. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, Y.; Zhao, H.; Jamet, C.; Dionisi, D.; Chami, M.; Di Girolamo, P.; Churnside, J.H.; Malinka, A.; Zhao, H.; et al. Shipborne oceanic high-spectral-resolution lidar for accurate estimation of seawater depth-resolved optical properties. Light Sci. Appl. 2022, 11, 261. [Google Scholar] [CrossRef]
- Kushina, M.E.; Heberle, G.; Hope, M.; Hall, D.; Bethel, M.; Calmes, L.K. ALMDS laser system. In Solid State Lasers XII, Proceedings of the High-Power Lasers and Applications, San Jose, CA, USA, 25–31 January 2003; SPIE: Bellingham, WA, USA, 2003. [Google Scholar] [CrossRef]
- Sofranec, D. Small-Scale Topo and Bathy Lidar Ready for UAVs. GPS World, 1 April 2020. Available online: https://www.gpsworld.com/small-scale-topo-and-bathy-lidar-ready-for-uavs/ (accessed on 5 February 2025).
- Saunders, P.M.; Fofonoff, N.P. Conversion of pressure to depth in the ocean. Deep Sea Res. Oceanogr. Abstr. 1976, 23, 109–111. [Google Scholar] [CrossRef]
- Xu, N.; Liu, Z.; Zhang, X.; Xu, Y.; Luo, N.; Li, S.; Xu, J.; He, X.; Shi, J. Influence of temperature-salinity-depth structure of the upper-ocean on the frequency shift of Brillouin LiDAR. Opt. Express 2021, 29, 36442–36452. [Google Scholar] [CrossRef]
- Locarnini, R.; Mishonov, A.; Baranova, O.; Boyer, T.; Zweng, M.; Garcia, H.; Reagan, J.; Seidov, D.; Weathers, K.; Paver, C.; et al. World Ocean Atlas 2018, Volume 1: Temperature; NOAA: Silver Spring, MD, USA, 2019. [Google Scholar]
- Reagan, J.R.; Seidov, D.; Wang, Z.; Dukhovskoy, D.; Boyer, T.P.; Locarnini, R.A.; Baranova, O.K.; Mishonov, A.V.; Garcia, H.E.; Bouchard, C.; et al. World Ocean Atlas 2023, Volume 2: Salinity; NOAA: Silver Spring, MD, USA, 2024. [Google Scholar] [CrossRef]
- Boyd, R.W.; Rza̧ewski, K.; Narum, P. Noise initiation of stimulated Brillouin scattering. Phys. Rev. A 1990, 42, 5514–5521. [Google Scholar] [CrossRef]
- Xu, J.; Ren, X.; Gong, W.; Dai, R.; Liu, D. Measurement of the Bulk Viscosity of Liquid by Brillouin Scattering. Appl. Opt. 2003, 42, 6704–6709. [Google Scholar] [CrossRef]
- Del Grosso, V.A. New equation for the speed of sound in natural waters (with comparisons to other equations). J. Acoust. Soc. Am. 1974, 56, 1084–1091. [Google Scholar] [CrossRef]
- Millard, R.C.; Seaver, G. An index of refraction algorithm for seawater over temperature, pressure, salinity, density, and wavelength. Deep Sea Res. Part A Oceanogr. Res. Pap. 1990, 37, 1909–1926. [Google Scholar] [CrossRef]
- Richards, S.D. The effect of temperature, pressure, and salinity on sound attenuation in turbid seawater. J. Acoust. Soc. Am. 1998, 103, 205–211. [Google Scholar] [CrossRef]
Errors of the Empirical Formula | Errors of the Inversion Model | ||
---|---|---|---|
Dual wavelength | 532 nm | 0.2698 MHz | |
486 nm | 0.2931 MHz | ||
Dual angle | 180° | 0.2673 MHz | |
150° | 0.2582 MHz | ||
Dual parameter | Frequency shift | 0.2673 MHz | |
Linewidth | 0.1140 MHz |
Dual-wavelength model | 0.052 | 0.096 |
Dual-angle model | 0.952 | 1.058 |
Dual-parameter model | 0.225 | 0.536 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, X.; Yan, G.; Wu, X.; Luo, N.; Wang, L.; Shi, J. Comparison of Three Brillouin Ocean Lidar Models for Estimating Temperature and Salinity. J. Mar. Sci. Eng. 2025, 13, 464. https://doi.org/10.3390/jmse13030464
Jia X, Yan G, Wu X, Luo N, Wang L, Shi J. Comparison of Three Brillouin Ocean Lidar Models for Estimating Temperature and Salinity. Journal of Marine Science and Engineering. 2025; 13(3):464. https://doi.org/10.3390/jmse13030464
Chicago/Turabian StyleJia, Xiaohong, Guoliang Yan, Xingxing Wu, Ningning Luo, Lei Wang, and Jiulin Shi. 2025. "Comparison of Three Brillouin Ocean Lidar Models for Estimating Temperature and Salinity" Journal of Marine Science and Engineering 13, no. 3: 464. https://doi.org/10.3390/jmse13030464
APA StyleJia, X., Yan, G., Wu, X., Luo, N., Wang, L., & Shi, J. (2025). Comparison of Three Brillouin Ocean Lidar Models for Estimating Temperature and Salinity. Journal of Marine Science and Engineering, 13(3), 464. https://doi.org/10.3390/jmse13030464